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Math. Slovaca 35,1985, No. 4, 361—371 

AN INDIVIDUAL ERGODIC THEOREM 
ON THE HILBERT SPACE LOGIC 

TATIANA LUTTEROVÁ—SYLVIA PULMANNOVÁ 

1. Introduction 

The classical individual ergodic theorem of G. Birkhoff states that if (X, 5 ,̂ \i) is 
a probability measure space, T is a measure-preserving transformation of X and / 
is an integrable real (or complex) valued function on X, then the averages 

sn(f)=- (/+ To/+ Tof+ ... + Tn~lof) 

converge almost everywhere to an T-invariant function / (where To/ is the 
function defined by TO/(JC) = / (TJC)) . 

In the quantum logic approach, probability measure space is replaced by the 
couple (L, m), where L is a logic and m is a state on L. Measure-preserving 
transformation T is replaced by a a-homomorphism of L preserving the state m, 
and instead of an integrable function we consider an observable JC on L. Individual 
ergodic theorem on a logic was formulated and proved in [1] for the case when the 
a-homomorphism T of L is JC-measurable, and this result was generalized in [2] for 
the case when the observalbes JC, TOJC, T2OJC, ... are mutually compatible. In this 
paper, we shall prove the individual ergodic theorem on the Hilbert-space logic. 
We shall replace the condition of compatibility by a weaker condition of the 
existence of a joint distribution of JC, TOJC, T2

GJC, ... in the state m. We shall also give 
simplified proofs of some theorems on joint distributions which were proved in [3]. 

2. Preliminaries 

Let (L, ^ , ±, 0, 1) be a logic (=an orthomodular a-lattice). Two elements a, 
b of L are said to be orthogonal if a ^ b± (we write a±b), and they are said to be 
compatible, written a<r*b, if a = (aAb)v(aAb±), b = (a Ab)w (a± Ab). A state m 
on L is a map m: L-»[0, 1] such that (i) m( l ) = l , (ii) m ( v a , ) = 2 m ( a , ) for any 
sequence {a,}, of mutually orthogonal elements of L. 

Let Li, L2 be two logics. A map T: LI—»L2 is a a-homomorphism if (i) T ( 1 ) = 1, 
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(ii) T(a±) = T(a)±forany a eLu (iii) T(va,)= v(r(a,)) for any sequence {a,}, in Lx. 
A a-homomorphism T is an isomorphism if it is one-to-one and onto. An 
isomorphism T: L-^L is an automorphism. 

Let us denote by 2ft(Rn) the a-algebra of Borel subsets of Rn. Clearly, 2&(Rn) 
with the ordering defined by set-theoretical inclusion and with the set-theoretical 
complementation is a logic. An observable on L is a a-homomorphism JC from 
2ft(Rl) into L. If JC is an observable and / is a Borel measurable function on Rl, 
then f(x) = Xof~l is also an observable. Two observables JC, y are said to be 
compatible (x<->y) if x(E)<->y(F) holds for any E,Fe 2ft(R). If JC is an observable 
and m is a state on L, then mx: 2ft(R1)—>[0, 1] 

Ei->m(jc(E)) 

is a probability measure on 2R(Rl). This mx is called the probability distribution of 
the observable JC in the state m. The expectation of JC in the state m is defined by 
m(x) = $Xmx(dX) if the latter integral exists. For a Borel Function / we have 
m(f(x)) = J/(A)mxd(A). If JC is an observable and T: L-+L is a a-homomorphism, 
then TOJC: 2&(RX)-±L 

E I - » T ( J C ( E ) ) 

is also an observable. A a-homomorphism T is said to be (i) jc-measurable if 
T(.R(JC)) C R(X), where R(x) = {x(E): E e ^(R1)} is the range of JC, (ii) m-pres-
erving if m(T(a)) = m(a) for all aeL, (iii) ergodic in m if it is m-preserving and 
r(a) = a implies m(a)e {0, 1}. We put T0

OJC = JC, T"+1OJC = TOT"0JC, rc^l. 
An observable JC is bounded if there is compact subset C c Rl such that JC(C) = 1 

and it is called simple if JC{0, 1} = 1. TO any aeL there is a (unique) simple 
observable jca such that jca{l}=a and xa{0} = a~. If Ee2ft(Rl) is such that 
JC(E) = 1 for the observable JC and T is a a-homomorphism, then Tojc(E) = 
T(JC(E)) = T ( 1 ) = 1. This implies that if JC is bounded, Tojc is bounded, too. 

3. Joint distributions of observables 

Compatible observables have joint distributions in any state. Joint distributions 
for observables not necessarily compatible were introduced in [4] in the following 
form. 

Definition 1. We say that the observables JCI, JC2, ..., JC„ have a joint distribution in 
a state m if there is a measure \i on 2&(Rn) such that 

li(EiXE2x...xEn) = m(xi(El)Ax2(E2)A...Axn(En)) (1) 

for any measurable rectangle E\ x E2 x ... x En. 
It is easily seen that if the joint distribution exists, it is uniquely defined. 
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The following theorem has been proved in [5]. Here we shall give a more 
elementary proof. 

Theorem 2 . Observables Xi, x2, ..., xn have a joint distribution in the state m if 

and only if 

m (xi(Ei) A...AXi(Ei)A...Axn (En )) = 

2 

= ^m(xi(Ei)A...AXi(E\)A...Axn(En)) (2) 
; = i 

for any Ei, E2, ..., E[, ..., Ene®(Rl), Ei = E}uE?9 E}nEf = 0, l ^ i ^ n . 

Proo f . If the joint distribution exists, then there is a measure \i satisfying (1). 
Condition (2) then follows from the a-additivity of the measure \i. 

Now let (2) hold. Let us define 

F( t i , t2, ..., f„) = m(jCi(-oo, fi)AX2(-oo, t2)A...AX„(-oo, tn)) (3 ) 

We shall show that F(fi, ..., tn) is a distribution function. 
(i) Let ti^Si, i = l , 2, ..., n . T h e n ( - o o , ti)u(ti, Si) = (-oo, Si). Using (2), we get 

n 

F(su ...,Sn) = F(tu ..., tn) + ^m(xi(-*>, ti)A...AXi-i(-°o, ti-i)A 

AXi((ti, Si))AXi+i(-°o, sI + i )A . . .AX n ( -oo , Sn)), 

and therefore F( t i , ..., tn)^F(si, ..., sn). 
(ii) Let ( t j , t2, ..., tn)/(tu t2, ..., tn). Then 

|F(fi , t2, ..., tn)-F(t[, t2, ..., fn)| = |m(Xi( -oo , ti)AX2(-oo, t2)A...AXn(-<*>, tn))-

- m ( * i ( - o o , t\)AX2(-oo, t2)A...AXn(-oo, tn))\ = 

= m(Xi<t\, ti)AX2(-oo, t2)A...AXn(-oo, tn))^m(xi<t\, ti))-*0 

as /—>oo, because m(jCi(-oo, t)) is a distribution function, 
(iii) Evidently, F ( - o o , t2, ..., tn) = 0, F(oo, ..., oo) = l . 
(iv) We have to show that for non-negative hi, h2, ..., hn 

F(ti + hi, t2 + h2, ...,tn + hn)- YHh + hu t2 + h2, . . . , 

n 

ti-i + hi-i, ti, ti+i + hi+u ..., tn + hn)+ ^F(ti + hu ..., 

i<i 

tt-i + hi-i, ti, ti+i + hi+u ..., tj-i + hj-i, tj, tj+i + hj+i, 

..., tn + hn)+... + (-iy F(tu t2,..., tn)^o. 

We shall proceed by induction. For n = 2 we obtain 

F(^i + hu t2 + h2)-F(tu t2+h2)-F(h + hu t2) + F(tu t2) = 
-m(xi<tu ti + hi)Ax2<t2, t2 + h2)). 
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This can be obtained by direct computation from (2). Now let us suppose that for 
n = k, 

F(ti + hu ..., tk + hk)+... + (-l)k F(tu ..., tk) = 
= m(xi<ti, h + hi)Ax2<t2, t2 + h2)A...Axk<tk, tk + hk)). 

For n = k + \ we get 
k + i 

F(fi + hi, t2 + h2, ...,tk + hk, tk+i + hk+i)- 2 F(h + hi, 

..., U, ..., tk + hk, tk+i+ hk+i)+ ... + (-l)k+l F(h, ..., tk, tk+i) = 
= m(xi(-oo, ti + hi)A...Axk(-<x>, tk + hk)Axk+i(-*>, tk+i + hk+i))-

k+\ 

-^m(xi(-^, ti + hi)A...AXi(-oo, ti)A...Axk(-<x>, tk + hk)Axk+i(-«>, 4+1+ hk+i)) + ... -. 
i = l 

+ ( - l ) f c + 1 m ( x i ( - o o , ti)A...AJCfc(-oo, tk)AXk + i(-<*, tk + i)). 

We shall divide the right-hand side into two parts. In the first part we assemble the 
members with the interval (- oo, tk+i + hk+i) on the (k + l)-th place, in the second 
part we assemble the members with the interval (— oo, tk+i) on the (k + l)-th place. 
We obtain in both parts the same number of members which differ only on the 
(k + l)-th place and have opposite signs. If we omit in both parts the (k + l)-th 
place, we get the same expressions as for n = k. Using (2), we have for the first 
member 

m(xi(h, n + hi)Ax2(t2, t2 + h2)A...Axk(tk, tk + hk)Axk+i(-oo9 tk+i + hk+i)), 

and for the second member 

-m(jci(li, ti + hi)AX2\t2, t2 + h2)A...Axk(tk, tk + hk)Axk+i(-*>, tk+i)). 

By substracting the two members and using (2) again we obtain 

0 ^ m ( * i ( f i , fi + /ii)A...AJc*(lfc, tk + hk)Axk+i(tk+i, tk+i + hk+i)). 

We have thus shown that F(h, t2, ..., tn) is a distribution function. Then there is 
a measure \i on 3l(Rn) such that 

F(h, t2, ..., tn)=^i((-coj1)x(-ooy t2)X...X(-oo, tn)) 

for any (h, t2, ..., tn) e Rn. It is easily seen that \i satisfies (1), i.e. it is the required 
joint distribution. 

Let us set D = {0, 1}, d = (du d2, ..., dn)eDn, a° = a±, a1 = a for aeL. The 
following theorem has been proved in [3]. 
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Theorem 3 . Condition (2) of Theorem 1 is equivalent to the condition 

l = m ( V JC,(E1Y,Ax2(E2)^A...Ajcn(E„Y-) = 
\deDn / 

= 2m(x1(E,Y 'A*2(E2)^A.. .Axn(E„Y ' " ) . (4) 
deDn 

Definition 1 can be generalized to any set of observables as follows. 

Definition 4. Let {xa: a e A} be any set of observables on a logic L. We shall say 
that {xa: aeA} have a joint distribution in the state m if for any n = 1, 2, ... and 
any ai , a2, ..., a„ the observables jcai, JC«2, ..., xan have a joint distribution in the 
state m. 

A logic L is said to be separable if any subset of mutually orthogonal elements of 
L is at most countable. We recall (see [17]) that if {a«: aeA} is any subset of 
elements of a separable logic L, then there is a countable subset la A such that 

\/ aa = Vaa I A tf« = A««) 
a e A a el VaeA a el / 

Let {*a: a e A } be a set of observables on a separable logic L. For any finite 
subset S = {ai, ..., a„} of A (with ai, ..., a„ not necessarily all different) let us set 

a s(Ei, E2, ..., En)= V *ai(Ei)dlA...AJtar t(En)'S (5) 
deDn 

where Eu E2, ..., Ene®(R1), and 

as= A 0s(Ei, E2, ..., E„) (6) 
(Ei, E2,...,En) 

where the infimum is to be taken over all Ei. E2, ..., Ene ^(R1). Finally, 

a = A as (7) 
S<=A 

where the infimum is to be taken over all finite subsets S of A . 
By Theorem 3, the observables {xa: a e A} have a joint distribution in a state m 

if m(a s(Ei, ..., E„)) = 1 for any ScA and any Ei, ..., E„ e ^(R1). 
Let 0 =£ a e L. The set L[0,«] = {beL: b^a} is a logic with the partial ordering 

inherited from L, with the greatest element a and with the relative orthocomp-
lementation b' = b±Aa. If x is an observable on L such that jc<-»a (i.e. x(E)<-*a 
for any E e ^(R1)), then the map JC A a defined by x A a(E) = JC(E) A a, E e ^ ( K 1 ) , 
is an observable on the logic L[o,<,]. 

Proposition 5. Let K={aa: a e A } be any set of elements of a separable logic L. 
For any finite subset S = {au a2, ..., a„} c: A we put 

as= V a«lAaa
2

2A...Aa&, (8) 
deDn 
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a=A«s . (9) 
ScA 

Then (i) aa <-+a for all a e A, (ii) if m(as) = 1 for any S c A (mis a state on L) then 
m(a) = l, (iii) {aaAa: a e A } are mutually compatible. 

For the proof, see [6]. 
We shall call the element a defined by (9) the commutator of the set {an: a e A}. 

It is easily seen that the element a defined by (7) is the commutator for the set 

U R(xa) where R(xa) is the range of xa. 
a e A 

Proposition 5 gives rise to the following theorem. 

Theorem 6. Let {xa: aeA} be a set of observables on a separable logic L. Let m 

be a state on L, and let a be the commutator of [J R(xa). Then 
a e A 

(i) {xa: aeA} have a joint distribution in the state m if and only if m(a) = 1, 
(ii) for any aeA, xa<->a and the observables {x aAa: aeA} on L[0,a) are 

mutually compatible. 

4. Hilbert space logic 

A very important example of a logic is the lattice of all closed linear subspaces of 
a Hilbert space H (real or complex). Let H be a complex Hilbert space 
3 ^ d i m H ^ K o . We denote by L(H) the set of all closed linear subspaces of H 
ordered by the inclusion and with the orthocomplementation defined by M x = 
{ueH: (u, v) = 0 for all v eM}. Obviously, L(H) is a separable logic. The lattice 
operations on L(H) are Mi A M 2 = M i n M 2 , and M i u M 2 = (Mi + M2)~ (the closure 
of the linear envelope of Mi and M 2). The elements of L(H) are in one-to-one 
correspondence with the orthogonal projections. We shall write PM for the 
projector corresponding to the subspace M. Due to the spectral theorem [7], the 
observables are in one-to-one correspondence with self-adjoint operators on 
L(H). If A is a self-adjoint operator, we shall write PA(} for the corresponding 
spectral measure, i.e. the observable corresponding to A. Due to the Gleasson 
theorem [8] any state on L(H) can be written in the form 

m = 2 w,mфl, m^M^ (Pмф,, ф,) 

where {(?«}. is a sequence of mutually orthogonal unit vectors in H. 
The elements Mi, M 2 of L(H) are compatible (Mi<->M2) if and only if the 

corresponding projectors commute, i.e. PMl PM2 = PM2 PMl. We shall write in this 
case PMi<->PMz. Two observables x = PA(), y = PB() are compatible if PA(E)<n> 
PB(F) for any E, FeB(R1). If x and y are bounded, then they are compatible if and 
only if the corresponding self-adjoint operators commute, i.e. if AB = BA. 
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Let M be a subspace of H and A a self-adjoint operator. The subspace M 
reduces the operator A, i.e. A M c M i f and only if PM*-> A . In this case A can be 
considered as a self-adjoint operator on the Hilbert space M ; the logic L(M) 
corresponds to L[0,M]. The operator A reduced to M, written AIM, corresponds to 
the observable P A ( ) A P M = pA"pM. 

If A and B are bounded self-adjoint operators on L(H), the sum A 4- B is also 
a self-adjoint operator. It is natural to consider the corresponding observable 
p(A+B)o a s fae s u m of the observables A and B. Clearly, if A<->P and B<r+P, 
where P is a projector, then also (A + B)++ P, so that if A and B reduce a subspace 
M e L(H), then also A 4- B reduces M. Moreover, A/M + B/M = (A + B)/M, i.e. 
D(A/M+B/M)( ) _ p(A+B)( ) p M 

In the logic L(H) we can introduce the convergences of observables analogically 
to the measure theoretical convergences (see [9]). We shall need only the almost 
everywhere convergence. 

Definition 7. We shall say that the sequence of bounded observables {JC, }, on the 
logic L(H) converges to the observable x a.e. in a state m if 

m(y A(xn-x)(-e,E)) = l (10) 
\n=l k=n I 

for any e^O. 

5. Individual ergodic theorem on the logic L(H) 

In [2] the following individual ergodic theorem was proved. 

Theorem 8. Let m be a state on a logic L, x be an m-preserving o-homomorph-
ism of L and x be an observable on L such that m(x) < <» and {x{ ox}T=o be pairwise 
compatible. Then there is an observable x on L such that 

(i) Xox = x a.e. [m], i.e. m((Toi){0}) = l 
(ii) m ( i ) = m(jt) 

л n-l 

>x a.e. [m]. 

We are now in the position to prove the main result of this paper, an individual 
ergodic theorem on the Hilbert space logic. 

Theorem 9. Let H be a complex Hilbert space, 3 ^ d i m H ^ K0. Let L(H) be the 
logic of all closed subspaces ofH. Let A be a bounded self-adjoint operator on H, 
T: L(H)-+L(H) be a o-homomorphism and mbe a x-invariant state on L(H). Let 
Po be the commutator for the observables {x(oA}T=o, and let T ( P 0 ) = P 0 and 
m(P 0) = l . Then there is an observable A on L(H) such that 

(i) To A = A a.e. [m], 
(ii) m(A) = m(A), 
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1 « - l 
(iii) — ^ T ' O A — > A a.e. [m]. 

n ,=o 
Proof. Let H0 = P0H. By Theorem 6, T 'OA<-»P 0 , / = 0, 1, 2, ..., and so T 'OA 

can be considered as self-adjoint operators on H0. Moreover, again by Theorem 6, 
T ' O A / H 0 are mutually compatible. As T (P 0 ) = P 0 , T can be considered as 

a a-homomorphism of the logic L(H0). Let m=^wim<f>i. Since m(P0) = l then 
i = l 

1 =^wimq)i(Po), which implies m<Pl(P0) = (Poqp«, <p,-) = ||Po<Pi|| = 1, so that (pieH0, 
i = l 

1 = 1, 2, . . . . Hence m can be considered as a state on L(H0). We can apply 
Theorem 8 to obtain that there is a self-adjoint operator A0 on L(H0) such that 

(i') ToA0 = Ao a.e. [m], 
(ii') m(A0) = m(A/H0) , 

(---') — X 7 0 ^/^ 0 ^^ 0 a*e- [ml-n i=0 

Let us take a real number c and set 

p A ( ) _ p A 0 ( . ) v p C ( ) A p X ( 1 1 ) 

where 

pc(E) = fO if c$E 
[1 if C G £ , 

Ee^(Rx). 
It is easily checked that PM) is an observable and the corresponding self-adjoint 

operator is 

A = A 0 P 0 + c ( l - P 0 ) . (12) 

Clearly, A<r+P0 and A/H0 = A0. We show that A is the operator we looked for. 
(i) T ( P A ( E ) ) = T ( P ^ ( E ) ) V T ( P C ( E ) ) A T ( P 0

± ) = T ( P ^ ( E ) ) V P C ( E ) A P O ^ Therefore we 

obtain that ( T O A ) / H 0 = TOA0. Thus 

(TOA - A)/Ho = T o A / H 0 - A / H 0 = To A 0 - A 0 . 

As m(P0) = l, we obtain m(P(ToA-A)(E)) = m(P(ToA-A)(E)APo) = m(P(ToA°-Ao)(E)), 
E e ^(R1), which implies 

m / p ( T o A - A ) { 0 } \ _ m /p (ToAo-Ao){0} \ _ ^ 

(ii) As m(P0) = l, we get m(PME)) = m(P^E)), Eem(R'), which implies 
m(A) = m(Ao). Similarly, m(PME)) = m(PME)P0) and thus m(A) = m(A/H0). By 
(ii') we derive m(A) = m(A). 

368 



-I n - 1 

(iii) Let us denote A„ =— ^T'OA. Then 
n ,=o 

m(\f A^(A""AM"Ee)) = m ( V APiAn~Ax~c'')Po) = 
\ „ - - l Ac=n \ „ . » i fc=n 

= m ( v A P«A,-A>'-O)<-*.-)) = j 
\ n = l * = n 

for any e > 0. The above equalities follow from the fact that T' o A +-> P0, / = 0, 1, ... 
implies An++P0, n = 1, 2, ..., i.e. P ( A - - A ) ( - C £ ) ^P 0 for n = 1, 2, ... This implies by 
[10] that 

y / \ P ( A - - A ) ( - e - e ) ~ P 0 , 
n = l fc=n 

f v A P(A""A)(_e£)lAPo=V A P ( A » - A ) ( - £ ) A P O . 
Ln--1 fc = n J n = l k=n 

The setup of the latter theorem can be slightly simplified if T is an automorphism. 

Proposition 10. Let T be an automorphism of a separable logic L. Let a be the 
commutator of the set M={Ti(aa): a e A},"—**.. Then T(a) = a. 

Proof. The case a = 0 is trivial. Let a=*=0. For a finite subset F = {b\, b2, ..., bn} 
of M set 

a(F)= V bi*AbpA...Abd
n». 

deDn 

By the definition, 
a=Aa(F). 

FcM 

Clearly, 
T'(a(F))= VT'(6i)^A.. .AT'(6„)d

% ; = ± 1 , 
deDn 

and { T ' ( 6 I ) , T ' ( 6 2 ) , ..., T ' ( 6 „ ) } C : M . As the logic is separable, there is a sequence 

{Fi, F2, ...} such that a = A«(-S). Then T(a) = Ar(a(P))) , but r(a(P))) is a ( G ) 
i = l i = l 

CO 

for some finite subset G of M. This implies that a ^ T(a(Ft)), i.e. a ^ /\T(a(Ff)) = 
i = l 

T(a). Similarly, a^T _ 1 ( a ) , i.e. T(a) = a. 
According to Proposition 10 if T is an automorphism, then we can in Theorem 9 

use the set {T'OA},"— « instead of the set {T'oA}r=o. If we have m(P0) = 1 for its 
commutator P0, then the individual ergodic theorem follows. 

Let us make a final observation. 
L a n c e [11] proved following individual ergodic theorem. 
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Theorem 11. Let a be an automorphism of a von Neumann algebra si and let Q 
be a faithful normal a-ivariant state. For each A in sd and e>0 there is a projection 
E in si with Q(E) > 1 — e such that 

ï%а'.A-Ä)Ą-+0 as n-

It would be of some interest to compare Theorem 9 with Theorem 11. One can 
also look for the conditions under which an equivalent of Theorems 9 and 11 or 
other theorems on operator algebras [12], [13], [14] could be proved in so-called 
sum logics (introduced in [15] and [16]). 

REFERENCES 

[1] DVUREČENSKIJ, A.—RIEČAN, B.: On the individual ergodic theorem on a logic. CMUC 21, 
2, 1980, 385—391. 

[2] PULMANNOVÁ, S.: Individual ergodic theorem on a logic. Math. Slovaca 32, 1982, 413—416. 
[3] DVUREČENSKIJ, A.—PULMANNOVÁ, S.: Connection between joint distributions and 

compatibility, Rep. Math. Phys. 19, 1984, 349—359. 
[4] GUDDER, S. P.: Joint distributions of observables. J. Math. Mech. 18, 1968, 325—335. 
[5] PULMANNOVÁ, S.: Relative compatibility and joint distributions of obseгvables. Found. Phys. 

10, 1980, 641—653. 
[6] PULMANNOVÁ, S.: Compatibility and paгtial compatibility in quantum logics. Ann. Inst. 

H. Poincaгé XXXIV 1981, 391—403. 
[7] HALMOS, P. R.: Intгoduction to the Theory of Hilbert Space and Spectгal Multiplicity. Chelsea 

Publishing Co, New York 1957. 
[8] GLEASON, A.: Measures on closed subspaces of a Hilbert space. J. Math. Mech. 6, 1957, 

885—894. 
[9] GUDDER, S. P.—MULLIKIN, H. C : Measuгe theoгetic conveгgences of obseгvables and 

opeгatoгs, J. Math. Phys. 14, 1973, 234—242. 
[10] VARADARAJAN, V. S.: Geometry of Quantum Theory I, van Nostrand, Princeton N. Y. 1968. 
[11] LANCE, C : Eгgodic theoгems foг convex sets and opeгator algebгas. Invent. Math. 37, 1976, 

201—204. 

[12] YEADON, F. J.: Ergodic theoгems for semifinite von Neumann algebras I. J. London Math. Soc. 

16, 1977, 326—332. 
[13] YEADON, F. J.: Eгgodic theoгems for semifinite von Neumann algebгas II. Math. Pгoc. Cambг. 

Phil. Soc. 88, 1980, 135—147. 
[14] JAJTE, R.: Non-commutative subadditive eгgodic theorem for semifinite von Neumann algebras, 

to appear. 
[15] GUDDER, S. P.: Uniqueness and existence pгopeгties of bounded obseгvables, Pac. J. Math. 15, 

1966, 81—93. 
[16] DVUREČENSKIJ, A.—PULMANNOVÁ, S.: On the sum of obseгvables on a logic. Math. 

SlovacaЗO, 1980, 393—399. 

370 



[17] ZIERLER, N . : Axioms for nonrelativistic quantum mechanics. Pac. J. Math. 11, 1961, 

1161—1169. 

Received July 16, 1983 

Ústav systémového inžinierstva príemyslu 
Hrachová 30 

82711 Bratislava 

Matematický ústav SAV 
Ohrancov mieru 49 
814 73 Bratislava 
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Р е з ю м е 

Индивидуальная эргодическая теорема на логике пространства Гильберта показана в случае, 
когда имеется совместное распределение вероятностей для исследованной последовательности 
наблюдаемых. 
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