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THE MULTIPLICITY CRITERIA
FOR ZERO POINTS
OF SECOND ORDER DIFFERENTIAL EQUATIONS

ONDREJ DOSLY

ABSTRACT. Sufficient conditions on the function p(z) are given which guaran-
tee the existence of a nontrivial solution of the equation y”’ + p(z)y = 0 having
at least (n+ 1) zeros, n > 1, on a given interval.

1. Introduction

The aim of the present paper is to investigate the oscillation behaviour of the
second order differential equation

(r(x)y") + pla)y =0, (1.1)

where r(z) € C'(I), r(z) >0 on I, p(z) € C(I), x € I = (a,b), —c0 < a <
b < co. Particularly, we give conditions on the functions r, p which guarantee
the existence of a nontrivial solution of (1.1) having at least (n+1) zeros on I.

Recall briefly the history of the problem. Hawking and Penrose [7]
showed that the equation

y' +plz)y =0 (1.2)

is conjugate on R = (—o00,00) (i.e., there exists a nontrivial solution of (1.2)
having at least 2 zeros - the so-called conjugate points — on R ) whenever
p(z) > 0 and p(z) # 0. This result was generalized by Tipler who proved
that (1.2) is conjugate on R whenever

ty

lim inf /p(x)dx >0. (1.3)

ty|—oo, tz]o00
4
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Concerning cquation (1.1), Miiller-Pfeiffer [11] proved that this equation
is conjugate on I = (a,b) if

/7-*‘(x)da: =00 = /br_](x)(lz, (1.4)

a
ty
lim inf lz >0 1.5
Jit, [ > 0o
L5

and p(z) £ 0 on I. The results of [7] and [12] are based on the Riccati technique,
the criterion of Muller-Pfeiffer is proved via the variational principle.

Recently the author proved (using a combination of the Riccati technique and
the transformation method) that (1.2) is conjugate on I if there exist €y, ¢, > 0,

c € I such that
b T t
€1 /cxp{ /[/p(s)ds —5,] (lt}(l.r > /2, (1.6),
c T t
&y /vxp{ /[/1)(.\‘)(13 +52] dt} de > /2. (1.6),

a c c

These conditions were proved to be less restrictive than (1.3).

Note that the transformation of the independent variable ¢t = t(x) =

r
Jr~'(s)ds transforms (1.1) into an equation of the form (1.2). Hence, in the
sequel, we consider only the second order equations in this form.

The paper is designed as follows. In the next section we introduce the criterion
which guarantees the existence of a nontrivial solution of (1.2) having at least
(n + 1) zeros on I = R. We also discuss the situation when the interval [
is bounded or one-side bounded. In Section 3 we present an improved version
of the conjugacy criterion given by (1.6), which is shown to be more general
than another conjugacy criterion of Tipler given in [12]. The last section is
devoted to remarks concerning the extension of the results of Sections 2, 3 to
partial differential equations and self-adjoint equations of higher orders.

2. The existence of (n + 1) zero points
Consider the equation (1.2) as a perturbation of the equation

y'=0. (2.1)
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If a = —00, b= 00, the latter equation is 1-special according to the terminology
introduced by Bortavka [1], i.e., this equation is disconjugate on I and there
exists a unique (up to a multiple by a nonzero real constant) solution, namely
yo = 1, which does not vanish on I. An equivalent formulation of this fact is
that the principal solutions of (2.1) at —oo and oo are identical (recall that
a solution y, of a second-order equation is said to be principal at a point b
if limb yo(z)/y(x) = 0 for any solution y(z) linearly independent of y(x) and

ys(r) # 0 in a neighbourhood of b).

As condition (1.3) shows, equation (2.1) is in a certain sense oscillatory un-
stable. A small perturbation of this equation by a term p(z)y with p(z) £ 0
and p(z) having essentially a non-negative mean value on R makes equation
(1.2) conjugate on R. This fact is not too surprising if we observe that yo(z) =1
is the eigenfunction corresponding to the least eigenvalue A\g = 0 of the minimal
closed symmetric operator [y generated by the differential expression

2

l(y) = (1+ 22! <

(see |13] for necessary terminology). This idea also suggests the method which
we use in looking for conditions on p(z) implying the existence of a nontrivial
solution of (1.2) with at least (n + 1) zeros.

The main result of this section is based on the following variational lemma.

LEMMA 1. Let x9,2; €R, 29 <7, and let y;,...,yn € WH2%(z9,2,) be lin-
* early independent functions (as the members of the Hilbert space W'2%(zo,z1) )

such that yi(zo) = yk(z1) = 0 and yx has ezactly (k — 1) zeros on (z¢,z),
k=1,...,n. If

z)
s 20, 00) = [ [0) = plalui(@)] de <0, (23)
e
k = 1,...,n, then there ezists a nontrivial solution of (1.2) having at least

(n+1) zeros on [xg,z].

Proof. By the Courant variational principle (see, e.g., [2]) (2.3) implies
that the boundary value problem y" + p(z)y = 0, y(z0) = y(z1) = 0 has at
least n negative eigenvalues. The eigenfunction corresponding to the eigenvalue
An < 0 (the eigenvalues are ordered by size, A\; < A2 < --- < A, ) has (n+1)
zeros on [zo,z1]. Now, if the interval [z¢,z,] is shrinking, the eigenvalues in-
crease and after some time A\, = 0. The standard regularity argument implies
that the corresponding eigenfunction y, is of the class C?, i.e., we have the
solution of (1.2) having (n + 1) zeros on [zg,z,].
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THEOREM 1. Suppose p(z) — (k? —1)(14+22)"2#0 on R and

t, | —oo,

lim 1nf / [p(z) - —1)(142%)" 11+ z%)sin? k (arctg x4 g—) de >0

k=1,...,n. (2.4)

)

Then (1.2) possesses a nontrial solution having at least (n + 1) zeros on R.

Proof. Denote yx = (1422)/2 smk(dx( tg o+ — ) fr = (K2=1)(1+a2)"2,
Pk = p — fi. Since pp # 0 and (2.4) holds, there exists tx € R, dx > 0 and
ok > 0 such that pg(z) > di for z € (tk — 0k, tk + 0k). According to (2.4)
there exist Tk, Si such that f pe(2)yi(a)da > —¢, € > 0 sufficiently small,

whenever ¢, < Ty, ty > Sy Choow zy < min{Tk}, 22 > max{Sk} such that
k k

all zero points of the functions yx and all g -neighbourhoods of #; are in the
interior of the interval (@, xy). Morcover, the nunbers #; and px can be chosen
in such a way that the interval [tx — pi, ti — 0x] does not contain zero points of
the function yg (). Define the function hg(r) and the test function wg(e) for
(2.3) as follows:

he(r) = (1 Q;l"r tel) if o — ] < ok
() =
0 lf l.L — tk| > Ok,

the precise value of the constant éx will be determined latter,

0, r <,
£ 9 {‘1 9 —1
yi(2) [y (.s')(l.-’»'( oy t(s) (ls), € [rg, 2],
ug(w) = gk(;z:)(l + by () - sguye(r)), x € [ay, 2],
I3 1
ve(e) [ yg ( f v (s d“) v € [ay, 03],
0. T 2Ty,

o
the values rq, 3 will be also determined later. Obviously wy € 112 [0, ws)

(1r’¥"‘2[.l'(),.1';;] = {l/ € Wh2(rgoay). u(ay) =0 = u(.z';;)} ). To simplify for-
mally the computations which follow, we write vy, u, f. p.t. 0. h.o d, ¢ nstead of
Yky Uky fhy Phy tho Ok hiy dieo 8k Tespectively.
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Using the fact that y and u are solutions of
y'+ fe)y =0 (2.5)

on (xg,t—p)U(t+ 0, z3) and y # 0 on (xg, 1)U (2,23), we have

f@”—m%

Iy

I —1
=u'u| - / u(u" + fu) = u'(x)u(ay) = y'(x1)y(x )+ < / y_'z(s)ds> .
Similarly,
g3 ’ , g3 —1
/w”—mﬁ=—wmmw»+(/y*uMQ .

Since y is the principal solution of (2.5) both at oo and —oo (this may be
verified by a direct computation), we have

z -1 Y —1
lim (/y_z(s)ds) =0= lim ( / y_z(s)ds) .
zo|l—o00 z3]00
T z2
Further,
T2
/wﬂ—m%
7,
t—e t+o £
! t‘_Q 1 ! l+9 " ! T2 "
=yy| - [ yly +fy)+yy|t - u(u +fU)+ny+Q— y(y" + fy)
Ty -
Ty t—o t+o
t+o t+o
z2 2 2 2
=y'y| + /y2[(1+h‘sgny)'] =y'y +/y2h' :
1 )
t—p t—o

T T3
Computing [ pu® and [ pu® observe that the function u/y is monotonic on
Zo )

(zo,21) and (z2,73). Hence, using the second mean value theorem of integral
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calculus, we have

) P z)

/ 13“2 = / IBUZ(U/y)Q = / 13y2 s & € (zo,2y),
To To &

Ty §2
/ pu’ = / Py, €2 € (22,23).
I, T,

Using the previous computations we get

T3 T3 T3
/ (u'2 —pu?) = / (u'2 — fu?) - / pu?
zo o o
I . T3 —1 &2 t+o t+o t+o
= ( / y”2> +< / y_?‘) —/ﬁy2+/ y2h'2—2/]3yh~sgny~/ﬁy2h2.
zo T & t—o t—o t—e

The last term is negative since p > 0 and if z¢ and r3 are sufficiently close
to —oo and oo, the sum of first two terms is less than €. Moreover, since

£2
& < mkiu{Tk} , & > 111{1.)({5;;}, we have — [ py? < e. Consequently,

31
I3 t+e t+e
2 o2 2712 ~ "
(v —pu®) <2+ [ y°h'" =2 | pyh-sgny.
T t—po t—p

Denote yo = max{|y(z)|, = € [t—p, t+0]}, y1 = min{|y(z)|, = € [t—0, t+o]}.

t+o . t+eo ) N

Then [ y2h'* —2 J pyh-sgny < yo6%0~% —2dy, 06 since by our assumption y
t—po t—po : '

does not change its sign on [t — g, t + g] and yh -sgny > 0 on this interval. By

xr
setting § = €'/% we get fa(u"‘Z — pu?) < e'?((2 + y2o™?)e!/? — 2dy;0) , hence
To
I(u; xo, 23) < 0 if € is sufficiently small. It is clear that the same values ¢, x3
can be chosen for each k € {1,...,n}, hence by Lemma 1 the equation (1.2)
possesses a nontrivial solution having at least (n + 1) zeros on [zg,z3] C R.
The proof is complete.
In the theorem we have just proved we suppose that I = (a,b) = (—o0,00).
If both @ and b are finite, to find a condition which guarantees the existence of
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a nontrivial solution of (1.2) with at least n+1 zeros is simple since in this case
one can directly compute the eigenvalues and eigenfunctions of the operator —y"
on Wh2[q,b]. Particularly, A\x = (km)?/(b—a)?, yx = sin /\;\,/2(1' —a). If one of
a, b, is infinite, say b, we need to compute the eigenfunctions and cigenvalues of
the minimal closed symmetric extension of (2.2) on (a,c0). To this end we use
the transformation y(x) = (1 4+ 22)"/?u(t), t = arctgx, which transforms (2.2),
considered on [a, 00), into the operator i(u,) =u+u (" =d/dt), considered on
[arctga, 7/2). Now, it suffices to compute the eigenvalues and cigenfunctions of
I(u) on W'2[arctg a, 7/2] and to transform them “back” into (2.2) on [a,00).
As a result we get the following reformulation of Theorem 1.

THEOREM 1°. Suppose that p(x) — M(1+ 22) 1 #0 on I = (a,00) and
|2
lim inf / (p(@) = A1+ 2®) " Ny(a)de > 0, k=1,...,n,
t

200
a

2kn
i T — 2arctga
(arctgz — arctga). Then (1.2) has a nontrivial solution with at least (n + 1)
zeros on (a,00).

where A\p = 4n?k*(7m — 2arctga)™? — 1, yx = (1 4 2%)"/%sin

3. The existence of two zero points

In this section we present an improved version of the conjugacy criterion given
by (1.6). In the forin given here it offers a unified approach to the investigation
of the conjugacy of (1.2) on an arbitrary interval.

THEOREM 2. Suppose that there exist €1,e2 >0 and ¢ € (a,b) such that

b z t
51/ex1) 2/[/p(s)ds—€1 dt pdz > A
::C c;r cl (3.1)1‘2
Eg/exp 2/[/p(8)d.€+62]dt dz > B.
If
€1 +e2—m(e1B +e2A)/2AB > 0, (3.2)

then (1.2) s conjugate on (a,b).

Proof. Denote cg = &1(1 —7/2A), ¢ = e2(7/2B —1). Let y;, 21 be the
solutions of (1.2) given by the initial condition y;(c) =1 = 21(¢), yj(c) = cr,

187



ONDREJ DOSLY

z1(c) = €1 . Suppose that the function y;(z) does not vanish on (¢,b). Then the
function a(z) = arctg(z1/y1) is well defined on (¢, b), a(c) = /4, a(b-) < n/2
and o = e;m/2A(y? + 2%). For z € (c,b) we have z1(z) > yi1(z) > 0 and the
function w = z{/z; is a solution of the Riccati equation w' + w? + p(z) = 0,

ie., w(z) =w(c) - fzp(s) ds — jw"’(s) ds and hence

x

2@ =eo{ [(er- forat) ath <om{ [(a- [2) et} s 25

c [ [

It follows
b
a(b-) = a(c)+/a'
: b b
=7/4+ e1(mw[24) /(yf + 237V da > n/4 4 €1(n/24A) /(2::?)'1 dz

Sy S O I L [ T s

c c

a contradiction. Let y;, z2 be the solutions of (1.2) given by the initial condition
y2(c) = 1 = 2z3(¢), y3(c) = cr, 23(c) = —e2. Similarly as above we get a
contradiction supposing that y;(z) > 0 on (a,c). Now, let y(z) be a solution
of (1.2) given by the initial condition y(c) =1, y'(c) = v € [cL,cr]. According
to the Sturm separation theorem for zeros of linearly independent solutions of
(1.2), y(z) has zero points in both intervals (a,c) and (c,b). This completes
the proof.

Let us relate the result of Theorem 2 to some recent ones. First, if A =
(7/2) = B, it is easy to see that (3.1) is more general than (1.6). Tipler
proved in [12] that equation (1.2) is conjugate on an interval [z¢,00) provided
p(z) > 0 on [rg,00) and there exist z1, 2 € (Zo,0), z1 < z2 such that

z2
J p(z)dz > (z1 — z0)~!. Next we show that this criterion can be obtained
1

as a corollary of Theorem 2. Let a = 79, b = 00 and ¢ > z; be arbitrary for
a moment. Since p(z) > 0 on [zg,00), by the Sturm comparison theorem the
statement will be proved to be a corollary of Theorem 2 if we prove it for a
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function p(x) such that p(x) = p(x) for @ € [rg,ry] and p(a) =0 for.x > x,.
Let € > 0 be arbitrary, we have

e o] xr t [e e}
€1 /exp{Q/[/;)— 51] dt} dr > ¢ /exp{—Qel(.r - ()} dr =1/2.

c c c

For any €3 > 0 we have

c r t c 9
€2 /9XD{2/|:/}3+61} dt} dr > 62/(3)(]){2(;1,‘ — (j)[ / ]J—Ez] }(1;1‘
9 -1 Iy
= 52< / 1)—52> [(3)(1){2[ / ;)—52]((;_ .,-0)} — 1} )

The inequality (3.2) can be written in the form ¢;(1—-7n/24)+€e,(1—n/2B) > 0.
Since A > 1/2 independently of €, letting £, — 0 it suffices to show that
the term e;(1 — 7/2B) is positive for some e, > 0. But this is the case if
gy = (¢1 — a9)” " and ¢ — oo, since then B — oo and thus (1 — 7/2B) is
positive.

Remarks

i) Cousider the partial differential equation

Anu+g(z)u =0, (4.1)

where A, =Y 8?/0z? is the n-dimensional Laplace operator, @ = (z1,...,2n)
i=1
and ¢(z) is a locally Lipschitz continuous real-valued function defined on R™.
A bounded domain G C R" is said to be a nodal domain of (4.1) if there exists
a nontrivial solution u of (4.1) for which u € W 12(G)NW?2?2(G) (the Sobolev
spaces W12(G), W2%(G) are defined similarly as in the one-dimensional case).
1/2
It is known (see, e.g, [10]) that a ball Br = {1 € R", |z| = (Z zf) < R}

contains a nodal domain of (4.1) if there exists a nontrivial function

v E VT/'I'Z(BR) such that

J(19u@) - e da <. (4.2)

Br
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Denote ¢(r) = [ g(z)dw, where w is the surface of the sphere SP~! =
{z e R", |z| = ':i_,m R™. If the function v = v(r) is radially symmetric, we
have Bf (IVv|?+qv?) da = 0}Z(T"" (d—drv)2 +¢j(7')v2) dr. Using this substitution
R

one can apply the results concerning the zero points of solutions of ordinary
differential equations while investigating the problem of the existence of a nodal
domain and negative eigenvalues of the Schrédinger partial differential operators.
We hope to follow this idea in more detail elsewhere.

ii) Let us try to extend the method introduced in Section 2 to the higher order
self-adjoint linear differential equation

(=1)" (r(2)y™)™ 4 p(z)y =0, (4.3)

where r € C*, r >0, pe C, z € I =(a,b), —0o < a < b < oco. For the sake
of simplicity consider, as a model, the fourth order equation

y'*) 4 p(a)y =0. (4.4)

It was proved in [9] that this equation possesses a nontrivial solution having at
least two conjugate points on R (i.e., the points z;,z3 € R such that y()(z;,) =

0 = y(zz), ¢ = 0,1, for some nontrivial solution y of (4.4)), whenever there
exist c1, ¢ € R such that

t2

lim sup / p(z)(e1z 4 cp)?dz < 0. (4.5)

ty]—oo, taToo
1

Now, find a condition on the function p(z) which would guarantee the existence
of a nontrivial solution of (4.4) with 3 or more conjugate points on R. In the case
of the second-order equation we proceeded as follows: The transformation y =

(1422%)"/?u transformed (1.2) into the equation ((1+12)u')'+(1+12)“u =0.
Then we took the equation (k~'(1 +xz)u')’+k(1+z2)"lu =0,k=23,...,n,
and transforming it “back” we got the equation y"” + (k? —1)(1 +2?)"%2y =0
which we used in Theorem_]1.

Let us try to modify this method to be applicable to the equation (4.3). This

equation can be written in the form of the linear Hamiltonian system

u' = Au + B(z)v, v =C(z)u —ATv, (4.6)
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where A, B, C are n x n matrices with en\tries A= Aii=1if j=i+1,i=
1,...,n =1, all the other entries of A equal 0, B(z) = diag{0,...,0, r~'(z)},
C(z) = diag{p(z), 0,...,0} ,u = col(y,...,y("“)) , v o= col((—l)”_l .
(ry™) " (=) (ry ™) T,y ™).

It was shown in [4] that there exist n x n matrices H(z), K(z), H(x) being
nonsingular, such that the transformation

u = Hs, v=Ks+(H") ¢ (4.7)
transforms (4.6) into the so-called trigonometric system
s' =Q(z)c, . ¢ =-Q(x)s, (4.8)

where Q = HT!B(HT)™!, HHT = U,U{,+U,U], (U,,V,), (U,,V,) are the
2n x n matrix solutions of (4.6) for which UV, — ViU, =0, i=1,2 and
UV, — V[ U; =1 - the identity matrix.

00
B = diag{0,1}, C = O, the matrices H, K, Q can be computed explicitly,
see [8] and also [5] for a more detailed comment concerning the computation of
these matrices. Particularly, we have

If system (4.6) corresponds to the equation y(*) = 0, ie., A = (0 1) ,

HHT — 1+z242%/4+25/36 z+23/2+ 2%/12
N r+2%/2+425/12 1+ 2% 4+z2%/4

One can verify directly that the transformation (4.7) with k~'/?H, k~1/2K,

k € N, instead of H, K, transforms the trigonometric system (4.8), with kQ
instead of Q, into the Hamiltonian system

u=Au+Bv, Vv =(1-k)HHT)'BHH") 'u—-ATv. (4.9)

Denote f(z) = (HHT)12, g(z) = (HHT )y, then (4.9) is equivalent to the
fourth order equation

v + (K = D)[-(¢%y' + fay) + fay' + f2y] =0 (4.10)

and the corresponding quadratic functional is of the form

b
/ (6" + (K = 1)(fy + gy')?) da.
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The main difficulty which prevents us to extend directly the “second-order
method” to fourth order equations is the fact that we do not know solutions of
(4.10), i.e., we do not know the eigenfunctions corresponding to higher eigen-
values of the operator associated with the operator d*/dz*. For second order
equations we computed the eigenfunctions of (2.2) corresponding to the eigen-
values (k? — 1) via the transformation y = k~'/2(1 + 22)/2u which trans-
forms the equation (k~'(1 4+ 22)u')’ + k(1 + 22)"'u = 0 into the equation
I(y) = (k* — 1)y (the operator [ is given by (2.2)). Here, even if we know
the solution of the trigonometric system (4.8) corresponding to the equation
y(*®) = 0 (this trigonometric system is a higher order analogy of the equation

(1 +2%)u') + (1 4+ 2%)"'u = 0), we do not know the solution of this system
with kQ instead of Q, thus we cannot use this method in order to compute

solutions of (4.10).

We may also formulate some further problems. For example, the linear Hamil-
tonian system corresponding to the equation y**) = 0 is 0-general in the termi-
nology introduced in [3] (i.e., the principal solutions of the corresponding linear
Hamiltonian system at —oo and oo coincide). Since the transformation (4.7)
transforms principal solutions into principal solutions, the associated trigono-
metric system (4.8) has the same property. Has the trigonometric system (4.8)
with kQ, k =2, 3,... also this property? It is not difficult to verify that in the
second order case the answer is affirmative.

The solution of these problems would be very useful in extending the knowl-
edge of the oscillation and the spectral properties of higher order self-adjoint
differential equations.

REFERENCES

[1] BOR UVKA, O.: Lineare Differentialtransformationen 2. Ordnung, VEB, Deutscher Ver-
lag der Wissenschaften, Berlin, 1971,

[2] COURANT, R.—-HILBERT, D.: Methods of Mathematical Physics. Vol. I, Interscience,
New York, 1953.

(3] DOSLY, O.: Riccati matriz differential equation and classification of disconjugate differ-
ential systemns, Avch. Math. (Brno) 23 (1988), 231-242.

(4] DOSLY, O.: On transformation of self-adjoint differential systems and their reciprocals,
Ann. Polon. Math. 50 (1990), 223-234.

[5] DOSLY, O.: On some problems in oscillation theory of self-adjoint linear differential
equations, Math. Slovaca 41 (1991), 101-111.

(6] DOSLY, O.: Conjugacy criteria for second order differential equations, Rocky Mountain
J. Math., (To appear).

[7] HAWKING, 5. W.-~PENROSE, R : The singularities of gravity collapse and cosmology,
Proc. Roy. Soc. London Ser A 314 1970 ¢ H4R.

192



(8]
(9]
[10]

THE MULTIPLICITY CRITERIA FOR ZERO POINTS...

MACHAT, J.: Phase matriz of self-adjoint linear differcntial cquations. (Czech.), Thesis,
Brno, 1989. '

MULLER-PFEIFFER, E.: Existence of conjugate points for sccond and fourth order
differential equations, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 281291,
MmeER-PFElFFER, E.: On the castence of nodal domains for cllptic differential
operators, Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), 287299,

[11] MULLER-PFEIFFER, E.: Nodal domains of one- or two-dumensional clhptic differential
equations, Z. Anal. Anwendungen 7 (1988), 135-139.
[12] TIPLER, F. J.: General relativity and conjugate ordinary differential cquations, J. Dif-
ferential Equations 30 (1978), 165 174.
(13] WEIDMAN, J.: Linear Operators in Hilbert Spaces, Springer-Verlag, New York-Berlin,
1982.
Received October 2, 1990 Department of Mathematues

Masaryk Unwversily
Jandckovo ndm. 2a
662 95 Brno

Czechoslovakia

193



		webmaster@dml.cz
	2012-08-01T07:25:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




