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THE MULTIPLICITY CRITERIA 
FOR ZERO POINTS 

OF SECOND ORDER DIFFERENTIAL EQUATIONS 

ONDŘEJ DOŠLY 

ABSTRACT. Sufficient conditions on the function p(x) are given which guaran­
tee the existence of a nontrivial solution of tlie equation y" + p(x)y = 0 having 
at least (n + I) zeros, n > 1 , on a given interval. 

1. Introduction 

The aim of the present paper is to investigate the oscillation behaviour of the 
second order differential equation 

{r(x)y')'+p(x)y = Q, (1.1) 

where r(x) G Cl(I), r(x) > 0 on J, p(x) G C(I), x G J = (a, 6), -co < a < 
b < oo. Particularly, we give conditions on the functions 7*, p which guarantee 
the existence of a nontrivial solution of (1.1) having at least (n + 1) zeros on J . 

Recall briefly the history of the problem. H a w k i n g and P e n r o s e [7] 
showed that the equation 

y"+p(x)y = 0 (1.2) 

is conjugate on R = ( — 00,00) (i.e., there exists a nontrivial solution of (1.2) 
having at least 2 zeros - the so-called conjugate points - on R) whenever 
p(x) > 0 and p(x) ^ 0. This result was generalized by T i p 1 e r who proved 
that (1.2) is conjugate on R whenever 

<2 

liminf / p(x) dx > 0. (1.3) 
<! [-OO, t 2 l ° 0 J 

t\ 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34C10. 
K e y w o r d s : Conjugate points, Principal solution, Linear Hamiltonian system. 
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Concerning equat ion (1.1), M ii 11 e r - P f e i f f e r [11] proved t h a t this equat ion 

is conjugate on I — (a,b) if 

0 

/ , - W Љ = "0 = / г - W d x , 
a 

<2 

l iminf / p(x) 
- i la, I2Î6 J 

> dx > 0 

:i-4) 

(1.5) 

and p(x) ^ 0 on I. The results of[7] and [12] are based on the Riccati technique, 
the criterion of Muller-Pfeiffer is proved via the variational principle. 

Recently the au thor proved (using a combination of the Riccati technique and 

the t ransformat ion method) that (1.2) is conjugate on I if there exist e \, e-j, > 0 , 

c G I such tha t 

6 z t 

/ e X P l / / ! > ( S ) d s _ £ l 

Є2 

dt > dx > n/2 , 

/ expi / I p(s) ds + £2 dt \ dx > TT/2 . 

C C 

X t 

(1.6) 

(1.6) 

These conditions were proved to be less restrictive than (1.3). 

Note tha t the transformation of the independent variable t = t(x) — 
X 

f r~l(s)ds t ransforms (1.1) into an equation of the form (1.2). Hence, in the 

sequel, we consider only the second order equations in this form. 

T h e paper is designed as follows. In the next section we int roduce the criterion 

which guarantees the existence of a nontrivial solution of (1.2) having at least 

(n + 1) zeros on / = R . We also discuss the si tuat ion when the interval / 

is bounded or one-side bounded . In Section 3 we present an improved version 

of the conjugacy criterion given by (1.6), which is shown to be more general 

t han another conjugacy criterion of T i p 1 e r given in [12]. The last section is 

devoted to remarks concerning the extension of the results of Sections 2, 3 to 

par t ia l differential equations and self-adjoint equations of higher orders . 

2 . T h e e x i s t e n c e of (n + 1) zero p o i n t s 

Consider the equation (1.2) as a per turba t ion of the equation 

j / " = 0 . (2.1) 
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I f a = —oo, 6 = oo , the lat ter equation is 1 -special according to the terminology 
introduced by B o r u v k a [1], i.e., this equation is disconjugate on I and there 
exists a unique (up to a multiple by a nonzero real constant) solution, namely 
y0 =- 1 9 which does not vanish on I. An equivalent formulation of this fact is 
tha t the principal solutions of (2.1) at — oo and oo are identical (recall tha t 
a solution y& of a second-order equation is said to be principal at a point 6 
if lim yi,(x)/y(x) = 0 for any solution y(x) linearly independent of y&(:r) and 

x — • & 

yb(x) ^ 0 in a neighbourhood of b). 

As condition (1.3) shows, equation (2.1) is in a certain sense oscillatory un­
stable. A small per turba t ion of this equation by a term p(x)y with p(x) ^ 0 
and p(x) having essentially a non-negative mean value on 1R makes equat ion 
(1.2) conjugate on R . This fact is not too surprising if we observe tha t yo(x) = 1 
is the eigenfunction corresponding to the least eigenvalue A0 = 0 of the minimal 
closed symmetr ic opera tor /o generated by the differential expression 

l(y) = (l+x2)2^y, xeR, (2.2) 

(see [13] for necessary terminology). This idea also suggests, the method which 
we use in looking for conditions on p(x) implying the existence of a nontrivial 
solution of (1.2) with at least (n + 1) zeros. 

The main result of this section is based on the following variational lemma. 

L E M M A 1. Let x0,X\ G R , X0 < x\ and let y\,... , y n G Wl,2(xo,x\) be lin­

early independent functions (as the members of the Hilbert space Wl>2(xo,x\) ) 

such that yk(xo) — yk(x\) — 0 and yk has exactly (k — 1) zeros on (xo,X\)y 

k = 1 , . . . , n . If 

I(Vk\ xo,x\)= I [yk
2(x) -p(x)y2

k(x)] dx < 0 , (2.3) 

k = l , . . . , n . then there exists a nontrivial solution of (1.2) having at least 
(n + 1) zeros on [xo,x\]. 

P r o o f . By the Courant variational principle (see, e.g., [2]) (2.3) implies 
tha t the boundary value problem y,f + p(x)y = 0 , y(xo) = y(x\) = 0 has at 
least n negative eigenvalues. The eigenfunction corresponding to the eigenvalue 
An < 0 ( the eigenvalues are ordered by size, Ai < A2 < • • • < An ) has (n + 1) 
zeros on [ x 0 , z i ] . Now, if the interval [x0 ,Xi] is shrinking, the eigenvalues in­
crease and after some t ime An = 0 . The s tandard regularity a rgument implies 
tha t the corresponding eigenfunction yn is of the class C2 , i.e., we have the 
solution of (1.2) having (n + 1) zeros on [XQ,XI] . 

183 



ONDftEJ DO§LY 

T H E O R E M 1. Suppose p(x) - (k2 - 1)(1 + T2)"2 ^ 0 on R and 

l iminf / [p(x) - (k2 - 1)(1 + x2)~2](l + a:2) sin2 k ( a rc tg x + -) dx > 0 

* = l , . . . , n . (2.4) 

Then (V2) possesses a nontrivial solution having at least (n + 1) zeros on R. 

P r o o f . Denote yk = ( l + a,2)1!2 sin jfc (arc tg ; / ; + - ) , fk = (k2 - l ) ( l + x2 ) " 2 , 

FA; ~ P ~~ fk • Since pk ^ 0 and (2.4) holds, there exists tk £ R, dk > 0 and 

Qk > 0 such tha t pjt(:c) > d/t for x G (£* — £it, tk + Qk) • According to (2.4) 
h 

there exist 7 \ , Sk such tha t f pk(x)yl(x) dx > — e , £ > 0 sufficiently small, 
-\ 

whenever t\ < Tk , /-2 > £fc . Choose X\ < m i n { T t } , T2 > max{S*.} such tha t 
k k 

all zero points of the functions yk and all Ojt-neighbourhoods °f tk a i e m the 

interior of the interval (;/*i, .T2). Moreover, the numbers /*. and 0^ can be chosen 

in such a way tha t the interval [tk — Qk, tk ~~ Qk) does not contain zero points of 

the function tjk(x). Define the function hk{x) and the test function Uk(x) for 

(2.3) as follows: 

hк{x) = 
h{l - Qk V ~ tk\) if \x -tk\ < Qk 

v 0 if \x - t k \ > Qk, 

the precise value of the constant bk will be determined latter, 

0, 

УкПfУк-
2Hds( /'i/Г/Vы^Г1 

•г 0 -c 0 

uк{x) = { Ук{x)(l + hк{x) • sgniд.(.r)), 

Ук{x) íаyкЧs)AS(j*Уъ\з)As)~ 

l 0, 

;Г < .Г(), 

•** Є [л'o,.i ' i], 

x Є [xux2], 

J: Є [-r2,;r3], 

the values T0, T3 will be also determined later. Obviously uk G IV * ,2[-l'o,^3] 

( T°V1/2[.r0,.r3] = {./ e \Vl-2(x{).x:]), u(x0) = 0 = u(x3)} ). To simplify for­

mally the c o m p u t a t i o n s which follow, we write //, u, / . ;), f, O, /?, c/, o instead of 

yk, u-k, fk, Pk, tk, Qk, hk, dk, h^ respectively. 
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Using the fact tha t y and u are solutions of 

y" + f(x)y = 0 (2.5) 

on (xo, t — g) U (t + D, £3) and y ^ 0 on (.To, - r i ) U (.r-2, £3 ) , we have 

y (u' 2 - / u
2 ) 

- / u(u" + fu) = t//(;ri)u(T i) = y'(x\)y(x.\) + f / y"2( .s)d^ = U U 

xo 

Similarly, 

xз xя 

J (u'2 - fu2) = -y'(x2)y(x2) +(J y-2(s)ds) 
- 1 

X7 

Since y is the principal solution of (2.5) both at 00 and —00 (this may be 

verified by a direct computa t ion) , we have 

lim 
xo[ — 00 

x-\ _í x 3 

/ y-2(s)ds) =0= hm( J y~2(s)d 
xo 

Fur ther , 

X2 

J(u'2-fu2 

У У 

t-Q 

X\ 

t-Q t+Q X2 

I y(y" + fy) + y'y]\+e - [ u(u" + fu) + y'y\
X2 - [ y(yn + fy) 

J '<-(? J \t+Q J 
X\ t-Q t+Q 

УУ 

t+Q t + 

+ / y2[(± + h-sgny)']2 = y'y\ + / 
î J ixi J 

t+Q 

f 2r,2 

y Һ 
t-Q t~Q 

X\ 

C o m p u t i n g f pu2 and f pu2 observe tha t the function u/y is monotonic on 
Xo 1 2 

(XQ,X\) a n d (#2,#3)- Hence, using the second mean value theorem of integral 
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calculus, we háve 

II *i x} 

/ þu2 = / þy2(u/y)2 = / /Зy2, ^ e (x 0 ,жi 

X 0 2ľ0 

* з £2 

/ * ' = / :i 
PУ 6 Є (x2,x3) 

þu 

Using the previous computa t ions we get 

* 3 X3 X ; 

J{u'2-pu*)= J{u'2-fu2)- J 

x o X o X o 

J-l __! * 3 _ j ^2 --fff t+Q t+Q 

= ( / y~'2) + ( / y~2) ~IPy2+Jy2}i'2-2Jpy}is&ny- Jvv2h2. 
XQ X2 £ . t-Q t-Q t-Q 

T h e last te rm is negative since p > 0 and if XQ and x3 are sufficiently close 

to — oo and oo , the sum of first two terms is less than e. Moreover, since 
£2 

£1 < min{Tk} , £2 > max{Sfc} , we have — / py2 < e. Consequently , 
k k _ 

J-3 t+Q t+Q 

J {u2 - pu2) < 2e + J y2h'2 - 2 J pyh • sgny . 

Xo < — Q t-Q 

Denote y0 = max{ |y (x ) | , x G [*-_?, t + o\} , y_ = min{ |y (x ) | , x G [ < - £ , * + £>]} . 
t+Q t+Q 

Then / y2tV — 2 / Py/i • sgny < yo82Q~2 — 2dy\Q8 since by our assumpt ion y 
t-Q t-Q 

does not change its sign on [t — Q, t + Q] and yh • sgny > 0 on this interval . By 
X3 

set t ing 8 = ex>2 we get / (t/ '2 - pu2) < el/2((2 + y0£~"2)£1 / 2 - 2dy_£>) , hence 
x0 

I(u ; x 0 , X3) < 0 if e is sufficiently small. It is clear tha t the same values x 0 , x 3 

can be chosen for each k G { 1 , . . . ,n} , hence by Lemma 1 the equat ion (1.2) 

possesses a nontrivial solution having at least (n + 1) zeros on [xo?X3] C JR. 

T h e proof is complete. 

In the theorem we have just proved we suppose tha t / = (a, b) = ( — oo, oo ) . 
If b o t h a and b are finite, to find a condition which guarantees the existence of 

186 



THE MULTIPLICITY CRITERIA FOR ZERO POINTS... 

a noiitrivial solution of (1.2) with at least n + 1 zeros is simple since in this case 

one can directly compute the eigenvalues and eigenfunctions of the opera tor — y" 

on TV1*2[a, b]. Particularly, A* = (kn)2/(b - a)2 , yk = sin Aj/ (x - a). If one of 

a, b, is infinite, say b, we need to compute the eigenfunctions and eigenvalues of 

the minimal closed symmetric extension of (2.2) on (a, oo) . To this end we use 

the t ransformation y(x) = (1 -f x2)Al2u(t), t = arctg x, which transforms (2.2), 

considered on [a, oo) , into the operator l(u) = u + u ( = d/ dt), considered on 

[arctg a, TT/2) . Now, it suffices to compute the eigenvalues and eigenfunctions of 

l(u) on VV1 , 2[arctga, 71-/2] and to transform them "back" into (2.2) on [a ,oo) . 

As a result we get the following reformulation of Theorem 1. 

T H E O R E M 1\ Suppose that p(x) - Xk(l + x2)~l ^ 0 on I = (a, oo) and 

t2 

l iminf / (p(x) - A*(l + x2)-] )yk(x)dx > 0, k = 1 , . . . , u , 

a 

2k7T 
where Xk = 47r2k2(n - 2 a r c t g a ) ~ 2 - 1, yk = (1 + a;2)1!2 sin 7T — 2 arctg a 
( a r c t g x — arctg a ) . Then (1.2) has a nontrivial solution with at least (n + 1) 
zeros on (a, oo ) . 

3 . T h e e x i s t e n c e of t w o zero p o i n t s 

In this section we present an improved version of the conjugacy criterion given 
by (1 .6) . In the form given here it offers a unified approach to the investigation 
of the conjugacy of (1.2) on an arbi trary interval. 

T H E O R E M 2 . Suppose that there exist S\, e2 > 0 and c £ (a, 6) such that 

b 

dt \ dx > A E\ / exp < 2 / / p(s)ds - e\ 

c \ c c 

C í X t 

e2 / exp < 2 / / p(s)ds + e2 

(3.1) , ,2 

dtSdx > B. 

If 
ex +£2 -x{e1B + e2A)/2AB > 0 , (3.2) 

then (1.2) is conjugate on (a,b). 

P r o o f . Denote CR = £ i ( l — TT/2A) , cj, = e2(7r/2J3 — 1) . Let j/i, z\ be the 
solutions of (1.2) given by the initial condition j/i(c) = 1 = z i ( c ) , y\(c) = en, 
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z[(c) = e\ . Suppose that the function y\(x) does not vanish on (c, 6). Then the 
function a(x) = &vctg(z\/y\) is well defined on (c, 6), a(c) = 7r/4, a(b-) < n/2 
and a' = 6\7r/2A(y2 + z2). For x £ (c, b) we have z\(x) > y\(x) > 0 arid the 
function w = z[/z\ is a solution of the Riccati equation w' + w2 + p(x) = 0, 

X X 

i.e., w(x) = w(c) — Jp(s)ds — J w2(s)ds and hence 
c c 

X t X t 

z\(x) = exp< / I e i - (p+w2) 1 d* > < exp< (e\- p)dt> for x > c. 

c c ..- c c 

It follows 

6 

o.(6-) = a(c)+ / a ' 

c 

6 6 

= TT/4 + 6\(TT/2A) j(y2 + z\)-x dx > TT/4 + 6\(n/2A) I(2Z2)"1 dx 

c c 

b x t 

> TT/4 + e\(7r/AA) / exp< 2 / / p - e\ \dt\ dx > TT/4 + TT/4 = TT/2 , 

a contradiction. Let y2, z2 be the solutions of (1.2) given by the initial condition 
t/2(c) = 1 = z2(c), y2(c) = ci, z'2(c) = —e2. Similarly as above we get a 
contradiction supposing that y2(x) > 0 on (a ,c) . Now, let y(x) be a solution 
of (1.2) given by the initial condition y(c) = 1, y'(c) = 7 6 [cL,cR]. According 
to the Sturm separation theorem for zeros of linearly independent solutions of 
(1.2), y(x) has zero points in both intervals (a,c) and (c, b). This completes 
the proof. 

Let us relate the result of Theorem 2 to some recent ones. First, if A = 
(7r/2) = J3, it is easy to see that (3.1) is more general than (1.6). T i p l e r 
proved in [12] that equation (1.2) is conjugate on an interval [xo,oo) provided 
p(x) > 0 on [xo,oo) and there exist xi , x2 £ (xo,oo), x\ < x2 such that 

x2 

J p(x)dx > (x\ -- xo)""1 . Next we show that this criterion can be obtained 
Xi 

as a corollary of Theorem 2. Let a = xo , 6 = 00 and c > x2 be arbitrary for 
a moment. Since p(x) > 0 on [xo,oo), by the Sturm comparison theorem the 
statement will be proved to be a corollary of Theorem 2 if we prove it for a 
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function p(x) such that p(x) = p(x) for x £ [.ro,.^] and p(x) = 0 foi\.r > ;r2 . 
Let e i > 0 be arbitrary, we have 

1 t OC 

, {2 / [ /p - £ , ] c l í }d ,> E l / dł } dx > e, / exi){-2б,(.r - г)} <l.r = 1/í 
c C C 

For any e2 > 0 we have 

c x t c a-2 

£2 ! expj 2 / / p + £2 d< I d i > £2 / expj 2(.r - c) / p - £2 i clr 

= e2 
(/„-.,) ,Ц2[/ 

* i 

P ~ Є'2 ( < - ~ J"c 

The inequality (3.2) can be written in the form £\(1 — 7T/2A) + £2(1 — 7T/2B) > 0. 
Since A > 1/2 independently of £i , letting £i —» 0 it suffices to show that 
the term £2(1 — n/2B) is positive for some e2 > 0. But this is the case if 
£r2 = (#i — ̂ o)"1 and c —> oc , since then B —> oo and thus (1 — n/2B) is 
positive. 

Remarks 

i) Consider the partial differential equation 

A nu + O(x)u = 0, (4.1) 

n 

where A n = ][_ d2/dx2 is the n-dimensional Laplace operator, J; = (x\,. . . , xn) 
i = 1 

and #(.r) is a locally Lipschitz continuous real-valued function defined on Rn . 
A bounded domain G C Rn is said to be a nodal domain of (4.1) if there exists 

o 

a nontrivial solution u of (4.1) for which u € W l,2(G)DW2,2(G) (the Sobolev 
spaces VV1,2(G), W2,2(G) are defined similarly as in the one-dimensional case). 

It is known (see, e.g, [10]) that a ball BR = ix £ Kn, |x| = ( E x ? ) < R) 

contains a nodal domain of (4.1) if there exists a nontrivial function 

v e Wl,2(BR) such that 

[ (\Vv(x)\2 - q{x)v2(x)) dx < 0. 

BR 

(4.2) 
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Denote q(r) = f q(x) du, where u is the surface of the sphere 5 n _ 1 = 
\x\ = r 

{x E R n , \x\ = r}^ in R n . If the function v = L>(r) is radially symmetr ic , we 
R( ( d \ 2 \ 

have J* ( |Vf | 2 + ^u2) dx = / ( r n _ 1 f — v) +q(r)v2 J dr . Using this subs t i tu t ion 
BR o ^ ^d r ' ' 

one can apply the results concerning the zero points of solutions of ordinary 
differential equat ions while investigating the problem of the existence of a nodal 
domain and negative eigenvalues of the Schrodinger par t ia l differential opera tors . 
We hope to follow this idea in more detail elsewhere. 

ii) Let us t ry to extend the method introduced in Section 2 to the higher order 
self-adjoint linear differential equation 

(-l)n(r(x)y^)(n)+p(x)y = 0, (4-3) 

where r £ Cn , r > 0 , p E C , x £ I = (a,b), ~oo < a < b < oo. For the sake 
of simplicity consider, as a model, the fourth order equat ion 

y ( , u ) + p(x)y = 0 . (4.4) 

It was proved in [9] tha t this equation possesses a nontrivial solution having at 

least two conjugate points on R (i.e., the points x\,X2 G R such tha t y^(x\) = 

0 = y(l'(x2), i = 0 , 1 , for some nontrivial solution y of (4 .4) ) , whenever there 

exist ci ,C2 E R such tha t 

l imsup / p(x)(c\x + C2) dx < 0 . (4.5) 
til — 00, ti^oo J 

Now, find a condit ion on the function p(x) which would guarantee the existence 

of a nontr ivial solution of (4.4) with 3 or more conjugate points on R . In the case 

of the second-order equation we proceeded as follows: The t ransformat ion y = 

(l + x2)ll2u t ransformed (1.2) into the equation ((l + x2)u()f + (l + x2)~1u = 0 . 

T h e n we took the equat ion (k~l(l + x2)uf) +k(l + x2)~lu = 0 , k = 2 , 3 , . . . , n , 

and transforming it uback" we got the equation y" + (k2 — 1)(1 + x2)~2y = 0 

which we used in T h e o r e m ^ . 

Let us t ry to modify this method to be applicable to the equat ion (4 .3) . This 
equat ion can be wri t ten in the form of the linear Hamil tonian system 

u' = An + B(x)v, v' = C(x)u -ATv, (4.6) 
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where A, B, C are n x n matrices with entries A = A, , = 1 if j = i + 1, i = 
1 , . . . , n — 1, all the other entries of A equal 0, B(x) =̂ diag{0,. . . , 6, r _ 1 (x)} , 
C(x) = diag{p(.r), 0 , . . . , 0 } , u = col(y,. . . -y^" 1 ) ) , v L c o l ^ - l ) " " 1 ' 
( r y ^ ) ( n - 1 \ ( - i r - 2 ( r y ( " ) ) ( n - 2 ) , . . . , r y ^ ) ) . 

It was shown in [4] that there exist n x n matrices H(x), K(x), H(x) being 
nonsingular, such that the transformation 

u = Hs, v = Ks + (HT)~1c (4.7) 

transforms (4.6) into the so-called trigonometric system 

s' = Q(x)c, . c' = -Q(x)s, (4.8) 

where Q = H 1 B ( H T ) 1 , H H T = U1UT ,+U2U2
T , ( U ^ V ^ , (U2 ,V2) are the 

2n x n matrix solutions of (4.6) for which UTV t - V T U t = 0 , i; = 1,2 and 
Uj\f2 ~ V7U2 = I - the identity matrix. 

If system (4.6) corresponds to the equation y^lv^ = 0, i.e., A = I ) , 

B = diag{0,1}, C = 0 , the matrices H, K, Q can be computed explicitly, 
see [8] and also [5] for a more detailed comment concerning the computation of 
these matrices. Particularly, we have 

H H T = f1 + x2 + z 4 / 4 + z6 /36 x + x3/2 + x5/12\ 
V z + * 3 / 2 + x5/12 l + x2+x4/4 ) ' 

One can verify directly that the transformation (4.7) with k-1'2H, k-1/2K, 
k 6 N, instead of H, K, transforms the trigonometric system (4.8), with kQ 
instead of Q , into the Hamiltonian system 

u' = A u + Bv, v' = (1 - k2)(HHT)~1B(HHT)-1u - A T v . (4.9) 

Denote f(x) = (HH T ) i 2 , g(x) = (HHT)22 , then (4.9) is equivalent to the 
fourth order equation 

y(») + (k2 - l)[-(g2y' + fgy) + fgy' + f2y] = 0 (4.10) 

and the corresponding quadratic functional is of the form 

6 

J(y"2 + (k2-l)(fy + gy')2)dx. 
a 
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The main difficulty which prevents us to extend directly the "second-order 

m e t h o d " to fourth order equations is the fact tha t we do not know solutions of 

(4 .10) , i.e., we do not know the eigenfunctions corresponding to higher eigen­

values of the opera tor associated with the operator d 4 / d x 4 . For second order 

equat ions we computed the eigenfunctions of (2.2) corresponding to the eigen­

values (k2 — 1) via the transformation y = k~l/2(l + x 2 ) 1 / / 2 u which t rans­

forms the equat ion (k~l(l + x2)u') + k(l + x2)~lu = 0 into the equat ion 

l(y) — (k2 — \)y ( the operator / is given by (2.2)) . Here, even if we know 

the solution of the tr igonometric system (4.8) corresponding to the equat ion 

y( lO — 0 (this t r igonometric system is a higher order analogy of the equat ion 

((1 + x2)u') + (1 + x2)~lu = 0 ) , we do not know the solution of this system 

with kQ instead of Q , thus we cannot use this method in order to compute 

solutions of (4 .10) . 

We may also formulate some further problems . For example, the linear Hamil-
tonian system corresponding to the equation y(l ,;) = 0 is 0-general in the termi­
nology in t roduced in [3] (i.e., the principal solutions of the corresponding linear 
Hamiltoi i ian system at — oo and oo coincide). Since the t ransformat ion (4.7) 
t ransforms principal solutions into principal solutions, the associated trigono­
metr ic system (4.8) has the same property. Has the tr igonometric system (4.8) 
with kQ , k = 2, 3 , . . . also this property? It is not difficult to verify tha t in the 
second order case the answer is affirmative. 

The solution of these problems would be very useful in extending the knowl­
edge of the oscillation and the spectral properties of higher order self-adjoint 
differential equat ions. 
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