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Math. Slovaca 31,1981, No.jM07—108 

ADDENDUM AND ERRATUM TO THE PAPER 
"ON THE SIZE OF A MAXIMAL INDUCED TREE 

IN A RANDOM GRAPH" 

MICHAL KARONSKI—ZBIGNIEW PALKA 

Due to final remark in our paper [1] regarding lower bound on the size of 
a maximal induced tree we shall briefly prove the following stronger version of the 
Theorem 3. 

Theorem 3'. Let p^p<l, n^nx and l = l(n,p) be the threshold function 
given by the formula (1). Then for any integer k such that, 2^k<l(n, p) 

1 — hl~k 

?rob(an,p^k)^b^b_ly 

where 

b = b(n,p) = (nk)f, f = f(d) = d6-l 

and 

d = 6(n, k,p) = l(n,p)-k. 

Proof. LetZ* denote the number of maximal trees of the size k, k^2.Thenby 
Bool's inequality and formula (6) we get 

Prob(an,p^k)^YE(Zi)^(nXexp(-npqi~1)y^ 
£i ;-2 

^(nXexp(-npqk~l)y. 

Now we shall notice that from the definition of the threshold function l(n, p) we 
have rik exp (~npqk~x) = bx. Moreover, from the proof of Theorem 1, it follows 
that \ik<l(n,p) then b~x< 1 and one can get the result immediately. Now from 
Theorems 3' and 4 we shall get the following corollary. 

Corollary. For every p, pv^p<\ and every eQ > 0, probability of the event that 
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a random graph Gn, p contains a maximal induced tree of the size which not belongs 
to the interval 

<[(n,p)-£0], {u(n,p) + £o}) 

tends to zero as n—><*>. 
Finally we would like to correct the statement that Theorem 2 and 4 hold for 

n 5-6 whereas in fact it is true for n^n3 where n3 = n3(p) is the least integer such 
that the inequality 2^u(n, p)^n holds. 
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