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ON A SUM OF OBSERVABLES IN A LOGIC

ANATOLI] DVURECENSKIJ

A sum of two observables of a logic defined in a way differing from that of the
mean values is studied and some properties are proved.

Introduction

In the classical probability theory the sum of observables is, doubtless, of great
importance. Therefore there are made different attempts to introduce the sum into
the theory of logic [2—6], as well as into the quantum measuring theory of
noncompatible observables. We shall study the properties of the sum defined by
(2.1).

1. Logic and observables

Let L be a o-lattice with the first and the last elements 0 and 1, respectively, and
an orthocomplementation L : a —a™ which satisfies (i) (a*)* =a for all a € L ; (ii)
ifa<b,thenb*<a*fora,belL;(iii) ava* =1 for all a e L. We further assume
that if a <b, then b=av(baa"). A poset L satisfying the above axioms will be
called a logic. .

We say that a, b are (i) orthogonal and we write a Lb if a <b™*; (ii) compatible
and we write a & b if there are three mutually orthogonal elements a,, b;, ce L
such that a=a,vc, b=b,vec.

An observable is a map x from B(R;) into L such that (i) x(R,)=1, x(@)- =0;

(ii) x(E) Lx(F) if EnF=8, E, Fe B(R,); (iii) (UE..) =V x(E) if EnE, =9,

i#j, {E;} =B(R,). If f is a Borel function on R, and x an observable, then fox:
Ew—x(f"'(E)), E€B(R:), is an observable. For an observable x we denote
o(x)=n{CeB(R,): x(C)=1} and we define ||x||=sup {|¢|: te o(x)}. We say
that x is (i) bounded if ||x|| <o (ii) bounded above (below) if there is a number
c €R, such that o(x)=(—=, c) (o(x)={c, ©)). Two observables x and y are
compatible and we write X &y if x(E)«<y(F) for every E, Fe B(R)).
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The conventional measurable space (2, &) is a logic of compatible observables if
we identify x(E)=f"'(E), E € B(R,), where f is a ¥ — measurable function. The
logic L (H), that is, the complete lattice of all closed subspaces of a Hilbert space
H, is a very important example of a logic which has noncompatible observables and
which is a model for quantum mechanics. In this logic the selfadjoint operators
correspond to the observables [8].

Since the notion of observable is an analogy of a measurable function we will
now investigate some properties of observables.

Theorem 1.1. Let x be an observable of a logic L and B, (t) = x((—~, t)),t€R,,
then the system {B.(t): te R,} has the following properties:

(i) B.(s)<B.(t) if s<t; .
(i) VB,(t)=1, /\B,(t)=0; (1.1)

(iii) VB (8)=B.(s).

Conversely, if a system {B(t): t € R,} of the elements of a logic L fulfils (1.1),
then there is a unique observable x such that B,(t)= B(t) for every t € R;.
Proof. Let x be an observable ; then (i) is trivial. (ii): let B,(t)<a for every

teR,; then for every integer n we have B,(n)<a. Hence a>\/B,(n)
= Vx((—, n))=1. Similarly, A B,(t)=0. (iii) : let a > B, (¢), t <s. If we choose

t.1s, then a>\/ B.(t.) = B.(s).

Let now on the logic L a system {B(?): t € R,} satisfying (i)—(iii) be given. In
the first place we show that there is a Boolean sub-g-algebra of L generating by
{B(t): teR,}.

Let r,, r, ... be any distinct enumeration of the rational numbers in R,. For every
n let 4, be a Boolean subalgebra of L generated by {B(r,), ..., B(r,)}. This
subalgebra surely exists, because if (iy, ..., i,) is such an enumeration of (1, ..., n)
that r, <...<r,, then the set of all finite lattice sums of orthogonal elements { B(r,,),
B(r,)AB(r,)*, ..., B(r.,)AB(r.,_,)*, B(r,,)*} is a Boolean subalgebra containing all

B(ry), ..., B(r,) and therefore it is .#,. Let us put .#, = %, ; then .4, is a Boolean

subalgebra of L, too.

By the Zorn lemma it is easy to see that there is a maximal Boolean subalgebra #
of L containing ./4,. The # must be a Boolean sub-o-algebra.
Let now B(t) be an arbitrary element of {B(t): t € R,}. Since there is r, ¢, we

have B(t)=\/ B(r.,) € #. We have shown that there is a Boolean sub-o-algebra of
i
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L generated by {B(t): te R,} and let it be denoted by /.

By the Loomis theorem there is a measurable space (€2, &) and a homomorph-
ism A from & onto .%/. We claim to construct, by induction, the set s A,, A,, ...
from .«¢ such that

(@) h(A)=B(r);

(b) AicA if n<r;

© NA=0.

=1
We note that if A =B, A, Be¥ and if there is ¢ € .4 such that h(A)<c <h(B),
then there is C € & such that A =« C = B, h(C) = c. Indeed, since # maps & onto .4,
there is C,e & such that A(C,)=c. If we define C=(C,nB)UA, then C has
a given property.

Let A, be any set in & such that h(A,)=B(r,). Suppose A, ..., A, € ¥ have
been constructed so that (a) and (b) hold. We shall construct A, ., as follows. Let
(i1, ..., i,) be the permutation of (1, ..., n) such that r, <...<r, . Then only one
condition holds (%): (i) 7.+1<ry; (ii) r.+1>r, ; (iii) there is a unique k=1, ..., n
such that r, <r,..<r,,,; and by the above observation we can select A, ., such that
h(A.«1))=B(r..1) and (i) A..1c A, ; () A2 A, (i) A, c A, cA,,,; ac-
cording to (x). Then the system {A,, ..., A,..} fulfils (a) and (b). Thus, by
induction, there follows that there is a sequence {A;} of sets in & with the
properties (a) and (b). As

h (QAi)=i/;'\lh(A,)=l_/‘='\lB(r,-)=o,

we may, replacing A; by A; —[ ) A, if necessary, assume that [ A; =0.
i i

We define an &-measurable function f as follows:

i=1

0if wélJA,
f(w)={ -
inf {r,: weA;} if welJA,.

i=1

A function f is everywhere well defined and it is finite. Moreover

UA, if nn<0

U A,U(Q —UA,) if r.>0,
hence f is #-measurable and £ (f~'((—, rc))) = B(r:). If we define an observable
x by x(E)=h(f"'(E)), E € B(R)), then x((—, t)) = B(t) for every t € R,. Since
x1((—, t)) =x2((— o, t)) for every ¢ € R, implies x, =x, the uniqueness of x is
shown and the proof is finished. Q.E.D.
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Remark 1.2. (i) Theorem 1.1 holds if we consider a system {B(¢): teS}

satisfying (1.1), where S is a countable dense set in R;.
(ii) If L is a non-lattice logic [7], then the assertions of Theorem 1.1 and the first
part of Remark 1.2 remain valid, too.

Theorem 1.3. For two observables x and y the following conditions are

equivalent:
(i) xeoy;

(ii) B.(t)«<B,(s) for every s, teR,;

(iii) B.(t)<B,(s) for every s, teS, S is a countable dense set in R,.

Proof. The implication (i)= (ii)=>>(iii) is trivial. Let now (iii) hold. Let us
denote for any te S

€ ={EeB(R,): x(E)~B,(t)}.

If we take into account the assertion of Lemma 6.10 [8]: if b <a,, n=1,2, ...,
then boar, n=1,2, ..., b\ a,, b Aa,; then €, =B(R,). Indeed, €, con-

tains the intervals (—o, s) for every s€S. Let s € R;; then there is s,Ts, s, €S.
Hence (—, s) € €, for every s € R, and, consequently, €, = B(R,), t € S. Similarly,
€, = B(R,) for any t e R,. Analogically, € ={F € B(R,): x(E)e y(F) for every
E eB(R,)} = B(R,). Therefore x < y. Q.E.D.

2. The sum of two observables

If x and y are compatible observables, then, by [8, Theorem 6.9], there are an
observable u and two Borel functions f, g such that x =fou, y=gou. Due to
Theorem 6.17 [8] we may define the sum of x and y by x+y=(f+g)ou
idependently of the used f, g, u. Theorem 1.1 enables us to define the sum for
noncompatible observables without using the mean values.

For two observables x, y we define the following system of the elements of

a logic L:
B.oy(t)=V (B.(r)AB,(t—r)), teR,, (2.1)

where Q is the set of the rational numbers in R,.

Lemma 2.1. If x<y, then a system {b,s,(t): teR,} fulfils (1.1) of
Theorem 1.1, and then an observable x ®y coincides with the sum of compatible

observables.
Proof. There holds

B.o, ()= ,\E/o(x((_ ©, IAY(=», t=r)))=
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Vo[u(f—‘(( — o, ))Au(g (==, t =) =u((f+9)" (=, 1)) =Byrou(t).

Hence B, @, (¢) fulfils (1.1) and x @y =(f +g)ou=x+y. Q.E.D.
A logic L is o-continuous if for a,<a.<... and any a

a/\<\n/a,.> =\ (anra,)

n

holds. A logic L is said to satisfy the finite chain condition (f.c.c.) if {a,} = L with
a,<a,<...implies that there is N such that a, = ay for n > N. It is easy to see that
if L satisfies f.c.c., then it is o-continuous.

Lemma 2.2. Let L be a o-continuous logic and S a countable dense set in R,. Let
us denote for the observables x, y Bia,(t) = V (B.(s) A B,(t—s)); then B;&,(t)
S€ES
= B, ,(t) for every teR,.

Proof. We may show that if £,7¢, then Big,(t) = \/ Bis,(%.). Indeed,

VBlay(t)=V V (B.(s)AB,(t, ~5))=

n seS

= V.(B.5)AVB,(t.=5) = V. (B.(s)AB,(t =5).
Let now n be any integer ; then for each s there is r = r(s) € Q such that we have
s<r<s+n~'. Therefore B,(s) A B,(t—n""'—s) < B,(r) A B,(t—r) and
Biey(t—n"")<B.e,(t)
Bf@,(t)=\"/Bf@,(t—n")<B,@y(t).

Similarly we show that B, o, () < B3 &,(t). Q.E.D.

Theorem 2.3. Let L be a o-continuous logic and x, y be observables. Then for
{B.@,(t): teR,} we have
(i) B.@,(s)<B.a,(t), s <t (on any logic, too);

(i) VB.g,(t)=1 (if x, y are bounded above, then (ii) holds on any logic);

(i) A B.@,(t)=0 (on any logic) if x, y are bounded below ;

(iv) ‘\</'BX®y(t) = Bx@y(s) >
(v) B.@,(t)=B,.(t) for every teR,.
Proof. Because of (i) of (1.1) the (i) is evident. (ii)

\/Bx®y(t)=v V (B(r)AB,(t—r))=

t reQ
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=V V(B)AB,(t=))>V V (B.()AB,(n )=

reQ t reQn=

=,\E/O(Bx(’“"\=/13v(" =M=V B:.(NAD=1,
by the o-continuity of L. Similarly for (iv).

If x, y are bounded above, then there is ¢ € R, such that o(x), o(y)=(—o, c).
Then for any £ >0 B.(c+¢)=1=B,(c +¢). Hence B,,(2c+2¢)=1.

(iii) There is c € R, such that d(x), o(y)=(c, ®). Then B,s,(2¢)=0.

(v) LetteR,; thentheset S, = {s =t —r: re Q} is countable dense in R, and, by
Lemma 2.2, we have

Bx@y(t)=’\E/Q(Bx(r)ABy(t"r)= V(By(S)ABx(t—S))=B,,@,(t).

S€ES,

Q.E.D.
Lemma 2.4, Let x, y be two observables bounded below on a o-logic L. Then
lx@yll<llxll+Ilyll. 22

Proof. If x or y is unbounded, then (2.2) holds. Therefore let x, y be bounded
observables. Let us denote

a,=inf o(x), b,=supo(x)
a,=inf o(y), b,=sup o(y).

Then B,@,(a:+a,)=0 and B, g,(b,+b,+¢)=1 for every € >0. We prove only
B.@,(bi+b,+¢)=1. If we choose a rational number r such that b, +e/4<r<
b,+¢€/2, then —r> —b,—¢/2 and

B.(r)>B,(b,+¢/4)=1,
B,(b,+b,+e—r)>B,(bi+b,+&—b,—¢/2)=B,(b,+¢&/2)=1.

We have proved that o(x @y)<=(a,+a,, by +b,). If a=inf o(x@Py), b =sup
o(x@®y), then a,+a,<a<b<b,+b,. We calculate ||x Dy|| =max {|a], |b|} <
max {|a,+a;|, |bi+b,|} < max {|ai|, |by]} + max {|a:|, |b.]} = |lx][+]|yl]-

Q.E.D.

We denote by o such an observable that 0 ({0})=1. For a € R, and x we denote
by ax such an observable that (ax)(E) = x({t: a(t) e E}), where a(t)=at,t€R,
and finally, for x, y we denote xQy =x@®(—y).

Theorem 2.5. Let Og (L) be the set of all bounded observables on a o-continuous
logic L. Then Og(L) is a normed space with respect to the norm ||x||=sup {|¢]:
teo(x)} and the following properties hold

@@ |Ix||=0, xe Os(L), ||x||=0iff x=0;

(i) |lox||=|alllx|l, @ €R;, x € Os(L);

(iii) |lx@yll<llx|l+]lyll, x, y € Os(L);
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(iv) x®y=y®x, x, ye Os(L);

(V) x@Do=x; xeOsu,;

(vi) x®Ox=0,x€0s(L);
(vii) (a+B)x=ax®Px, a, BeR,, xeOs(L);
(viii) a(x@y)=ax@ay, a=0, x, y € Os(L).

Proof. The properties (i)—(ii) follow from [3, Theorem 4.2], (iii) follows from
Lemma 2.4, (iv) from Lemma 2.3 ; (v)—(vii) are the corollaries of the calculus for
compatible observables; (viii) follows from the definition of the sum and from
Lemma 2.2. Q.E.D.

For a given element a € L we define a question observable q. by q.({0})=a",
q.({1})=a, and an observable x is a question observable iff o(x)={0, 1} [4].

Remark 2.6. The sum defined by (2.1) is not associative in general.

Indeed, let a, b, c e L ; then

0 t<0
(avbve)* 0<t<1
B(tia@tl»)@tic(t):< (aVb)J.V((aAb)L/\CL) 1<t=<2
(anbnac)* 2<t<3
(1 3<t
0 t<0
(avbve)* o<r=<l1
Biowew(t)=9 (bve)'v((bac) 'Aa®) 1<ts<2
(anbnac)* 2<t<3
\1 3<t.

If now L=L(R,) and a, b, ¢ are three mutually distinct noncompatible
subspaces, then

Bg.ewmea(2)=c*, Biowew(2)=a". Q.E.D.
Lemma 2.7. If for x,, ..., x, we define, by the recurrence formula, x,®...®x,
= (x®..Px-1)PDx., n=1,2, ..., then
(avb)* if i=0
() .@g:({i})= {(avb)/\(a/\b)*if i=1
anb if i=2;

(ii) 0 ®...D ., ({0})=(arv...va,)";
(iii) ¢ ®...DGa,({n})=ain...na,;
(iv) 0(4,®...Dg.,)={0, 1, n}.

Proof. The property (i) follows from the definition of the sum, and (ii)—(iv)
may be proved by induction. Q.E.D.
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3. Comparison with the sum defined by mean values

Gudder in [4] studied the sum of bounded observables defined by mean values.
Let m be a state, that is, a map from L into (0, 1) such that (i) m(1)=1; (ii)

m (Va,-) =>m(a,), if a; La;, i#j, then the mean value of an observable in m is

m(x)= [t dm,(¢) if the integral on the right-hand side exists and is finite, where m,
is a measure on B(R,): m.(E)=m(x(E)), E € B(R,). If there is a quite full system
M of states [4] such that for any two bounded observables x, y there is a unique
observable z such that

m(z)=m(x)+m(y), forevery meM, (3.1)

then z is called the sum of x, y and it is written z =x + y.

It is easy to see that this sum is associative and it coincides with the sum of
compatible observables.

Example 3.1. Let L=L(R,) and let x, y, z correspond to

10 (172 1/2 3/2 1/2
0 0)’ Mz‘(l/z 1/2 1/2 1/2)'

Then the sum of x, y defined (i) by (3.1) is z ; (ii) by (2.1) is g,. The logic L(R,) is
isomorphic to a logic L of subsets of the set 2 = (0, nt/2), that is, with the logic
L={0, Q, {n/2, ¢}, {n/2, ¢}°, 0<@ <m/2}. Let f, g, h correspond to x, y, z in
this isomorphism, where

_ [0 if we{n/2,0} (1 if we{n/2,n/4}
f(“’)‘{o if wé¢{n/2,0}; ( )_{0 if wé{n/2,n/4};

M1=( ), M=D11+M2=(

(2-V2)/2 if wé{n/2,arctg (1+V2)}
(2+V2)/2 if we{n/2,arctg (1+V2)}

Now, if we define the sum of measurable functions f, g:

(i) by points, that is, (f+ g)(w)=f(w)+ g(w) = f+g is no observable;
(i) by (3.1), then f+g=h;
(iii)) by (2.1), then f+g=1.

This example refers to the splitting of the notion of the sum in a transition from
a measurable space into logics. Moreover, in [1] it is shown that although
(f+g9)(w)=f(w)+ g(w) is a measurable function, the additivity of the mean value
does not hold in general. (f, g in [1] are unbounded observables.)

h(w)={

Lemma 3.2. The following propositions are equivalent
(1) 9.@q» is a question observable ;

(ii) qll @qb = qavb 5

(iii) anb=0.
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S. P. Gudder in [4] showed that a Lb iff . + g» = qa.+. This property does not
hold for the sum defined by (2.1).

Corollary 3.2.1. If there holds a Lb iff q.®qs = qavs, then L is a Boolean
o-algebra.
Proof. If g.®q» =qavs, then by (ii) of Lemma 3.2 there follows that a Lb iff
anb=0.ByZierler[9, Lemma 1.5] there implies that L is a Boolean o-algebra.
Q.E.D.

Lemma 3.3. There holds
0 r<—1
a‘Ab —1<t=<0

atub o<t=<1
1 1<t

B,, eqb(t) =

Moreover, the following propositions are equivalent
(i) 4.®q» is a question observable ;
(ii) 4a©Qqs = gans>
(iii) a*Ab=0.
We see that the sum of two observables x @y has not the same properties as the
sum defined by (3.1) and the investigation of the sum defined by (2.1) may be
made mainly for compatible observables.
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O CYMME HABIIOOAEMBIX B JIOTUKE
Axatonuii JIBypedyeHCKUH
Pesome

Cymma ABYX HabnoRaeMbIX B JIOTHKE OonpeaenaeTCa OTINYHbIM cnoco6oM ot ONpENCIEeHUsS CyMMbI
MNOCPpEACTBOM CPEAHHHUX 3HAYCHHH. HCKOTOpble CBOWCTBA 3TOH CYMMbI 1OKa3aHbl
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