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HYPERINVARIANT SUBSPACE LATTICE 
OF ISOMETRIES 

MICHALZAJAC 

1. Introduction 

Let § be a complex separable Hilbert space and let B(9)) be the algebra of all 
bounded linear operators on .§. A subspace (i.e. a closed linear manifold) £ c 9) 
is called invariant for Te /?(£>) if TQ c £. £ is hyperinvariant for T if it is 
invariant under ea$h AeB($>) that commutes with T. We denote Lat(7) and 
Hyplat(7) the set of all invariant and hyperinvariant subspaces of T, respecti
vely. 

If {Qr ye T) is a family of hyperinvariant subspaces of T, then both the 

intersection Q Qy and the closed linear span \J Qy are from Hyplat(7), i.e. 

Hyplat(7) is a complete lattice. 
Let TeB($>). We denote by {T}\ {T}" the commutant and the double corn-

mutant of r , respectively: 

{77 = {SeB(f>): ST= TS}, {T}" = f ) {S}'. 
Se{T}' 

If Se{T}"9 then both 
Ker5 = {//e§: S/i = 0} and Ran5 = SH 

belong to Hyplat(7) (see [9]). 
In [7], [8], [9] it was proved that some completely non-unitary contractions 

(among them all c.n.u. weak contractions) have the following property: 

Definition 1.1. An operator TeB($) is said to have the property (L) if 
Hyplat(7) is the smallest complete lattice which contains all subspaces of the forms 
KerS and RsmS for Se{T}". 

It was not known whether there exists an operator not having the property 
(L). The purpose of this paper is to show that an isometry need not have the 
property (L). We shall even obtain a characterization of the isometries having 
the property (L). 
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Let Kbe an arbitrary isometry on the space S (i.e. || Vh\\ ̂  \\h\\ for all he$). 
According to the Wold decomposition ([5], Theorem 1.1.1) § then decomposes 
into an orthogonal sum § = So © Si s u c h t h a t S o a n d Si bel0ng to Lat(7), V|So 
is unitary and V|Si is a unilateral shift. Moreover 

So = 0 r § a n d s o S0eHyplat(V). (1.1) 
w = 0 

It is easy to show that every unitary operator has the property (L) [9]. We 
shall show that the unilateral shift has the property (L) as well. 

2. Unilateral shifts. 

An isomtery VeB(9)) is called a unilateral shift if there exists a subspace 
£ c S such that V"fi is orthogonal to V™Q for all pairs of non-negative integers 

n ^ m and © V"£ = S- In what follows we shall use a functional model for 
n = 0 

unilateral shifts on Hardy spaces. 
Let FP, 1 < p :_ oo, be the Hardy spaces of analytic functions in the unit disc 

Z). It is well known that we may consider # p as a subspace of the space LP on 
the unit circle of those fe LP which have the Fourier coefficients with negative 
indices zero. For more detail see Chapter III. 1 of [5]. 

Let <peLx, we denote M(<p) the operator of multiplication by cp on L2. If 
cpe #QC, then M(cp)H2 c # 2 and we denote T((p) = M((p)\H2 the analytic Toeplitz 
operator with symbol cp. 

If x(elt) = eil, then S = T(x) is the unilateral shift of multiplicity 1. Then 
{S}' = {S}" = {T(<p): (pG#°°} ([6], Chapter 3). We call an inner function every 
we#°° such that \u(e")\ = 1 almost everywhere with respect to the Lebesgue 
measure on the unit circle (a.e.). As was shown in [6], p. 42 Lat(S) = {T^H2: <p 
is an inner function}. Obviously, Hyplat(S) Lat(S) and S has the property (L). 

Every unilateral shift of multiplicity n( 1 = n = oo) Sn is unitary equivalent to 

the orthogonal sum of n copies of S. Sn is defined on the space H\ = © # | 9 

# , = #2 for 

1 = i < n + 1. 

With respect to this orthogonal sum every operator in the commutant of Sn 

is an operator of multiplication by an n x n matrix over #°°. The following 
lemma describes the double commutant of the unilateral shift of arbitrary 
multiplicity. 

Lemma 2.1. {Sn}" = {<p(Sn): ^e#°°}. 
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Proof. For Ae{S„y denote Atj the (/,j)th entry of the corresponding ma
trix. Let A e {Sn}" and i ^ j . If X is an operator with Xtj = 1 and Xkl = 0 for all 
(k, 1) # (if), then Xe{Sny and we have 

Aji = (AX)jj = (XA)jj = 0 

Aii = (AX)ij^(XA)ij = Ajj. 

This means that A = ^S,.), where <p = Ah{\ ^i <n+ 1). 
By Chapter V.3.4 of [5] or by [3] every £ e Hyplat(5„) is of the form £ = <p//2, 

where <p is an inner function. This means that S„ has the property (L). 

3. The operator U® S does not have the propety (L) 

Let VeB($y) be an arbitrary isometry. By the Wold decomposition 
-d = §o®§i> where f>0 and §j reduce F, £>0eHyplat(K) and ^ = V\$>0 is 
unitary, ĴJ = V\HX is a unilateral shift. We have shown that both V0 and Vx have 
the property (L). Now we shall show that V need not have (L). 

E x a m p l e 3.1. The operator K = U@S on the space L2@H2, where C/ is 
the bilateral shift: (Uf)(elt) = e'j(e"),feL2 and .S is fhe unilateral shift, has not the 
property (L). 

Proof. Denote by /: H2-* L2 the natural imbedding of # 2 into L2, i.e. 
Ju = u for wG/Y2. Then the operator 

0/ 

commutes with V. {S}' = {T(<p): <peHco} = {S}" and {U}' = {M(f): teL 0 0 } = 
= {U}". {V}" c {U}" 0 {S}" (Lemma 1.1 of [1]). Every Te{K}" is of the form 

T = (M<^ ° \ / e L00, p e H00. T commutes with (° J \ it follows that 
V 0 T(<p)J Vo 0/ 

J7Tp) = M(/)5, i.e. M(/)|H2 = T(<p) and so f=<p. We conclude 

{K}" = {<p(r):?>eHx}. Let <p=(pi(pe be the inner-outer factorization of 
^eH 0 0 . By the theorem of Beurling [5, Proposition III. 1.2] we have that if <p is 
not identically zero, then 

Ran ę(V) = ęП© ę = Ü + ęҢг 

andKer <p(V) = (0). 

It follows that the smallest complete lattice containing all Ran A and Ker.4 for 
Ae{V}" is formed by the zero subspace and L2 © mH2 for all inner functions m. 
But Hyplat(K) contains also the subspace £ = L2(0, n) © (0), where L2(0, n) = 
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= {ueL2:u(elt) = 0 for te(n,2n)}. To show this we observe that every Ae{V}' 
has the form 

(A] A \ where Axe{U}\ A4e{S}\ A2S = UA2 and A3 = 0 because L2® 
\A3 A J 

o. 

© (0) = C\ V"(L2 ® H2) e Hyplat(V). This means that Ax = M(u) for a function 
= 6 

ueLx and /!£ c fi. 
We conclude this section by some remarks 
1) Example 3.1 shows that TX®T2 need not have (L) if both 7J and T2 

have (L). 
2) We have proved that all completely non-unitary weak contractions have the 

property (L). The operator U ® S is not a weak contraction because its spec
trum is the whole unit disc. In a subsequent paper we shall prove that every weak 
contraction has the property (L). 

3) The operator U ® S is subnormal. So our example shows that not every 
subnormal operator has the property (L). It shows also that if Thas the property 
(L) and £eLat ( r ) , than J]Q need not have the property (L). 

4) The example 3.1 is a special case of the result of the following chapter 
where we shall give a characterization of the isometries having the property (L). 

4. General case 

Let VeB(9)) be an isometry. Similarly as in [2] we consider the unique 
decomposition § = <r>05 © $0A ® Hx such that Vos = V\9)os is a singular unitary 
operator (i.e. its spectral measure is singular with respect to the Lebesgue 
measure), V0A = V\9)0A is an absolutely continuous unitary operator and 
Vx = V\9)x is a unilateral shift. R. G. DOUGLAS [2] showed that 

Hyplat(V) = Hyplat(^) © Hyplat(K0, © Vx). (4.1) 

According to [1] this is equivalent to both following relations: 

{V}' = {V«sY®{V«A®Vx}', (4.2) 

{V}" = {VOS}"®{VOA®VX}". (4.3) 

If A e{V0S}", Be{V0A® Vx}", then the operators AeO, AeI, O e B , IeB 
belong to {V}" and 

K e r A e (0) = Ker(A ®I), 
Ran A e (0) = Ran(A ® 0), . (. .. 

(0)e KerB = Ker(I e B ) , ' C ' 
(0) e Ran B = Ran(0 ® B). 
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Vos has the property (L) because every unitary operator has (L). Relations 
(4.1) — (4.4) show that V has the property (L). if and only if V0A ® Vx has the 
property (L). 

According to the theory of spectral representations of normal operators [4] 
we may suppose that V0A is the operator of multiplication by e" on the space 

L2(EX)®L2(E2)®..., (4.5) 

where Ex 3 E2 :D ... are measurable subsets of the unit circle and the measure 
considered is always the normalized Lebesgue measure. If %E *S the characteris
tic function of E„, then l}(En) = XEP- Denote by M(En) the restriction of the 
bilateral shift U to Il(En). From [6, Theorem 1.20] it follows similarly as for the 
whole shift that 

{M(En)Y = {M(En)Y = {M(f):feL°(En)}. 

Lemma 4.1. Let EXZD L2 Z> ... be measurable subsets of the unit circle and let 
V0A = M(EX)®M(E2)®... 

Then {V0Ay = {M(f) ® M(f) © ... :feL°(Ex)} 
Proof. {V0A}" cz{M(Ex)}"®{M(E2)}"®... because for each i = l , 2, ... 

the operator A{ given by the matrix (corresponding to the decomposition (4.5)) 
with Au = / and all the other entries zero commutes with V0A (See [1]). If 
Be{V0A}'\ then its matrix representation is a diagonal matrix: 

Bj, = MVJ),fjeL°,j =1,2,... 
B<, = 0 if k±j. 

For k > j let PkJ be the orthogonal projection of L2(Ek) into L2(Ej), i.e. the 
operator M(xE)\L2(Ek). 
Let X be the operator with the matrix: 

Xkj = Pkj and all the other entries zero. Xe{V0Ay, therefore XB = BX. It 
follows that yj == XEfk (for each k > j). This means that B is the operator of 
multiplication byf, and the proof is finished. 

Lemma 4.2. If 9) = L2(£) © H2, where E is a measurable subset of the unit circle 
and V = M(E) © S, then 

{V}" = {<p(V):<peir»}. 

Proof. The proof is essentially the same as that in Example 3.1 for 
U® S. Instead of the operator Ju = u (we H2) we have to use the operator 
jjM = %Eu (we//2). Then the operator 

Л> JЛ 
40 0 / 
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commutes with V. Every operator from {V}" is of the from f(M(E)) ® <p(S), 
feL00, cpeH*. It follows that 

JEcp(S)=AM(E))JE. 

If we apply this equation to the constant function 1 (which is from / / 2 ) , we 
obtain: 

XE<P = ZET, i e . f(M(E)) ® <p(S) = cp(V). 

Theorem 4.3. Let E0^D £ , ID E2=> ... be measurable subsets of the unit circle. 
Let us suppose that at least E0 is of the positive Lebesgue measure and 1 _ n rg oo. 

If§>=® L2(E) ®H2
nandV=® M(Et) ® SH9 then{V}" = {cp(V): cpeH™}. 

/ = o / = o 
P r o o f According to [1, Lemma 1.1] 

{V}"cz{®M{щX®{Snү. 

Applying the lemmas 2.1 and 4.1 we obtain that every Ae{V}" is of the form 
A = (M(j) 0 M{f) © •••) 0 <p(Sn), feL°°, <pe H°°. 

Let us consider the following decomposition of H: 

§ = L2(E0) e H2 © H\_ , e e L2(B,). 
/ = l 

Because A\L2(E0)® H2 = M(f) ® M(<p) belongs to {M(E0)®S}" lemma 4.2 
asserts that j(z) = (p(z) for zeE0, i.e. A = (p(V). 

Theorem 4.4. Let V be an arbitrary isometry on a separable Hilbert space 9). 
Then V has the property (L) if and only if either V is unitary or the absolutely 
continuous unitary part of V is zero. 

P r o o f As mentioned at the beginning of this section we may assume that 
the singular unitary part of Kis zero. If Vis unitary or if Khas no unitary part 
(i.e. F i s the unilateral shift), then F h a s the property (L). If F i s as in Theorem 
4.3 with at least E0 of the positive Lebesgue measure, then {V}" = {(p(V): <pe 

e / / 0 0 } . For each p e / / 0 0 , (p $ 0 Ker cp( V) = (0) and Ran<p(*0= ® L2(E)® 
7 = 0 

® (piH2„ where <pt is the inner factor of (p. (See the proof of Example 3.1). If 
F0 c E0 is a meassurable subset of E0 such that both F0 and its complement in 

E0 have the positive Lebesgue measure, then the subspace XF0 \ ® ^ (^ j ) ) ® (0) 

is hyperinvariant for K, but it is not contained in the smallest complete lattice 
containing all Ker<p(V: and Ranp(K) for (peH™. 
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РЕШЕТКА ГИПЕРИНВАРИАНТНЫХ ПОДПРОСТРАНСТВ ИЗОМЕТРИЙ 

МюЬа1 2а1ас 

Резюме 

В статье изучаются условия, при которых изометрия V в гильбертовом пространстве 
обладает следующим свойством: 

(I,) Решетка подпространств, гиперинвариактных для V порождена подпространствами, 
являющимися нуль-пространством или замыканием области значения оператора А из второ
го коммутанта V. 

Доказывается, что V обладает свойством (Ь) тогда и только тогда, когда либо V — 
унитарный оператор, либо его абсолютно непрерывная унитарная часть нулевая. 
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