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MAPS PRESERVING CONVERGENCE OF SERIES 

LECH DREWNOWSKI 

(Communicated by Michal Zajac) 

ABSTRACT. For fairly broad classes of topological vector spaces X and Y, 
there are given complete characterizations of those maps / : X —• F for which the 
induced transformation of series ^2xn ~+ ̂ 2f(xn) preserves properties such as 

n n 

convergence, boundedness, absolute convergence, and unconditional convergence. 
For example, the following extension of a result of R. Rado for the case of normed 
spaces is shown: If X is metrizable, and Y is sequentially complete and contains 
no isomorphic copy of the space u of all scalar sequences, then / preserves 
convergence of series if and only if / is additive and continuous in a neighborhood 
of zero. 

0. Introduction 

It was shown by R a d o [Ra; Theorem 3] that a map / from one Banach 
space into another preserves convergence of series if and only if / is continuous 
and R-linear in a neighborhood of zero. He also mentioned that his research 
had originated from a problem raised by D. J. White, who also found an al
ternative proof for the case of maps / : R —> R. The result for this latter case 
was rediscovered by W i l d e n b e r g [W] with quite a complicated proof, but a 
much simpler proof was soon provided by S m i t h [S]. In fact, S m i t h 's proof 
is easily adaptable to the more general case treated by R a d o and, essentially, 
is very close to R a d o ' s proof. Also, apparently unaware of [Ra], the case of 
maps / : Rn -» W1 has recently been considered by K o s t y r k o [K]. In an
other recent paper of B o r s f k, C e r v e n a n s k y and S a l a t [BCS], maps / 
preserving absolute convergence of real series have been characterized as those 
for which | / (x ) | ^ const -\x\ in a neighborhood of zero. (The referee has pointed 

2000 M a t h e m a t i c s Sub jec t C l a s s i f i ca t ion : Primary 40A05, 46A16, 47H99. 
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out that also two newer publications, [DMS] and [G], are somewhat related to 
the subject matter of the present paper.) 

The purpose of this paper is to extend characterizations of the above type 
to maps / between fairly general topological vector spaces (or even topological 
abelian groups, see the Final remark at the end of the paper). This is done 
in Sections 3, 4, and 5 which are concerned, roughly speaking, with arbitrary 
convergent series, absolutely convergent series, and unconditionally convergent 
series, respectively. Sections 1 and 2 are of auxiliary character. In particular, 
in Section 2 we discuss a so-called Property (U) that has to be imposed on 
the range space in order for a R a d o ' s type result to hold. We show that it is 
intimately related to the noncontainment of a copy of the space u> of all scalar 
sequences. 

We refer the reader to [J] and [Ro] for basic information about topological 
vector spaces, F-seminorms, F-norms, e t c In what follows, we use the abbrevi
ation TVS for Hausdorff topological vector space(s). 

Let X and Y be TVS. A map / : X —> Y is said to preserve convergence 
of series, or to send convergent series (in X) to convergent series (in Y), if 
whenever a series ^ x n in X converges, so does its f -transform, i.e., the se-

n 
ries Yl f(x

n)
 m Y. Similar, self-explanatory terminology will also be used when 

n 

series of other types, like Cauchy series, or absolutely convergent series, or un
conditionally convergent (or unconditionally Cauchy) series are considered as 
"inputs7' or "outputs" of the map / . 

1. Locally additive maps 

Let X and Y be TVS. We shall say that a map / : X —> Y is locally additive 
if it is additive in a neighborhood U of zero in X in the sense that f(u + v) = 
f(u) + f(v) whenever u:v eU. Then, clearly, / (0) = 0 and 

f(u1 + ... + uk) = f(ul) + ... + f(uk) (*) 

whenever ^ , . . . , ^ 6 ( 7 and u1 + 1- u{ eU for i = 1 , . . . , k — 1. 

Moreover, assuming (as wre may) that U is symmetric, wre have f(—u) = 
—f(u) and f(u — v) = f(u) — f(v) for u, v G U. In consequence, if / is continuous 
at zero, then it is (uniformly) continuous in U. Likewise, if / is sequentially 
continuous at zero, then it is sequentially continuous in U. 

PROPOSITION 1. Let X and Y be TVS. and let a map f: X -± Y be locally 
additive and sequentially continuous at zero. Then f sends convergent series to 
convergent series, and Cauchy series to Cauchy series. 
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P r o o f . Let U be a closed symmetric neighborhood of zero in X in which 
/ is additive. Let Y xn be a Cauchy series in X. Then there exists k such that 

n 

for m > / > k 
m m / m v 

X > „ € £ l , whence 5 3 / ( . r j = / ( X X ) • 
n=J n= t n= t 

(t) 

Take any two sequences of indices (/•) and ( m ) such that /• ^ m- and /. -» oo 
as j -> co. Then 

777 j 

VJ x n - ) 0 as j -» oo 
n= t j 

and, for large j , 

£/(*») = / ( £ * „ ) • 
n=/ j n=lj 

Hence, by the sequential continuity of / at zero, 

771 j 

XI / K ) -* 0 as j -> oo. 
n = / j 

This proves that the series Yf(xn) ls Cauchy in Y. 
n 

OO 

If the series Y,xn
 ls convergent, let x denote the sum of the series ]T xn. 

n n=k 
m / 77i v 

By (f) and since U is closed, x G U. Moreover, ]T f(xn) = f[ Y, x
n) ~* f(x) 

n=k n=k 

as m ^ o o . Hence the series Ylf(x
n)

 ls convergent in Y. • 
n 

The following should be treated as a "folklore" result. 

PROPOSITION 2. Let X and Y be TVS. If a map f: X -*Y is locally additive 
and continuous at zero, then there exists a unique continuous R- linear operator 
T: X —> Y such that f and T coincide in a neighborhood of zero in X. 

P r o o f . Let U be a balanced neighborhood of zero in X in which / is 
additive. 

Fix any x G U. From property (*) above it follows that f(x) = n / (x /n) , or 
f(x/n) = f(x)/n for all n G N. Since / is odd in U, applying (*) one more 
time gives f(rx) = rf(x) for any rational r with \r\ ^ 1. In consequence, by 
the continuity of / , 

f(rx) = rf(x) whenever x G U and \r\ ^ 1. 
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Now, take any x e X and let a, b > 0 be such that both x/a and x/b are 
in U. Then, assuming as we may that c := b/a ^ 1 and using the last property 
o f / , 

af(a~1x) = af(cb~lx) = bf(b~xx). 

Hence the formula 

T(x) = af(a~lx), where a > 0 is any number such that x/a G U, 

well-defines a map T: X -> F , and it is obvious that T(x) = / (# ) for x € U. 
Moreover, T is additive. In fact, let u,v G X and choose any number a > 0 
such that all three elements a_ 1 ,u, a~lv, and a_1(?i + i;) are in U. Then 

T(u + v) = a / ( a _ 1 ( u + v)) = afia^u) + a/(a"1U) = T(u) + r ( v ) . 

Similarly, T is R-homogeneous, thus R-linear. The uniqueness of T is obvious. 

Remark. It is well known that a continuous additive map (or operator) between 
TVS is always R-homogeneous, and thus R-linear. 

2. Spaces with Property (a?) 

We shall say that a TVS Y has Property (uJ) if there is no sequence (yn) in 
Y with nonzero terms such that the series ^ a

nyVi i s Cauchy for every sequence 
n 

(an) of positive integers. The reason for considering such "strange" sequences 
will become apparent in the proof of Theorem 1 below\ 

An obvious example of a TVS that lacks Property (U) is w, the space of all 
scalar sequences with its usual product (or coordinatewise convergence) topo
logy: Here the sequence (en) of unit vectors has the property that the series 
YLa

n
en converges for every sequence (an) of scalars. Hence, if a TVS Y has 

n 

Property (cJ), then it contains no isomorphic copy of u, nor even a copy of the 
subspace LJ0 = lin(en) of cO. (In particular, no infinite product of nonzero TVS 
can have Property (u;).) We are going to show below that also the converse is 
true. 

LEMMA 1. Let (yn) be a sequence in a TVS Y such that the series Yla
nyn Z5 

n 

Cauchy for every sequence (an) of positive integers. Then it is Cauchy for every 
sequence (an) of scalars. 
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P r o o f . First note that the series ^ anyn must be Cauchy for every se-
n 

quence (an) of integers. Next observe that this is equivalent to the following: 
(cc) For every sequence (an) of integers and every sequence (J.) of disjoint 

consecutive intervals in N, 

]C anyn -+ ° a s 3 -> °° • 
nelj 

We have to show that (cc) holds true if "integers" is replaced by "reals". 
Suppose it is not so. Thus there is a sequence (cn) of reals for which one can 
find a sequence (/•) of disjoint consecutive intervals in N such that 

р(Т,СпУп)>С (J = 1,2,...) 

for some continuous F-seminorm p on Y and some number e > 0. Then we can 
choose a sequence (bn) of rationals with each bn close enough to cn to ensure 
that 

p(j2hyn)>c 0 = 1,2,...). 
Knelj ' 

For each j let m • G N be such that an := rn-bn is an integer for n G /•. Then 

3 nei. 

so that 

KiÆ.a"Ф ( j = l , 2 , . . . ) 

— Y^ anУn ł> 0 as j - ю o , 
J nelj 

which clearly contradicts (cc). • 

We will need the following properties of the space u; see [BPR] and [D]. 

(A) The general form of a continuous linear operator T from a; to a TVS 
y is T((an)) = Yanyn, where (yn) is a sequence in Y such that the 

n 
series J2anyn is convergent for every (an) G LJ. 

n 

(B) If a continuous linear operator T from a; to a TVS Y has infinite dimen
sional range, then T(u) ~ u. 

(C) UJ is a minimal TVS; hence if a continuous linear operator T from u to 
a TVS y is one-to-one, then it is an isomorphic embedding. 
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LEMMA 2. Let T be a continuous linear operator from u to a TVS Y having 
an infinitely dimensional range. Then there exists an infinite subset M of N 
such that T\u;/fyj-\ is an isomorphic embedding, where u(M) := {(an) G u : 

(\/n£M)(an =p)}«w. 

P r o o f . Clearly, yn := T(en) ^ 0 for infinitely many n. By (B), the sub-
space W = T(u)) of Y is isomorphic to u. Fix a basis (wk) of W (equivalent 
to the basis (ek) of u) and let (wk) be the associated sequence of coefficient 
functionals. For each w G W, let s(w) = {k : wk(w) / 0 } , the support of w 
relative to (wk). Since the series ]T a

nVn converges in W for all scalar sequences 
(an), it is easy to see that n 

\{n: k G s(yn)}\ < oo for all k G N. 

Making use of this fact and proceeding by induction, one can easily construct 
infinite sequences nx < n2 < ... and kx < k2 < ... in N such that, denoting 
ZJ = Vn, i 

kjes(zj) and { 1 , . . . ,kj - 1} n s(Zj) = 0 for j = 1,2,. . . . 

Using these two properties it is not hard to see that whenever ^b-z, = 0, 
3 

then b = 0 for all j . In consequence, the set M = {n- : j G N} is as required: 

If (an) G UJ(M) and T((an)) = 0, then (an) = 0 so that r ^ t ^ is one-to-one, 

and it remains to apply (C). • 

COROLLARY 1. Let Y be a TVS, and let (yn) be a sequence in Y with all 
yn 7-= 0 and such that the series ^ a

nyn is convergent for every sequence (an) of 
n 

scalars. Then (yn) has a subsequence (zn) which is equivalent to the unit vector 
basis (en) of u. That is, the linear operator J: u -> Y defined by J((an)) = 
-C anzn ^s an isomorphic embedding. 
n 

P r o o f . First note that the linear span of (yn) must be of infinite dimension. 
Next, define a continuous linear operator T: u -» Y by T((an)) = ^anyn. 
Then dimT(u;) = oo, and the assertion follows from Lemma 2. n • 

R e m a r k . An infinite dimensional subspace Z of u always contains a sequence 
(zj) equivalent to the basis (en) of a;. In fact, since d imZ = oo, for every k G N 
there must exist 0 ^ z £ Z such that { 1 , . . . , k} n s(z) = 0. (Here the support 
s(z) is taken relative to (en).) From this, one can easily deduce the existence 
of a sequence kx < k2 < ... in N and (z,) in Z satisfying the two conditions 

displayed above. Then Ylajzj converges for every (a^ G u, and J2ajzj = 0 if 
j i 

and only if (a.) = 0. Thus (z^ is as required. 
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PROPOSITION 3 . For a TVS Y the following are equivalent. 

(a) y has Property (uJ). 
(b) Y has no subspace isomorphic to a dense (or just infinite dimensional) 

subspace of UJ . 
(c) y has no subspace isomorphic to the subspace UJ0 of UJ . 

P r o o f . 

(a) ==-> (b) holds by the Remark above, and (b) =-> (c) is trivial. 
(c) => (a): Assuming (a) is false and making use of Lemma 1, we find a 

sequence (yn) C Y with nonzero terms such that the series J2 a
nyn ls Cauchy for 

n 

every sequence (an) of scalars. Viewing (yn) as a sequence in Y, the completion 
of y , and applying Corollary 1, we get a subsequence (zn) equivalent to the 
unit vector basis (en) of UJ. Then the subspace lin(£n) C Y is isomorphic to 
<v0, contradicting (c). • 

COROLLARY 2. A sequentially complete TVS Y has Property (ZJ) if and only 
if Y contains no isomorphic copy of UJ . 

R e m a r k . A property of a TVS Y apparently stronger than Property (u;) is 
the following: For every sequence (yn) in Y with nonzero terms there exists a 
continuous F-seminorm q on Y such that misnp q(tyn) > 0 or, equivalently, 

" t 
there is a balanced neighborhood V of zero in Y which contains none of the lines 
passing through 0 and yn for n = 1,2, If Y = (Y", ||-||) is an F-normed space, 
then this holds if and only if inf sup \\ty\\ > 0 (i.e., Y does not have "arbitrarily 

y^o t 

short lines"). When Y is an F-space, the latter condition is in turn equivalent 
to the noncontainment by Y of copies of UJ (by an old result of B e s s a g a , 
P e l c z y r i s k i and R o 1 e w i c z [BPR], see also [Ro]). 

3. Maps preserving convergent or Cauchy series 

PROPOSITION 4. Let X and Y be TVS. If a map f:X—>Y sends convergent 
series to Cauchy series, then / (0) = 0 and f is sequentially continuous at zero. 

P r o o f . It is obvious that / (0) = 0. To show that / is sequentially con
tinuous at 0, take any null sequence (un). Then the series ux 4- (—u^) + . . . 
+ un + (—un) + . . . converges in A" (to 0), hence its /-transform is a Cauchy 
series in Y. In consequence f(un) -> 0. • 

Recall that the topology of a metrizable TVS X can always be defined by an 
F-norm ||-||. 
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We now come to the first of our main results. The proof below is a modifica
tion of the arguments used in [Ra] and [S]. 

THEOREM 1. Let X be a metrizable TVS and Y any TVS having Property (u). 

Then for a map f:X-¥Y the following are equivalent: 

(a) / sends convergent series to convergent series. 
(b) / sends convergent series to Cauchy series. 
(c) / is locally additive and continuous at zero. 

P r o o f . 
(b) => (c): In view of Proposition 4 it remains to show that / is locally 

additive. Equivalently, we need to show that for the function 

g(u,v) := f(u + v) + f(-u) + f(-v), u,v e X , 

there is a neighborhood U of zero in X such that g(u, v) = 0 for all u, v G U. 
Suppose it is not so. Then there exist null sequences (u •) and (v,) in X such 
that y- := 9(u^v-) ^ 0 for each j . 

Choose any sequence ( a ) in N, and consider the series ^ x
n

 m X whose 
n 

terms come up in consecutive blocks A, each of which in turn consists of a 
consecutive subblocks, each of the form 

( w j + u j ) + ( - ^ ) + ( -^-)-

N o t e . Here, and in similar constructions below, no parentheses are used around 
"blocks". 

Then the series Ylx
n converges (to 0) in X. By assumption (b), the series 

n 
J2 f(xn) ls Cauchy in Y, hence so is the series J ] z-, where z, denotes the sum 

n j 

of the block of the series ^Zf(xn) corresponding to A,. Since z, = a,y,, we 
n 

see that the series S a j2/ j is Cauchy for every choice of (a.) C N, contradicting 
n 

Property (u;) of Y. 
(c) ==> (a) is contained in Proposition 1, and (a) ==> (b) is trivial. • 

Remark . Let X = /1 with its weak topology, Y = lx with its norm topology, 
and let / : X -> Y be the identity map. By the Schur property of /-_, / is a 
sequentially continuous linear map. Hence it sends convergent (Cauchy) series to 
convergent (Cauchy) series. However, it is not continuous at zero. Furthermore, 
also the map g: X -> Y which coincides with / on the unit ball of lx and is 
zero elsewhere preserves convergent (Cauchy) series, although it is not locally 
additive. Thus the assumption of metrizability of A" in Theorem 1 is essential. 
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COROLLARY 3. Let X be a metrizable TVS. and let Y = ]J Yi be a product of 
iei 

TVS. each having Property (uJ). Then for a map f = (f{): X -> Y the following 
are equivalent. 

(a) / sends convergent series to convergent (or Cauchy) series. 
(b) Each of the component maps fi:X^Yi is locally additive and continu

ous at zero. 

Remark. Note that a neighborhood of zero in which ft is additive may, in 
general, depend on i. Hence / itself need not be locally additive. This happens, 
for example, when f = (fk): X = (X, ||-||) —•> cO, where each fk vanishes for 
||x|| ^ 1/fc. and assumes arbitrary nonzero values for \\x\\ > 1/fc. In fact, in this 
case for every null sequence (xn) in X the series ^2f(xn) is unconditionally 

n 

convergent in UJ . This follows easily from the fact that for each fc only a finite 
number of vectors f(xn) may have a nonzero fcth component. 

We strengthen the above remark by showing that the implication (b) => (c) 
of Theorem 1 is simply false for each TVS Y without Property (UJ) . 

PROPOSITION 5. / / a TVS Y does not have Property (uJ), then for every 
nonzero TVS X there exists a map f:X —> Y which is continuous at zero 
but not locally additive, and yet for every null sequence (xk) in X the series 
J2f(xk) is unconditionally Cauchy. 
k 

P r o o f . By assumption, there is a sequence (yn) in Y with nonzero terms 
such that 

(cc+) the series ^anyn is Cauchy for every sequence (an) in N. 
n 

We may assume that (yn) is linearly independent. Fix a null sequence (un) in 
A" with pairwise distinct nonzero terms. Define / : X -» Y by setting f(x) = yn 

if x = un (n = 1. 2 , . . . ) , and 0 otherwise. Clearly, / is continuous at zero, but 
it is not locally additive. Take any null sequence (xk) in X. Without loss of 
generality it can be assumed that {xk : fc £ N} C {un : n G N}. For each n let 
mn = \{k : xk = un}\. Fix any N eN and denote by r(N) the largest integer 
such that 

|{fc : fc ^ N & xk = un}\ = mn for 1 ^ n ^ r(N). 

Also, let 
s(N) = max{n : xk = un for some 1 ^ fc ^ N} . 

Then r(N) ^ s(N) and 

N r(N) s(N) 

E / ( * * ) = E ™ n V n + ^ anW»n> 
fc—1 n=l n=r(N) + l 
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where an(N) are some integers with 0 ^ an(N) < mn for r(N) < n ^ s(N). 
Evidently, both r(N) and s(N) tend nondecreasingly to infinity as N -» oc. 
From (cc+) it follows easily that 

s(N) 

_C an(N)Vn^° a S - V - > 0 0 . 
n=r(iV) + l 

Finally, by (cc+) again, the series __mnHn is Cauchy. hence so is the series 

£/(**)• " ° 
A; 

Thus there seems to be no hope for any characterization of maps preserving 
convergence of series when the range space lacks Property (uJ). Nonetheless, we 
have the following general result. We say that a series is bounded if the sequence 
of its partial sums is bounded. 

THEOREM 2, Let X be a metrizable TVS and Y any TVS. Then for a map 
f:X—>Y the following are equivalent. 

(a) / sends Cauchy series to bounded series. 
(b) f sends Cauchy series to Cauchy series. 
(c) / sends convergent series to Cauchy series. 
(d) / sends bounded series to bounded series. 

P r o o f . Let ||-|| be an F-norm defining the topology of X. 
(a) => (b): Suppose there is a Cauchy series __x n in X for wThich the 

n 
series ^2f(xn) is not Cauchy in Y. Then there are strictly increasing sequences 

n 

(kj) and (m •) in N such that kj ^ m • < kj+1 and 

p( E / M > є 

"• n=kj 

for some continuous F-seminorm p on Y and some e > 0. Since the series __ xn 
n 

is Cauchy, we may assume that 

5> 
n = k 

^ — whenever k- ^ k ^ /, j = 1, 2 (o) 
j2 J 

oo 
Now, consider the series __ Hr whose terms come up in consecutive blocks A 

r-l 

so that, for j — 1, 2 , . . . , 

• A0 ., consists of j consecutive subblocks, each of the form 
2? —1 J 

Xkj +Xfcj-i-l + ' ' ' + X r 
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• A2j consists of j consecutive subblocks, each of the form 

("xki) + (-Xkj + l) + '" + (-Xmi)' 

Using (o) it is easy to see that the series Y ur converges to 0. However, 
r 

denoting by 2 the sum of the block of the series Y f(u
r) corresponding to Aj , 

r 
we have 

m3 

p(r1z2j_1)=p( £ / o o ) > * . 
^ n=kj ' 

Hence the series Yf(z
r)

 IS n ° t bounded in Y, contradicting the assumption. 
r 

(b) => (c): Obvious. 

(c) ==> (d): Suppose there is a bounded series Y u
n
 m ^ ^or which t n e 

n 

series Y f(u
n) 1s n o t bounded in Y. Then there are strictly increasing sequences 

n 

(kj) and (rrtj) in N such that k- ^ m- < fc-+1 and the sequence 

% • 
= = £ / ( « „ ) > / = -<->• 

is not bounded in Y. Hence there is a sequence 0 < a• -> 0 such that a-it;• /> 0 

{
771 

Y u
n

 : 

n n=k 

k, rn £ N, fc^m . Hence 

sup{||a.r|| : x G 5} -> 0 as a->• 0. (00) 

Consider the series _ ] i n in X whose terms come up in consecutive blocks 
n 

Aj, where for j = 1,2,. . . , 

4 z ; - i = ajW*i + a i % + i + •" * + ajumj 

and 

^ 2 j = ( ~ a j % ) + (-ajUk^l) + '" + (~ajUmj) ' 

Using (00) it is easy to see that the series Y x
n converges to 0. However, the 

n 

series Y f(xn) ls n o t Cauchy in Y because the sums of its blocks corresponding 
n 

to A2 • 1 do not tend to zero. 
(d) = > (a): Obvious. • 
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Remarks. 
1. For X and Y Banach spaces, the equivalence of (a) and (b) in Theorem 2 

was already noted by R a d o [Ra; Theorem 5]. 
2. The condition " / sends convergent series to convergent series"' cannot be 

added to the list of equivalent conditions in Theorem 2. To see this, construct a 
map / as in the proof of Proposition 5 for X = K, un = n~2 . Y = jjQ C UJ . and 
Vn~en- Then the series Y^u

n
 1S convergent in K, while the series Yl f(un) — 

n n 

^2 e
n does n o t converge in Y. 

4. Maps preserving absolutely convergent series 

If X is a metrizable TVS and the choice of an F-norm ||-|| defining the topo
logy of X is of importance, we indicate this by writing A" = (A', | | - | | ) , and refer 
to A as an F-normed space. It is so, for instance, when absolutely convergent 
series ^xn in A , that is, those with Yl ilxJI < oo. are considered. 

n n 

THEOREM 3 . Let X = (A, ||-||) and Y = (y, |H|) be F-normed spaces. Then 
for a map f:X-*Y the following are equivalent. 

(a) / sends absolutely convergent series to absolutely convergent series. 
(b) There is a constant K such that | | / (x) | | ^ K\\x\\ in a neighborhood of 

zero in X. 

P r o o f . 
(a) =!> (b): Suppose condition (b) is not satisfied. Then there exists a se

quence (uj) in A such that 

l l ^ - K r 2 and 11/(^)11 > j 3 | | « i l l , j = l ,2 

For each j . let ra- be the least integer such that m^H^II ^ j ~ 2 . Note that then 

mJ|iUj|K(mj-l)||Ui|| + | |Uj | |<2r2-
Now, consider the series YLx

n
 m X whose terms come up in consecutive blocks 

n 

AJ , where Aj = Uj-\ \-Uj (rrij summands). Then ^ ilx
nll = Ylmj\ uj\\ < o c -

n j 

while 

E H/OOII = Em;iiI>j)u > E- 'HiM > E J = °° • 
n j j j 

contradicting (a). Since the other implication is obvious, the proof is finished. 

• 
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THEOREM 4. Let X = (A, ||-||) be an F-normed space and Y = (F, ||-||) a 
normed space. Then for a map f: X -» Y the following are equivalent. 

(a) / sends absolutely convergent series to absolutely convergent series. 
(b) / sends absolutely convergent series to unconditionally Cauchy series. 
(c) / sends absolutely convergent series to Cauchy series. 
(d) / sends absolutely convergent series to bounded series. 
(e) There is a constant K such that | | / (#) | | ^ K\\x\\ i>n a neighborhood of 

zero in X. 

P r o o f . Only the implication (d) => (e) needs a proof: Assuming (e) 
fails, we proceed as in the preceding proof and finish as follows: . . . Then 
S llxJI = zCmjlhxjll < oo. However, the series Ylf(x

n) 1s not bounded because 
n j n 

for the sum z- of its block corresponding to A- we have ||z.|| = mA\f(u,;)|| > 

ra?.j
3||H.|j ^ j , contradicting (d). D 

R e m a r k s . 
1. The above two proofs are modeled on the arguments used in [BCS; The

orem 2.6] to establish the equivalence of conditions (a), (c), and (e) in Theorem 4 
for the case X = Y = R. It is worth pointing out that the proof given there 
is unnecessarily complicated: In fact, in that particular case, (a) and (c) are 
evidently equivalent because (c) implies (b), and for scalar series unconditional 
and absolute convergence coincide. 

Actually, arguments like those above have been of constant use in the theory 
of Orlicz-type sequence spaces since its very beginning, see e.g. [BO; Kap. 1, 
Satz 1] and [MO; 1.13, 1.14]. Following this line one may observe that the same 
proof as for Theorem 3 gives also a more general result: 

THEOREM 3A. Let X be a vector space and let <p,rp: X -> R + . Then 
5^t/>(xn) < oo whenever ^( /?(x n) < oo if and only if there are constants 
n n 

c > 0 and K ^ 0 such that ip(x) ^ K(p(x) whenever (p(x) ^ c. 

Of course, to deduce Theorem 3 from Theorem 3a it is enough to set 
<p(x) = \\x\\ and </>(•*) = | | / (x) | | . 

2. In Theorem 4, even if X were a Banach space but Y merely a p-normed 
space, where 0 < p < 1, the implication (b) = > (a) would not hold. To see this, 
take A" = R with its usual norm | • |; Y = R with the p-norm | • \p (0 < p < 1); 
/ = the identity map; and consider the series ^ n ~ 1 / / p . Nevertheless, as we 

n 

show below, conditions (b), (c) and (d) of Theorem 4 remain equivalent even for 
arbitrary TVS Y. 

3. If both X and Y are normed spaces, and the map / : A* -» Y is positively 
homogeneous, then condition (e) in Theorem 4 can be replaced by the following: 

87 



LECH DREWNOWSKi 

There are constants c > 0 and K ^ 0 such that ||/(-z)|| < K\\x\\ for every 
x G X with ||x|| ^ c. Similar remarks apply to Theorems 6 and 7 below. 

THEOREM 5. Let X = (X, ||-||) be an F-normed space and Y any TVS. Then 

for a map / : X —r Y the following are equivalent. 

(a) / sends absolutely convergent series to unconditionally Cauchy series. 
(b) / sends absolutely convergent series to Cauchy series. 
(c) / sends absolutely convergent series to bounded series. 

P r o o f . Only the implication (c) = > (a) needs a proof: Assuming (a) fails, 
we proceed almost as in the proof of the implication (a) => (b) in Theorem 2. 

Suppose there is an absolutely convergent series Y x
n

 m X for which the 
n 

series Y f(x
n)

 IS n ° t unconditionally Cauchy in Y. Then there exists a sequence 
n 

(F.) of finite subsets of N such that m a x F < m i n F + 1 , 

E l K K i and p( £/(*„))>£ (j = l,2,...) (+) 
neFj J ^neFj ' 

for some continuous F-seminorm p on Y and some e > 0. 
oo 

Now, consider the series Y u
r
 w n o s e terms come up in consecutive blocks 

r = l 
A-, each in turn consisting of j identical subblocks Y x

n 0* = 1 > 2 , . . . ) . 
neFj 

Using (+) it is easy to see that Y IKII < °°- However, denoting by z- the 
r 

sum of the block of the series Y f(u
r) corresponding to A , we have 

r 3 

p{r1zj)=p( Y,f(xn)) >c 
^nCFj ' 

Hence the series Yf(u
r)

 IS n o t bounded in Y, contradicting the assumption. 
r 

• 
We conclude this section with the following. 

PROPOSITION 6. Let X = (X, ||-||) be an F-normed space and Y an arbitrary 
TVS. If a map f: X —> Y sends absolutely convergent series to bounded series, 
then / (0) = 0 and f is continuous at zero. 

P r o o f . Obviously, / (0) = 0. Suppose / is not continuous at 0. Then 
there is a sequence (u-) in X such that \\u-\\ < j ~ s and p(f(u-)) > e for 
some continuous F-seminorm p on Y and some e > 0. Now, consider the series 
V i in X whose terms come up in consecutive blocks A. = u- + • • • + ul 
-•—J n> 3 3 3 
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(j summands). Then ^ | | a ; J | = S i l l ^ H ^ ~ZJ~~ < °°- However, the series 
n j j 

~Zf(x
n)

 ls n ° t bounded in Y because, denoting by z- the sum of its block 
n J 

corresponding to A-, we have p{j~lz-) — p{f(uj)) > e and thus j~xz- -A 0 as 
j -» oo. D 

5. Maps preserving unconditionally convergent series 

From Theorem 4 it follows that if X is a finite dimensional Banach space and 
Y an arbitrary Banach space, then a map / : X —> Y preserves unconditional 
convergence of series if and only if | | / (x) | | ^ const -\\x\\ near the origin. This is 
no longer true if d imX = oo: In view of the Dvoretzky-Rogers theorem, the map 
/ : X -> R defined by f(x) = \\x\\ does not preserve unconditional convergence. 

Given a finite family (xn : n ~ N) of vectors in an F-normed space (X, | | - | | ) , 
we define 

Az(xn:nG_V) = s u p | | ^ x n | : F C N\ . 
^ n£F ' 

Recall that a series ~~x
n
 in X is unconditionally Cauchy if and only if 

n 
fi(xn: 77 G N) ->> 0 as min N -» oo. 

THEOREM 6. Let X = (A", ||-||) and Y = (Y, ||-||) be F-normed spaces. A map 
f: X -> Y sends unconditionally Cauchy series to absolutely convergent series 
if and only if there exist constants c > 0 and K ^ 0 such that 

\\f(xl)\\ + --- + H/0OH ^ * > ( z i - - - - . - 0 whenever fi(xv . . . , x n ) ^ c. 

P r o o f . The "if" part is obvious. 
The "only if" part: Suppose the condition does not hold. Then we can find 

a sequence (un) in X together with a sequence (N.) of consecutive intervals in 
N such that for each j 

fi(un: n e N3) < r 2 and ^ | | / (u n ) | | > ffi(un: n e Nj). 
neNj 

For each j , let m be an integer such that j ~ 2 ^ m-n(un: n G N-) < 2j~2. 
Now, consider the series ~~xn in X whose terms come up in consec-

n 
utive blocks A-, each consisting of m- identical subblocks ~~ un. Since 

neNj 
Ylmi/I(un: n ^ Nj) < oo, it follows easily that the series ~~xn is uncon-
j n 

ditionally Cauchy. However, as in the proof of Theorem 4, ~~[ \\f(xn)\\ = oo. 
n 

D 
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R e m a r k . The following is a more general form of the above result (with the 
same proof). 

THEOREM 6A. Let X = (A", ||-||) be an F-normed space. A map ip: X —> R+ 

sends unconditionally Cauchy series to convergent series if and only if there are 
constants c > 0 and K ^ 0 such that ^(x^ + • • • + ip(xn) ^ K(i(x1:... ,xn) 
whenever ii(xx,..., xn) ^ c. 

Of course, to deduce Theorem 6 from Theorem 6a it is enough to set y(x) = 

ll/(*)l|. 
THEOREM 7. Let X = (AT, ||-||) be an F-normed space and Y — (F, j|-j|) a 
normed space. Then for a map f:X-*Y the following are equivalent. 

(a) / sends unconditionally Cauchy series to (unconditionally) Cauchy 
series. 

(b) / sends unconditionally Cauchy series to bounded series. 
(c) There are constants c > 0 and K >̂ 0 such that 

\\f(x1) + -' + f(xn)\\ ^Kfi(xv...:xn) whenever (i(xv...,xn) ^ c. 

P r o o f . 
(b) => (c): Assuming (c) is false, we proceed as in the previous proof, 

replacing £] | | /(wn) | | with || J2 / ( ^ n ) | | . As before, we get an unconditionally 
neNj nENj 

Cauchy series J2x
n
 m ^ • However, the series Ylf(x

n)
 ls n o t bounded because 

n n 
for the sum z- of its block corresponding to A- we have \\zA\ — mA\ J2 ^^ || > 

n£Nj 
mj^iJL(un' neNj)^ j . n 

R e m a r k s . 
1. The same simple choice of X and Y as in Remark 2 after Theorem 4 

shows that the assumption in Theorem 7 that Y is a normed space is essential 
for the implication (a) = > (c) to hold. 

2. If a map / from a metrizable TVS X to an F-normed space Y (resp., 
a TVS Y with Property (uJ)) sends convergent series to absolutely convergent 
(resp., unconditionally Cauchy) series, then / = 0 in a neighborhood of zero 
in X (comp. [BCS; Theorem 2.10]). In fact, by Theorem 1 and Proposition 2, 
there is a balanced neighborhood U of zero in A" such that f\U = T\U for 
some continuous K-linear operator T: X -> Y. Suppose y := f(x) 7-= 0 for 
some x G U. Then the series J ] ( —l) n n _ 1 x is convergent in R • x C X. while 

n 

its /-transform ]T(—l)nn~1y is not absolutely (or unconditionally) convergent 

inR-yCY. 
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6. Final remark 

The following of our results have exact analogues in the setting of Hausdorff 
topological abelian groups: Propositions 1 and 4, Theorem 1 (with formally the 
same definition of Property (uJ)), Corollary 3, and Theorems 3 and 6. Their 
proofs need only minor terminological modifications. 
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