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Math. Slovaca 34,1984, No. 1, 35—65 

VECTOR DANIELL INTEGRALS 

SUSUMU OKADA 

Consider a linear map from a Riesz space of functions on a set into a locally 
convex space. If it is continuous with respect to the monotone convergence of 
sequences, then it is called a vector Daniell integral. Thanks to the Dini theorem, 
every vector-valued Radon measure is a vector Daniell integral. Vector-valued 
Radon measures have been studied by Bourbaki [3] and Thomas [17]. 
Kluvanek [8] has investigated Banach space-valued Daniell integrals, adapting 
the method of F. Riesz from [15]. There has been an increasing interest recently in 
the theory of measures on non-locally compact spaces, and of Daniell integrals such 
as conical measures which are not generated by measures (set functions). Here we 
present a theory of Daniell integrals on abstract sets with values in locally convex 
spaces. 

In §1, we define a few variants of the Daniell integral and explore the 
relationships between them. 

Among the essential themes which have to be developed in an integration theory 
are the Beppo Levi theorem, the Lebesgue convergence theorem and the com­
pleteness of the L\-space. To have the Beppo Levi theorem, we extend the domain 
of a Daniell integral, applying the procedure of Stone [16] which has already been 
used in special cases by Bauer [2], Bourbaki [3], Kluvanek [9], Thomas [17] 
and others. The extension so obtained is called the Stone extension of the given 
Daniell integral. Its properties are studied in §2 and §4. The Beppo Levi theorem 
is proved in §3 . 

To obtain the Lebesgue convergence theorem, we require an extra condition on 
a Daniell integral, namely that it maps order intervals into weakly compact sets. 
The details are discussed in §5. This condition has been studied by Kluvanek [8] 
in the case of Banach space-valued Daniell integrals. Many authors have investi­
gated linear maps from an abstract Riesz space into a Banach space which satisfy 
this condition. Thomas [17] has developed locally convex space valued Radon 
measures with this condition. 

The L,-space obtained from the Stone extension is not always quasi-complete 
with respect to the convergence in mean. In §8, we therefore construct another 
extension guaranteeing quasi-completeness. We deal there with Daniell integrals 
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which satisfy the well-known min (/, l)-condition of Stone and for which the 
Lebesgue convergence theorem is valid. 

In §6 we study the direct sum of Daniell integrals. 
The relationship between Daniell integrals and vector measures is discussed in 

§7 . 

1. Daniell integral and Stone integral 

Let Q be a set. A subset of Q and its characteristic function will be denoted by 
the same symbol. 

Let X be a real quasi-complete locally convex Hausdorff space and X' its dual. 
Let P(X) be the set of all continuous seminorms on X. 

The set R" of all real-valued functions on Q is a Riesz space (vector lattice) with 
respect to the pointwise order. Let L be a Riesz subspace of RQ and L+ its positive 
cone, that is, L+ = {feL: / ^ 0 } . Let I: L—>Xbe a linear map. For every p e P(X) 
and every feL let 

p(I)(f) = sup {p(I(g))i a € L, | g\< | / | } . 

In particular, if X = R, then 

\I\(f) = sup{\I(g)\:geL,\g\^\f\} 

whenever feL. Clearly, for every p eP(X) and every fe L, the equality 

P(I)(f) = sup{\x'oI\(f):x'eU'p} (I) 

holds, where U'p is the set of all functional x' eX' such that \(x\ x ) | ^ p ( x ) for 
each x e X. 

A linear map I: L—>X is called a Daniell integral if the sequence {/(/„)},,eN is 
convergent to 0 in X for every sequence {f„}„eN of functions in L which is 
decreasing and pointwise convergent to 0. 

A linear map I: L—>X is said to be a weak Daniell integral if, for every x' e X' , 
the functional x'd: L—>R is a real-valued Daniell integral. 

A linear map I: L—>X is called a Stone integral if the following conditions are 

satisfied: 
(i) If p e P(X) and fe L, then p(I)(f)< °° ; 

(ii) If peP(X) and if fe L and /,, e L, n eN, are functions such that 

I/I^I;I/,K • (2) 
n = 1 

then 

p(/)(t)^ip(n(/B). (3) 
n = 1 
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Proposition 1.1. Every Daniell integral is a weak Daniell integral. 

Lemma 1.2. A linear map I: L —> X is a Stone integral if and only ifx'ol is a real 
Stone integral for every x' e X'. 

Proof. This follows from the equality (1). 

Lemma 1.3 ([14: no. 11]). If I: L —>R is a Daniell integral, then there exist two 
non-negative Daniell integrals V and I " : L—>R such that 1(f) = V(f) -I (/) for 
every feL and \I\(g) = I+(g) + I~(g) for every g e L+. 

Lemma 1.4. If I: L—>R is a linear map, then I is a Stone integral if and only if 
1 is a Daniell integral. 

Proof. Suppose that I is a Stone integral. Let us take any sequence {/„}neNinL 
which is decreasing and pointwise convergent to 0. Then, since 0 ^ / , ^ 

2 (fn-fn+i), we have 
n 1 

lIK/.^mc/o-iimma î/K/,)-
Thus |J|(/„) —>0 as rz—>oo. That is, I is a Daniell integral. 

On the other hand, by Lemma 1.3, if I is a Daniell integral, then J is a Stone 
integral. 

From Lemmas 1.2 and 1.4 we have 

Proposition 1.5. 1/1: L—>X is a linear map, then I is a weak Daniell integral if 
and only if I is a Stone integral. 

Corollary 1.6. Every Daniell integral is a Stone integral. 
Vector-valued Radon measures are Daniell integrals. 
E x a m p l e 1.7. Let C*(T) be the linear space of all continuous functions with 

compact support on a locally compact Hausdorff space T. For a compact subset K 
of T the set of all functions in Q ( T ) with vanish outside K is denoted by C$(K) 
and equipped with the uniform norm. A linear map I from C$(T) into 
a quasi-complete locally convex Hausdorff space is said to be a Radon measure if, 
for every compact subset K of T, the restriction of I to Ce(K) is continuous. From 
the Dini theorem it is clear that I is a Daniell integral. 

2. Stone extension 

Let Q be an abstract set. Let I be a Stone integral from a Riesz subspace L of R" 
into a quasi-complete locally convex Hausdorff space X. 

Given p e P(X), define 

o„(f) = inf f Sp(I)(A):/.€L, |/|*= ± |/„|} 
l n - 1 n -1 J 
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for every / e R Q , understanding that oP(f) = oo unless there exist functions /„ e L, 
M G N , such that (2) holds. 

For every p e P(X) let FP(I) be the space of functions / on Q such that oP(f) < °°. 
The intersection of the family {FP(I): p e P(X)} is denoted by F(I) or simply by F. 

Proposition 2.1. Lef p e P(X). 
(i) IffeRQ andfneR°, n e N , and if (2) holds, then 

oP(f)^op(fn). (4) 

(ii) op is a seminorm on FP(I). 
(iii) op =p(I) on L. 
Proof. To prove (i), we may assume that op(fn)<™ for every n eN. Given e>0 

and n eN, there exist functions fnmeL, m e N , such that 

l / « l ^ i l / ™ | and ip ( I ) ( / „ W i ) ^a p ( / l l ) + E2-". 
m = I m = 1 

Consequently, 

n, m = 1 « = I 

so that (i) holds. 
Statement (ii) is now clear. 
To prove (iii) it suffices to show that for every / e L the inequality op(/) ^ p (I)(f) 

holds. For every e>0 choose functions fneL, n eN, such that (2) holds and 

ip(/)(/„)<ap(/) + £. 
n=\ 

Statement (iii) now follows from the inequality (3). 
The family {op:p eP (X)} of seminorms on F gives a locally convex topology. 

From now on, F will always be equipped with this topology. The space F is not 
always complete (see Example 2.12). However, if X is metrizable, then F is 
complete. More generally, we have 

Proposition 2.2. / / F(I) has a countable basis {on }neNof continuous seminorms, 
then F(I) is complete. 

Proof. We may assume that a i ^ a 2 ^ . . . . Take any Cauchy sequence {/..}neN 

in F. Let fn
0) = fn for every n e N. Assume that for m e N we have chosen functions 

f(
n\ rieN, / = 1, 2 , . . . , m, such that {/!.,0}„6Nis a subsequence of {/i,_l)},ieN and such 

that 

a . ( / T - / i ° ) < 2 - ' (5) 
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whenever / e N , keN, k>j. Then we select a subsequence {/;,"' + , ) } , , e N of the 
sequence {/(n

m)}„6N such that if i = m + 1, then (5) is valid for all / e N and k eN, 
k>j. Define the function / on Q by 

/(c0)=/W)+i(/:;,
+v)-/:;'))(^) (6) 

for every coeQ such that the series (6) converges, and by f((o) = () otherwise. Let 
/ e N . It follows from Proposition 2.1 that 

<*(/-/r)«iai(/!:+Y>-/!r))^ 
m — n 

=£ i ai(/!„
m

+V)-/!r+l))+ 2 a,(/!r+"-/!:»)^2 - 2 

m n m n 

for every n > / . Hence, / e F and {/,}„€N converges to / in F. 
The closure of L in F will be denoted by /C.(J) or simply by /C,. Clearly, K, is 

a Riesz subspace of R". 
For every p e P(X), let TCP be the natural map from X into the completion Xp of 

X/p *(())• Since JZPOI: L—>XP is a Stone integral, we have the following proposi­
tion (cf. [3 :1 , §4, no. 4]). 

Proposition 2.3. For the Stone integral J: L—>^(, the space /C,(I) coincides with 
the intersection of the family {Kx(npoI): p eP(X)} of spaces. 

Let X be the completion of X. Then every p e P(X) has a unique extension p to 
X. Since p(I(f)) ^ op(f) for every p e P(X) and every / e L, the Stone integral I has 
a unique extension J,: /C, —> X, which we call the Stone extension of I. For every 
p e P(X) and every / e /C, let 

p(I,)(/) = s u p { p ( I , ^ ) ) : ^ e / C „ | 0 | ^ | / | } . 

Lemma2.4. Lef peP(X). Then p(Ix) = op on K,(I). 
Proof. Since p(L(f))^op(f) for every /e /C, , it follows that p ( I , ) ^ a p on /C,. 

Thus p(Ii) is continuous on /C, with respect to the topology induced from F. On the 
other hand, op ^p(L) on L by Proposition 2 .1 ; hence the same inequality holds on 
/C, since both op and p(I,) are continuous on /C,. 

Proposition 2.1 and Lemma 2.4 imply that the locally convex topology on /C, 
defined by the family {p(h):p eP(X)} of seminorms is equal to the topology 
induced from F and that the locally convex topology on L given by 
{ p ( I ) : p 6 ? ( X ) } coincides with the topology induced from /C,. Hereafter, L and 
/C, will be endowed with these topologies, which we call the topologies of 
convergence in mean. 

The following proposition is a direct consequence of Proposition 2.2. 
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Proposition 2.5. If the space X is metrizable, then K\(I) is a complete metriz-
able space. 

Theorem 2.6. The Stone extension I\: /C,(I)—>X is a Stone integral. 
Proof follows from Proposition 2.1 and Lemma 2.4 
A Stone integral is called Stone-closed if its Stone exten ion coincides with itself. 
As we shall see, the Stone extension of a Stone integral i Stone-closed. 
Given p e P(X), define 

^(/) = inf{2p(/.)(/-):/.6f..l/l«.Sl/.|} 
I n I l • 

for every / e R " , understanding that d,(f) oo unless there exi t functions /,, e K,, 
M G N , such that (2) holds. 

Lemma 2.7. If p e P(X), then dp op on RQ. 
Proof. Since p(I\) = p(I) on L, we have <5 < a p . On the other hand, since 

p(I\) = op by Lemma 2.4, we have 6 p
> a , . 

Theorem 2.8. The Stone extension of a Stone integral is Stone-closed. 
A function / e R" is said to be I-null if 

<r„(/)-0 (7) 

for every peP(X). The set of all I-null functions is denoted by N(I). Then 
N(I) cz K\(I). Moreover N(h) - N(I) by Theorem 2.8 A sub et of Q will be called 
I-null if its characteristic function belongs to N(I). A property which holds for all 
points of Q outside some I-null set is said to hold almost everywhere (a. e.) in Q or 
for almost all (a.a.) coe Q. 

For every function / e R " , let 

S(f)-{(oeQ:f((o) 0} 

We omit the proof of the following 

Proposition 2.9. (i) if fn e N(I), neN, and if a function / e R° satisfies (2), then 
feN(I). 

(ii) A function / e R " is I-null if and only if S(f) is an I-null set. 
(iii) If fe RQ and if A is an I-null set, then fA s N(I). 
(iv) If feK\(I), if g e R" and if f=g a.e., then q e K\(I). 
Propositions 1.5 and 2.3 imply the following 

Proposition 2.10. If W is a continuous linear map from X into another 
quasi-complete locally convex Hausdorff space Y, then W I: L^> Y is also a Stone 
integral and 

K\(I)ciK\(WoI). 
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Furthermore, the natural injection from KX(I) into Kx(WoI) is continuous. 
If lis a Daniell integral, then Wo I is also a Daniell integral. 

Proposition 2.11. Let (X, o(X, X')) be the space X endowed with the weak 
topology o(X, X'). Let i: X->(X, o(X, X')) be the identity map. Then 

i) KxaKx(ioI)c= f | Kx(x'oI)\ and 
x'eX' 

(ii) if peP(X) andfeKx(I), then 

p(L)(f) = sup {\(x'oI)x\(f(:x
f eU'p}. 

Proof. Statement (i) follows from Propositions 2.3 and 2.10. Since jt'oIi = 
= (x'oI)v on fCi(I) for every x' eX', Statement (ii) follows from (1). 

The space Kx is not always complete as the following example shows. 
E x a m p l e 2.12. For any uncountable set Q, let X = R" be equipped with the 

product topology. Let 

L = {fe Rfi: S(f) is a finite subset of Q) . 

Define I: L—>X to be the natural injection. Then I is a Daniell integral. Note 
that we can regard it as a Radon measure. In fact, let Q be endowed with the 
discrete topology; then C^(Q) = L and I is a Radon measure. 

Clearly, 

F=Kx = {feR°:S(f) is countable}. 

The space Kx is not quasi-complete with respect to the topology of convergence in 
mean. 

Even if the space X is not metrizable, Kx or F can be metrizable. 
E x a m p l e 2.13. Let L = /,, and let X = (L)' equipped with the weak* topology. 

Then the natural injection from L into X is a Daniell integral for which F=KX = U. 
The topology of the convergence in mean on L coincides with the /i-norm topology 
although X is not metrizable. 

The Daniell integral in the following example does not satisfy the equality: 

Ki(I)= f l Kx(x'oI). 
x'eX' 

E x a m p l e 2.14. Let L denote the Riesz space C [0, 1]. Let X be the Banach 
space C[0, 1] with the uniform norm. Then the identity map from L onto X is 
a Daniell integral. 

3. Beppo Levi theorem 

Let Q be a set and L a Riesz subspace of Rfl. Let X be a quasi-complete locally 
convex Hausdorff space. 
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Let A be an index set. Given subsets Wx of X, X e A, we say that the series 

2 Wx is convergent if the series ^ xx is convergent in X for any choice of x eWx, 
A e A A e A 

XeA. 
For any subset W of X let 

p(W) = sup{p(x):xeW}. 

Lemma 3.1. [8: Lemma 7.1]. If W„, n e N , are subsets of X and if the series 

^ Wn is convergent, then the sequence Ipi^Wi) • is convergent for every 
n \ i \i I / J n e N 

peP(X). 
Suppose that I: L —• X is a Stone integral. For a subset V of L and a function / e L 

put 

I(V,f) = {I(g):geV,\g\^\f\}. 

Proposition 3.2. If /: L —>X is a Stone integral and if fneL, n e N , are functions 
such that the series 

i/(L'/«) (8) 
is convergent, f/ien the series 

i i/-(»)i (9) 
n - l 

is convergent /or a.a. co e Q. 
Proof. Let A denote the set of all o) e Q for which the series (9) is divergent. 

Let p e P(X). Since the equality 

p(ЫІш)=p(ìl(L,f,)) 
\i m / \ ; m / 

holds for all natural numbers m, n such that m^n, Lemma 3.1 implies that the 

sequence | 2 l / ' l [ *s p(-0~Cauchy. If we let g„ = Xl / ' l f ° r every neN, then 
Li = 1 J n e N ; 1 

there exists an increasing sequence {n(k)}ke^ such that 

p(I)(^f„(fc+i)-flfn(fc))<2 \ 

Since 

A^JZ(gn(k+i)-gn(k)), 
fc-i 

Proposition 2.1 implies that op(A)<21 ' for every i eN. Hence A is an I-null set. 
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Theorem 3.3. Let I: L-+Xbe a Stone-closed Stone integral. Iffn e L, n eN, are 
functions such that the series (8) is convergent and iff e R" is a function such that 

/(«»)=i/-(*») (io) 
n = \ 

for a.a. coeQ, then feL and 

/=i/-, (ID 
n = \ 

where (11) is convergent in the mean convergent topology on L. 
Proof. Let p e P(X). Following the notation in the proof of Proposition 3.2, we 

have 

<*(/- 2/') ^2р(-Хе-о+.>- 0-о))<2-
\ , = 1 / , = * 

for every natural number M ^n(k), fceN. Hence / e L, and (11) holds in mean. 

Corollary 3.4. Ler I:L^>X be a Stone integral such that L is sequentially 
complete and includes all I-null functions. If fneL, n e N , are functions such that 
the series (8) is convergent, and if fe R" is a function such that (10) holds for a.a. 
coeQ, then feL and (11) holds in L. 

Proof. Since the sequence | ^ / [ is Cauchy in L, it is convergent to 
l i = l J n e N 

some 

function g e L. On the other hand, by Theorem 3.3, the function / belongs to Kx 

and (11) holds in K\. Thus f=g a.e., which implies that f = (f— g)-\-geL. 

Consequently (11) holds in L. 
The conclusion of Theorem 3.3 does not always imply that I is Stoneclosed. 
E x a m p l e 3.5. Let fQ = [0, 1] and B the Borel field on Q. Let v be the 

Lebesgue measure on Q. Let L = Li(Q, M, v). Define the Daniell integral I : 
L - » R x R " by 

IC/) = ( | в / d v , ( / ( a > ) ) . . 0 ) 

for every feL. Then L is sequentially complete with respect to the mean 
convergence topology. Clearly, N(I)= {0}. Hence, the conclusion of Theorem 3.3 
holds. But I is not Stone-closed; in fact, Kl(I) = Ll(Q, B, v), where B is the 
completion of B with respect to v. 

It seems to be open whether the conclusion of Theorem 3.3 implies the 
sequentially completeness of L. Note that if the conclusion of Theorem 3.3 is valid 
and if the quotient space L/N(I) is Dedekind complete, then L is sequentially 
complete (cf. ( 1 : Exercise 7.9 and Theorem 13.2]). 
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4. Stone extension of the Daniell integral 

Let Q be a set and L a Riesz subspace of Rfi. Let I be a Daniell integral from L 
into a quasi-complete locally convex Hausdorff space X. 

The purpose of this section is to show that the Stone extension I, of I is a Daniell 
integral with values in X. 

Lemma 4.1. Let peP(X) and f eR Q . If there exist functions / „ G R " , n e N , 

such that / (cu)^l imsup |/„(co)| for every OJ e Q and the series ^ op(fn) is 
n 1 

convergent, then (7) holds. 
Proof is immediate from the inequalities 

/ ( c o ) ^ l i m s u p | / „ ( a ) ) | ^ 2 l / " M I 

for every coe Q and every N e N . 

Lemma 4.2. Let peP(X). Suppose that {/„}„eN is a decreasing sequence of 
functions inL + .Iffe R" is the pointwise limit of {/„}„eN and satisfies (7), rhen the 
sequence {p(I(/„))}„eN is convergent to 0. 

Proof. The equality (7) implies that, for every e > 0 , there exist functions 
gn e L+, n e N , such that 

/ < ] > > „ and ^p(I)(gn)<e. 
1 n 1 

Then, for every n e N, the inequality 

fMfn Sfl.V+2-tflf 

\ i 1 / i 1 

is valid. Since the sequence / „ - ^ g , is decreasing and pointwise convergent 
I i 1 J n e N 

to 0, we have 

h m s u p p ( I ( / n ) ) ^ 2 e . 

Lemma 4.3. If a sequence {/„}„GN in KX(I) is decreasing and pointwise conver­
gent to 0, rhen the sequence {I\(/„)}„GN is convergent to 0 in X. 

Proof. Given p eP(X) and e > 0, there exists a decreasing sequence {gn} „ 6 N in 
L+ such that oP(fn - gn)<e2 n for every n e N . For every coeQ, let 

/(oj) = inf {gn((o):neN}. 

Since /(co)<Aim sup |g„(co)-/„(co)| for every coeQ, Lemma 4A and the 
inequality 
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2 °r(9" -U)<e 
n = \ 

imply that (7) holds. For every n e N w e have 

p(L(fn))^op(fn- gn) + p(l(gn)), 

so that Lemma 4.2 applies. 

Lemma 4.4. Let L be the Stone extension of L Then the image L(KX(I)) is 
included in X. 

Proof. Let fe K|. Then there exist functions /„ e L~\ n e N , such that 

/^i/«- 02) 
n = \ 

n 

Let gn=^f for every neN. Then the sequence {gfnA/}neN is increasing and 
e-i 

pointwise convergent to / . Take a net {/y}yerfrom L which is convergent to / in K. 
Then, for every n e N , we have 

l im/yA0„=-7A0n 
y e r 

in K,, so that the limit L(fAgn) of the bounded net {Ii(/yAgfn)}yer lies in X. 
Lemma 4.3 implies that the sequence {Ii(/Agf„)}neN is convergent to L(f) in X ; 
therefore, L(f) belongs to X. 

We can now write p(I\) instead of p(I\) for every p e P(X) because L maps Kx 

into X. 
The results of this section are sumarized in 

Theorem 4.5. Let I:L-+X be a Daniell integral. Then its Stone extension 
11: K\(I)—>X is also a Daniell integral. 

5. Saturability 

Let ( 2 b e a set and L a Riesz subspace of R". Let X be a quasi-complete locally 
convex Hausdorff space. 

A Stone integral I: L —> X is called saturable if for every decreasing sequence 
{/n}r.eN in L+ the sequence {!(/„)}„eN converges weakly in X. The Orlicz—Pettis 
theorem ensures that the sequence {!(/„)}„eN is then convergent in X with respect 
to the Mackey topology. 

Proposition 5.1. Every saturable Stone integral is a Daniell integral. 
Proof follows from Theorem 3.3. 
The integrals in Examples 2.12, 2.13 and 3.5 are saturable; the integral in 

Example 2.14 is not saturable. 
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Lemma 5.2. Let I: L—>X be a saturable Dan' 11 integral and let {fn} N be n 
increasing sequence of non-negative function m Ki(I) with an upper bound g e L 
Then thepointwiselimitf of {/„}neN belongs to fCi(J) andth s quence {I\(fn)} N 
is convergent to Ix(f) in X. 

Proof. Given e>0 and p eP(X), there e ists an increasing sequence {gn} N 

of functions in L+ such that 

gn^g and p(I\)(fn gn)<£ 

for every « e N . Since I is saturable, the sequence {I (fn)}n N which is Cauchy in 
the quasi-complete space X, is convergent there. Theorem 3 3 now applies. 

Let A be a family of sub ets of Q. The spa e of all A- impl functions on Q is 
denoted by sim (A). For every set A in A, let 

AnA~{BeA:BczA} 

For a Darnell integral I: L—>X let 

R(I)-{AczQ:AeKl(I)} (13) 

Lemma 5.3. If I: L—>X is a saturable Daniell integral, th n 
(i) R(I) is a ring, 

(li) if the constant function 1 belongs to L, then R(I) is a o algebra; 
(iii) if L A 1 is included in L, then every function m L+ is the pointwise limit of 

some non-negative, increasing sequence in sim (R(I)), wher 

L A I { / A I ' / G L } . 

Proof. Statement (i) holds since Kx is a Riesz space. 
Statement (ii) follows from Lemma 5.2. 
To prove (iii), let fe L+. For a positive number a let A - / l((a, o°)) Given 

every n e N, let 

/„ = ( n ( / - / A a ) ) A l ; 

then /„ e L+ and /„ ̂ / a. Since the sequence {/„}„eN is mere ing and pointwi e 
convergent to A, Lemma 5.2 ensures that AeKx. Hence if b R and b>a, then 
{(oeQ: a<f(co)^b} belongs to R(I) Given n e N , let 

An
k-{a)eQ:(k-l)2 n<f(a))^k2 n} 

for every keN, 2 ^ k < 2 n , and let 

gn £ ( fc - l )2 "AZ. 
k i 

Then the sequence {gn}neN in sim (R(I)) is increasing and pointwise convergent 
t o / . 
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We say that an additive set function on a ring of sets, with values in a locally 
convex space, is a vector measure. 

Lemma 5.4. If the constant function 1 belongs to L and if I:L-+X is 
a saturable Daniell integral, then the set function ii(I): R(I)-+X defined by 

li(I)(A) = h(A), AeR(I) (14) 

is a o-additive vector measure. 
Proof follows from Theorem 4.5 and Lemma 5.3. 
The following lemma is due to [11: Theorem on Extension]. 

Lemma 5.5. Let R be a ring of subsets of Q. For a scalarly o-additive vector 
measure n: R—>X, the following statements are equivalent: 

(i) ju extensible to an X-valued vector measure fi on the 8-ring 8(R) generated 
byR; 

(ii) for every AeR, the set ii(AnR) is relatively weakly compact in X. 
If (i) or (ii) holds, then fi(Bnd(R)) is a relatively weakly compact set in X for 

every B e 8(R). 
Given a subset V of X, its balanced convex hull is denoted by bco V. 

A characterization of saturability is given in the following 

Theorem 5.6. A Stone integral I: L—>X is saturable if and only if, for every 
function feL, the set I(L, f) is relatively weakly compact in X. 

Proof. The 'if part is obvious (cf. [8: Theoreme 4.4]). 
Suppose now that I is a saturable integral. Fix a function feL+. The Riesz space 

M(f)={g/f: geL, \g\^af for some a eR} 

contains the constant function 1. Let us define the saturable Daniell integral 
J :M( / ) ->Xby 

J(g/f) = I(g) 

for every g/feM(f). Then, without loss of generality we can assume that f=\ 
since J(M(f),\) = I(L,f). 

By Lemmas 5.3 and 5.4, the set function \i(I) from the a-algebra R(I) into X is 
a a-additive vector measure. Thus it follows from Lemma 5.5 that the set 
\i(I)(R(I)) is relatively weakly compact. Let geL such that O^g^l. By 
Lemma 5.3, .there exist non-negative functions gn e sim (R(I)), n e N, such that the 
sequence {Ii(g„)}„6N is convergent to I\(g) in X. Since every I\(gn) belongs to 
bco n(I)(R(I)) by Abel's summation, the set I(L+, f) is included in the closure of 
bco v(I)(R(I)). From the Krein theorem (cf. [13: 24.4 (4')]) it follows that I(L, 1) 
is a relatively weakly compact set. 
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Lemma 5.7 ([8: Lemme 1.2]). Ler W,, n eN, be non empty sub ets of X. If the 

series ^ Wn is convergent in X, then o is the rie 2 Wn 

n \ n \ 

Lemma 5.8. Lef A be an index s t. If the s ries ^ W* of compact subsets of X is 
A 

convergent, then ^Wk is a compact ub et f X. 
keA 

Proof. We use the map <P from the Cartes'an product Wof sets WA, A e A, into 

X defined by &((xk)) ^ x for every (xk) e W. Since & is continuous, the image 
A e A 

<&(W) = 2) WA IS compact 
keA 

The following lemma is an application of [7: 17 12]. 

Lemma 5.9. A complete subset A of Xis weakly compact if and only if JZ (A) is 
weakly compact in X for every p e P(X). 

In the case of Banach space valued Daniell integrals, the following theorem has 
been proved by Kluvanek [8: Theoreme 4.1]. 

Theorem 5.10. A Daniell integral I: L—>X is saturable if and only if its Stone 
extension is. 

Proof. If the Stone extension Ix is saturable, then it is clear that I is saturable 
Conversely, suppose that I is aturable. Fir t as ume that is a Banach space 

with norm || | |. For brevity, let a ami Fix a function / e Choose functions 
/„ e L+, n eN, such that (12) holds and 

ia(/„)<a(/) 1. 
n 1 

If g, is a function in Kx such that \g | < / for every /eN, then 

|

l / m \ l l / m \ m 

M 2 9 . ) H a ( 2 ^ ;>>(/.) 
I M n / | | \ n ' i n 

whenever m e N and rieN, m>n. Hence the eries 

i-.(*.,/) (15) 
n 1 

is convergent in X. Given n eN, the set I\(KU fn), which is included in the closure 
of I(L, /„), is relatively weakly compact in X by Theorem 5.6. By Lemmas 5.7 and 
5.8, the set (15) is relatively weakly compact. To prove that the set I.(/Ci, /) is 
included in the set (15), take a function h e KT for which h < / . For every n e N let 

к (É/.)лл (2/.)лл, 
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where ^f =0. Then hn e Kx, hn ^fn for every n G N , and ^hn = h. Consequently, 
• l «--1 

it follows that h(h)= £ I.(/i„) lies in the set (15). 
n 1 

Now let X be an arbitrary quasi-complete space. The above argument asserts 
that since ;rpoJ, = (jrroI), on K(I), the set JZP(IX(KX, /)) is relatively weakly 
compact in Xp for every peP(X). Then, by Lemma 5.9, the set I,(/C,,/) is 
relatively weakly compact in X. Thus the Stone extension I, is saturable by 
Theorem 5.6. 

Corollary 5.11. A Daniell integral I.L-+X is saturable if and only if the 
sequence {I(/.)}„eN is summable in X for every sequence {/„}„eN of functions in L 
such that there exists a function feL which satisfies that 

o^i/„(«>) ̂ /(<o) 
„ i 

for a.a. coeQ. 
Now we give the Lebesgue convergence theorem with respect to a Daniell 

integral. 

Theorem 5.12. A Daniell integral I: L —• X is saturable if and only if it satisfies 
the following condition: 

(LC) If {/„ }„eN is a sequence of functions in /C,(I) which converges to a function 
F e R " a.e. in Q, and if there is a function g e K(I) such that |/„| ̂ g a.e. for every 
n eN, then f belongs to KX(I) and the sequence {/„}„eN is convergent to f in /C,(I). 

Proof. It suffices the prove the 'only if part. By Proposition 2.9, we may 
assume that f(co) = \im fn(co) for every coeQ and that \fn(co)\^g(co) for every 
co e Q and every neN. 

First suppose that the sequence {/„}„eN is increasing. Then the condition (LC) 
holds by Theorem 3.3. 

Similarly the condition (LC) holds even if the sequence {/„}„eN is decreasing. 
In the general case, let 

gn(co) = in( {/(co): ieN, i^n} and hn(co) = sup {f(co): ieN, i^n} 

for every coeQ and every neN. From the above arguments we have gn, hn e /C, for 
every neN. Since \gn\^g for every n e N and since the sequence {#„}„eN is 
increasing and pointwise convergent to / , the first step assures us that feKx. 
Further, since the sequence {hn — g„}„eN is decreasing and pointwise convergent to 
0, the sequence {p(Ix)(hn - #„)}„eN is convergent to 0 for every peP(X). 
Consequently, / „ - ^ / as rz—>oo in /C, since \f-/„|^hn — gn for every n e N . Thus 
the condition (LC) holds. 
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Corollary 5.13. If I.L-+X is a saturable Daniell integral, then K,(J) is 
a Dedekind o-complete Riesz space. 

A subset of a locally convex space Y is called quasi-closed if it contains all limit 
points of its bounded subsets. For a subset M of Y, the intersection of all 
quasi-closed subsets of Y which include M is said to be the quasi-closure of M 
(cf. [13:23.1]). 

Corollary 5.14. If I: L-^Xis a saturable Daniell integral, then /C,(J) is equal to 
the quasi-closure of L in F(I). 

Proof. Fix a non-negative function fe K\. Take a sequence {g„}„eN and a net 
{/y}y6r from L+ as in the proof of Lemma 4.4. Then, since 

/ = lim lim fy A g„ 
,,—»oo y e r 

in K,, the function / belongs to the quasi-closure of L in F. 

6. Direct sum 

Let A be an index set. Let {.QA}A6A be a family of pairwise disjoint sets and Q 
its union. For every A e A, let LA be a Riesz subspace of RQ*; then we may regard LA 

as a Riesz subspace'of RQ . 
Let X be a quasi-complete locally convex Hausdorff space. For every A e A let 

JA: LA—>X be a Stone integral. We denote by L the Riesz subspace of R" which 
consists of the functions / e RQ such that fQx belongs to LA for every A e A and the 
series 

is convergent in X. 
Define the map J:L—>X by 

E M t . M ) (16) 

Д / ) = Ц ( M ) 

for every fe L. This map J is called the direct sum of the family {JA}A e A of Stone 
integrals. 

Proposition 6.1. If JA: LA -* X, A e A, are Daniell integrals, then their direct sum 
I: L—>X /s a Daniell integral. 

Proof. We take functions FeL+ and f„eL+, rieN, such that (10) holds for 
every co e Q. The Orlicz—Pettis theorem implies that 

m=i hiiiw)=i s M/.<-O=i /(/,). 
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Consequently, I is a Daniell integral. 
From Proposition 1.5 we have 

Corollary 6.2. The direct sum of a family of Stone integrals is a Stone integral. 
The family of all finite subsets of A is a directed set with respect to inclusion and 

denoted by D(A). 

Proposition 6.3. Let I: L—>X be the direct sum of Stone integrals Ik: Lk—>X, 
XeA. Then, for every function feL, the net 

( E ( M ) 1 (17) 
U e A JAeD(A) 

is convergent to f in L; that is, 

/ = S ( M ) (18) 
A . e A 

in the mean convergence topology on L. 
Proof. Let p e P(X). By applying Theorem 3.3, we can easily prove that the set 

£ = {XeA:p(I)(fQk)>0} 

is countable, that the function 2 (f&x) defined pointwise belongs to K,(I) and that, 

for every e > 0 , there exists a Ae D(A) such that 

P(lM 2 fOi)<e. 
\ * e 2 \ A / 

Thus, if g if a function in L such that \g\^]hf- 2 / ^ » t r i e n p(I(g))<e. Thus 
X e A I 

(18) holds in L. 

Proposition 6.4. Let I:L^>X be the direct sum of Stone integrals Ik: Lx—»X, 
XeA. Then L is quasi-complete if and only if Lk is quasicomplete for every XeA. 

In particular, if X is complete, then L is complete if and only if LA is complete for 
every XeA. 

Proof. Suppose that L is quasi-complete. Then, for every XeA, the space Lk is 
also quasi-complete since Lk/LknN(Ik) can be regarded as a closed subspace of the 
quasi-complete Hausdorff space 

ULnN(I). (19) 

Suppose now that U is quasi-complete for every XeA. To prove that L is 
quasi-complete, take a bounded Cauchy net {/ ( y )}y e r in L. Without loss of 
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generality, we may assume that / (Y)^() for every y e F. For every p e F(X), there 
exists a real number Mr such that 

p (_ ) ( / ( Y ) ) ^M, , , ye r . (20) 

Since {fY)£2k}Yer is a bounded Cauchy net, it converges to a function fk in Lk for 
every A e . Let 

/(<»)= 2 A(<») 
Ae A 

for every co e £2. We shall show that / e L. For every A e A let #A be a function in L * 
such that gk ^f\. For every A e A and every y e r let #(AY) = #A A/ ( Y ) . Then the net 
{g[Y)}Yer is convergent to gx in LA for every A 6 A. For every y e T define the 
function g{Y) e L by 

Ae A 

Clearly {# (y )}y6ris a Cauchy net in L; therefore, given peP(X) and f > 0 , there 
exists after such that 

\keA ke A ' 
<є 

for every A e D(A). On the other hand, since the series ^ I^gi^) is convergent in 
Ae A 

X, there exists a SeD(A) such that if A, 0 e D ( A ) and A, © ^ H , then 

P ( I W ) - 2 WV)<£; 
V A e A A e 6) ' 

therefore 

Hence the net 

p(_XftO-_>te))<3e. 
U e / 1 A e e I 

{SUflO} (21) 
I Ae A ) AeD(A) 

is Cauchy in X. Moreover, the net (21) is bounded. Indeed, (20) implies that 

P (E U(h)) ̂ P(I) ( 2 A)= l im
r p(I) ( 2 (f'o*)) ^ MP. 

\AeA / U e A / r e r \A e A ' 

Thus the net (21) is convergent in X . In other words, the series (lfi) is convergent; 
therefore we have fe L. 

We now claim that the net {/(Y)}yGr is convergent to / in L. Given p e P(X) and 
e>0, there exists a n a e T such that 

P(WM-D<£ 
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for all y e v and deT such that y, 6 & « . Fix a y e T such that y ^ a . Let h be 
a function in L such that l / i l s s l / ^ - y i T h e n 

P ( 0 ( 2 (l»^))^p(i)(S (/<r,a -A)) = 

=! )
in?p(I)(E(/<r)-r>)^)<£. 

By Proposition 6.3, we have p(I)(h)^e. That is, p(I)(fY)- f)^e. 
If X is complete, then the completeness of L can be proved similarly. 
From Theorem 5.6 and Lemma 5.8 we have 

Proposition 6.5. Let I be the direct sum of the family {Ik}keAof Stone integrals. 
Then I is saturable if and only if Ik is saturable for every XeA. 

7. Vector measure 

Let Q be a set and let X be a quasi-complete locally convex Hausdorff space. 
Let R be a ring of subsets of Q and let p: /?—>X be a vector measure. We say 

that p is locally bounded if, for every AeR, the set p(AnR) is bounded in X. 
Let ZM:sim (/?)—> X be the linear map which extends p. 

Proposition 7.1. The map IM is a Stone integral if and only if p is a locally 
bounded, scalarly o-additive vector measure. 

Proof. Suppose that JM is a Stone integral. Then, by Proposition 1.5 the 
measure p is locally bounded and scalarly a-additive. 

Conversely suppose that p is locally bounded and scalarly a-additive. Fix any 
functional x' e X'. To prove that x'ol^ is a Daniell integral, take a sequence {/„ }„eN 

of non-negative fun ;tions in sim (R), which is decreasing and pointwise convergent 
to 0. There exists a set A e R such that 

S( /0c=A. (22) 

Since x'op can be extended to a a-additive measure on the a-algebra And(R) by 
Lemma 5.5, the sequence {jc'o/M(/n)}n€N is convergent to 0. Thus IM is a Stone 
integral. 

The proof of the following proposition is straightforward. 

Proposition 7.2. If the map JM is a Daniell integral, then p is a o-additive vector 
measure. 

Prob lem. If p is a a-additive vector measure, is IM a Daniell integral? 
The folfowing example shows that not every Stone integral is a Daniell integral. 
E x a m p l e 7.3. For every n e N let en be the unit vector with the n-th co-ordin-

. 53 



ate one. Let R be the ring of all finite subsets of N and their complements. Define 
the vector measure ju: f?—>c0 by letting 

J i ( A ) ) = 2 ( e - - c - - . ) 
neA 

for every finite set A e R and JU(B) = — |u(N\B) for every cofinite set B e R, where 
eo = 0. Then JU is locally bounded and scalarly a-additive. But y is not a-additive. 
Hence IM:sim (/?)—> c<, is not a Daniell integral but a Stone integral. 

Proposition 7.4. The map IM is a saturable Daniell integral if and only if /i can be 
extended to a o-additive measure on the 6-ring 6(R). 

Proof. If IM is a saturable Daniell integral, then Lemma 5.5 and Theorem 5.6 
ensure that JU can be extended to a a-additive measure on d(R). 

Suppose now that JU is extensible to a a-additive vector measure on 6(R), which 
we denote also by JU. Let {/„}„eN be a sequence of non-negative functions in 
sim (R) which is decreasing and pointwise convergent to 0. Choose a set A e R 
which satisfies (22). Since n is a-additive on the a-algebra And(R), the Lebesgue 
convergence theorem for a vector measure (cf. [12: Theorem II.4.2]) implies that 
the sequence {IM (/„)}„ 6N is convergent to 0. In other words, IM is a Daniell integral. 
Given a function / e s im (R), it follows from Abel's summation that the set 

IM (sim (R), f) (23) 

is a linear combination of sets of the form: 

bco ii(BnR), BeR. 

Thus, by Lemma 5.5 and the Krein theorem, the set (23) is relatively weakly 
compact. 

Let M(R) be the linear space of the functions / e R " such that there exist 
non-negative functions /„, gn esim (R), n eN, for which the sequence {/„}„eN is 
increasing and pointwise convergent to / + and the sequence {gn}nen to /", 

Suppose first that R is a a-algebra. Recall that a function fe M(R) is said to be 
ju-integrable if / is (x', //)-integrable for every x' e X' and if, given Ae R, there 
exists an xA e X such that 

< j c ' , j c A ) = f fd(x',ii), x'eX'. 

JA 

We denote by E(ii) the space of all fi-integrable functions. For every feE(u), let 

p(»)(f) = {jjf\d\(x',v)\:x'eU'p}, 

where \(x', / i ) | is the total variation of (x',ii). 
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Proposition 7.5. Ler {ibe a vector measure defined on a o-algebra R of subsets 
of Q. Then 

E(ii) = M(R)nKi(I„) (24) 

and p(n) = p((In)i) on E(ii) for every peP(X). 
Proof follows from Theorem 3.3 and [12: Theorem II.4.1]. 
Now we wish to extend the definition of /i-integrability to the case where R is 

a 6-ring. Proposition 7.5 shows us how to proceed: in this more general situation, 
the space E({i) of ji-integrable functions is defined by (24) and endowed with the 
topology induced from K,(/M). For simplicity, we write 

PG0(/) = P(O.).)(/) 

for every p e P(X) and every fe E(fi). 
The following example shows that the equality E(ii) = K}(I^) does not always 

hold. 
Examp le 7.6. (cf. [12: Example IV.6.1]). Let Q = [0, 1] and R a-algebra of 

all Borel subsets of Q. Let X = R" equipped with the product topology. Define the 
vector measure \i\ R—>X by 

li(A) = A (25) 

for every Ae R. Then K,^) = R", and (IM). is equal to the identity map of R". On 
the other hand, E(ii) = M(R). 

Next we start from a saturable Daniell integral I from a Riesz subspace L of R" 
into X. 

The following lemma is a direct consequence of Theorem 5.12 (cf. Lemmas 5.3 
and 5.4). 

Lemma 7.7. (i) The family defined by (13) is a 6-ring. 
(ii) The set function fx(I): R(I)-^X given by (14) is a o-additive vector 

measure. 
(iii) if I satisfies the following inclusion: 

K . ^ A I C Z K ^ I ) , (26) 

then 

Kx(I)czM(R(I)). (27) 

Theorem 7.8. If I satisfies (26), then its Stone extension Ix: K\(I)-+X coincides 
with the Stone extension (IM(i))i: Ki(IM(/))—>X of the Daniell integral 
fM(l): sim (*(!))-->X. In particular, K,(I) = E(^(I)). 

Proof. For simplicity, let 

/ = I„(i), ц = ц(I) and R = R(I). 
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By Theorem 5.12 and Lemma 7.7 (iii) we have 

P(h)(f) = p(h (sim /?),/)) = p(J)(f) 

for every p e P(X) and every / e sim (/?). From Theorem 3.3 and Lemma 7.7 (iii) it 
follows that /C,(I) is included in /C,(J), that J, = 1, on /C,(I) and that p(Jl) = p(Il) 
on /C,(I). Hence Lemma 2.7 ensures that F(I) = F(J). Thus /C,(I) = /C,(J). 

Corollary 7.9. If I satisfies the inclusion (26), then ju(IM(/)) -= ju(I) and /?(IM(/)) = 

= *(*) . 

8. Closed Daniell integral 

Let D be a set and L a Riesz subspace of R". Let X be a quasi-complete locally 
convex Hausdorff space. 

A Stone integral I: L—>X is called closed (resp. quasi-closed) if L is a complete 
(resp. quasi-complete) locally convex space with respect to the mean convergence 
topology. A Stone integral is said to be closable (resp. quasi-closable) if its Stone 
extension is closed (resp. quasi-closed). 

By Proposition 2.5, every metrizable space-volued Stone integral is closed. 
Example 2.12 or 3.5 shows that not every saturable Daniell integral is closable; 
Example 2.14 shows that not every closed Daniell integral is saturable. 

Let I: L—>X be a Stone integral. Let L(I) denote the quotient space (19), and 
K,(I) the quotient space K\(I)/N(I). The seminorms on L(I) (resp. K{(I)) derived 
from p(I) (resp. p(Ii)), peP(X), are also denoted by p(I) (resp. p(h)). Let us 
take a function / from L (resp. /Ci); the element of L(I) (resp. /C,(I)) which 
contains / will be written [/]. The Stone integral I (resp. I.) induces the linear map 
[I] (resp. [I,]) from L(I) resp. K,(I) into X. 

Proposition 8.1. Let I:L-±X be either a closed Stone integral or a saturable, 
quasi-closed Daniell integral. Then 

L + N(I) = K](I); 

that is, L(I) is identical with K{(I). 
Proof. If I is closed, then the statement is obvious. If I is saturable and 

quasi-closed, then the statement follows from Corollary 5.14. 
Let R be a 6-ring of subsets of Q. A a-additive vector measure p: /?—>X is 

called closed (resp. quasi-closed) if R (resp. every bounded closed subset of R) is 
complete with respect to the uniformity induced from /C|(IM), where R is consi­
dered to be a subset of /C,(IM). Note that p is not always closed even when IM is 
closable (see Example 7.6). If R is a a-algebra, then p is closed if and only if p is 
quasi-closed. But not every quasi-closed vector measure is closed as the following 
example shows. 
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Examp l e 8.2. Let Q be an uncountable set and R the 6-ring of all finite 
subsets of Q. Let X be the Hilbert space l2(Q) equipped with the weak topology. 
The vector measure from R into X defined by (25) is not closed but quasi-closed. 

Proposition 8.3. Lef I:L-+X be a closable (resp. quasi-closable), saturable 
Daniell integral which satisfies (26). Then the o-additive vector measure 
ju(J): /?( / ) ->X given by (13) and (14) is closed (resp. quasi-closed). 

Proof follows from the fact that the quotient space R(I)/R(I)nN(I) is a closed 
subset of IC,(I). 

Let E(JU) denote the quotient space E(^)/E(^)nN(I^). The equivalence class of 
a function fe E(ii) is denoted by [/]. 

Proposition 8.4. If R is a o-algebra and if /x: f? —> X is a closed vector measure, 
then 

(i) E(n) is complete; 
(ii) E(^i) + W(IM) = IC Ia), that is, EOi) = * , « , ) ; 

(iii) IM is a closable Daniell integral. 
Proof. Let ;:X—>X be the natural injection. By [12: Theorem IV.4.1], the 

space EO'ojii) is complete. Lemma 4.4 implies that E(ii) = E( /D^) . Thus State­
ments (i) to (iii) follow. 

Lemma 8.5. Ler R be a d-ring and let /i: f?—>X be a quasi-closed vector 
measure. If {/y}yer is a Cuachy net in E(ii) and if there are pairwise disjoint sets 
An, n e N , in R such that 

US(/y)c=UA„, 
Ye r n \ 

then the net {/y}yer is convergent in E(JU). 

Proof. Given n G N , by Proposition 8.4 there exists a function /„ e E(/i) such 
that S(/n)czA.1 and the net {/yA„}yer is convergent to /„ in E(ju). Since the 

sequence | 2 / « f is Cauchy in E(JU), the series 
l i 1 J n e N 

ia).(K,(u/-) 
n = \ 

is convergent in X. Hence the function / defined pointwise by (10) belongs to E(JU) 
and (11) holds in E(ju). Applying Theorem 5.12, we can prove that the net {/y}yer 
is convergent to / in E(JU). 

Lemma 8.6. Let JU and R be as in Lemma 8.5. If fY e E(/x), y e F, are functions 
such that the net {[/y]}yer is increasing and bounded above in the Riesz space 
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E(ii), then there exists a function g e E(n) such that {[/y]}y r -s convergent to [q] 
in E(JU) and 

M = s u p { [ / y ] : y e r } (28) 

in E(p). 
Proof . We may assume that fY ^ 0 for every y e F. There exists a function / > 0 

in E(ii) such that [/>>]<[/] for every y e F . Since feM(R), there exists an 
increasing sequence {An}neN in R such that 

S ( / ) c U A „ (29) 
n 1 

Fix a positive number e and a seminorm p P(X) By Theorem 12 there exists n 
N e N such that 

p(li)(f-fAN) e 

Let v denote the restriction of \i to AN . There exi ts a non negative measure A 
defined on the o algebra A nR such that AP(A)—>0, AeANnR if and only if 
p (v) (A)-»0 (cf. [12: Theorem IL1.1]). Thus the net {/ AN} e r is Cauchy with 
respect to Ap, so that it is also Cauchy with respect to p(v) (cf. [12: Lemma 
IIL2.1]). Hence we can choo ean a e T such that if y, SeT nd y, 6 > a, then 

p(v)(/yAN - fdAN) < e. 

Consequently 

p(li)(fr-U)<p(v)(frAN-fAN) + 2p(ii)(f-fAN)<3e. 

Thus {/y}yer is a Cauchy net in E(ju). See that, by Lemma 8.5, there exists 
a function g e E(u) to wh ch the net {/y}yer is convergent in E(\i). Furthermore, 
(28) holds in E(p). 

Proposition 8.7. Let y be a quasi-clo ed, o add tive vector measure on a 6 ring 
R of subsets of Q, with values in X. Then 

(i) E(JU) is sequentially complete; 
(ii) E ( ^ ) + i V ( I M ) - / C i a ) , th t i ^ E ^ - K . a ) ; 

(iii) E(\x) is a Dedekind complete Riesz space. 
Proof. Statement (i) is a direct con equence of Lemma 8.5. 
To show (ii), let feKx. Then there exists pairwise disjoint sets Ane R, neN, 

such that (29) holds. Given n e N , by Propo ltion 8.4 there exist function 
gn e E(u) and hn e N(IM) such that 

S(gn) cz An and fAn -gn + hn. 
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Let 

g(<o) = JJgn((o) and h(w) = £ h„(co) 
n=\ n=\ 

for every coeQ. Then we obtain g e E(ii) by Theorem 5.12 and heN(I^) by 
Proposition 2.9. Thus 

f = g + heE(ii) + N(I„) 

Statement (iii) follows from Lemma 8.6. 

Lemma 8.8. Lef R be a d-ring (resp. a o-algebra) and let ii:R-+X be 
a o-additive vector measure. Then there exist a set Q, a d-ring (resp. a o-algebra) 
Q of subsets of Q, an injective ring homomorphism a: f?—> Q and a quasi-closed 
(resp. closed) vector measure {x: Q—>X such that 

(i) a(R) is a dense subset of Q; 
(ii) fi(a(A)) = ii(A) for every AeR. 

(iii) p(fi)(a(A)) = p(v)(A) for every p e P(X) and every AeR. 
In particular, if R separates points of Q, then 
(iii) Q czQ; and 
(iv) RczQnQ. 
Proof. A sketch of the proof has been given in [11: Theorem on Closure]. If R 

is a 6-ring we just apply [13: 23.1.(4)] to make the vector measure (1 map Q 
into X. 

Lemma 8.9. Under the same notation as in Lemma 8.8 there exists a Riesz 
homomorphism ty: E(ii)—>E(p) such that 

(i) \p(E(\i)) is a dense subspace of E(£i); 
(ii) [ ( U K ^ ( / ) ) = ( U ( / ) for every feE(v); 

(iii) p((i)(n>(f)) = p(li)(f) for every peP(X) and every f eE([i). 
Proof. For simplicity, let 1 = 1^ and J = In. There exists a unique Riesz 

homomorphism cp:sim (R)—>sim (Q) which extends a. Fix a function fesim (R) 
and a seminorm p eP(X). Since I = JQq) on sim (R), we have 

p(I)(f)^p(J)(<P(f)). 

Given e > 0 , there exists a function rzesin(Q) with |ri|^|<p(/)| s u c n t n a t 

p(J)(<p(f))^p(J(h)) + e. 

There exist pairwise disjoint sets A, e Q and real numbers a,, i = 1, 2, ..., n, n eN, 
such that 

h = 2 <*A,. 
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For every i e N such that l^i^n, there exists a set B, e f? for which 

p(J)(AJea(Bl))<C/(5J|ar| + l ) . 

Let 

g = (fiaiB)jAf. 

Since p(J)(h —cp(g))<e, we have 

p(J)(<p(f))-2e^p(I(g))^p(I)(f). 

Thus 

PC0(<K/)) = P(I)(/). 

Let \p = itoq), where JT: /Ci(J)—>(J) is the natural projection. We shall show that 
xp has a unique extension to E(]u). Given a non-negative function / in E(LI), we 
choose an increasing sequence {/„}„GN in sim (R) which is pointwise convergent to 
/ . Since the sequence {/„}„€N is convergent to / in E(ji) by Theorem 5.12, the 
sequence {jro(p(/n)}„eN is Cauchy in the sequentially complete space E(£i), and so 
there exists a unique limit of {jToqp(/n)}neN is E((i), independent of the sequence 
{/„}„eN. This unique limit is denoted by */>(/). Now Statements (i) to (iii) hold. 

Theorem 8.10. Let I: L—> X be a saturable Daniell integral which satisfies (26). 
Then there exist a set Q, a Riesz subspace L of R^, a saturable Daniell integral 
I: L—>X and a Riesz homomorphism W: L-+L(I) such that 

(i) L is a sequentially complete space; 
(ii) L(I) is a Dedikind complete Riesz space; 

(iii) if {[gY]}Yer is a decreasing net in L(I) such that inf {[gy]: y eT} = 0 in 
L(I), then it is convergent to 0 in L(I); 

(iv) W(L) is a dense subspace of L(I); 
(v) [I]oW = Ion L; 

(vi) p(I)o W = p(I) on L for every p e P(X); 
(vii) W induces a topological Riesz isomorphism W from L(I) onto a dense 

subspace of L(I) such that #([ / ]) = W(f) for every feL. 
In particular, if KX(I) separates points of Q, then Q can be chosen such that 

(viii) QczQ. 
Proof. For brevity, let \i = n(I). Theorem 7.8 implies that K^(l) = E(u) and 

Ii = (In)i- We take a set Q, a 6-ring Q and a vector measure fi: Q—>X such that (i) 
to (iii) of Lemma 8.8 hold. Then there exists a Riesz homomorphism ty: E(ju)—> 
E(fi) such that (i) to (iii) of Lemma 8.9 hold. Let i:L—>/C,(I) be the natural 
injection and let 
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W=xpoi, L^E(fi) and / = ( ! , ) , . 

Then Statements (i) to (vii) hold. 
If K{(I) separates points of Q, then the <5-ring R(I) separates points of Q, and so 

(viii) follows from Lemma 8.8 (iv). 

Lemma 8.11. Under the same notation as in Theorem 8.10 fhere exist an index 
set A and a system [ek}x€A of non-negative functions in L such that 

(0 [ek]A[ek.] = 0ifk9k'eA,k±X'; 
(ii) if f is a function in L+ such that [ek] A[f] = 0 for every X e A, then [/] = 0; 

(iii) if f is a function in L+, then 

[/] = sup{2[M]:4eD(A)} 

in L(I), where Qx = S(ex); 
(iv) if feL is a function, then the net (17) is convergent to f in L. 
Proof. By Zorn's lemma we can choose an index set A and a system {^}A6A in 

L+ such that (i) and (ii) hold. Statements (iii) and (iv) follow from Theorem 8.10 
(ii), (Hi). 

Lemma 8.12. Lef I:L-+X be a saturable Daniell integral. If L contains 
a function e such that e(co) > 0 for every coe Q, then there exist a Riesz subspace M 
of R° , a Riesz isomorphism <p from L onto M and a Daniell integral J: /W—>X such 
that 

(i) M contains the constant function 1; 
(ii) J(cp(f)) = I(f) for every feL; 

(iii) p(J)((p(f)) = p(I)(f) for every peP(X) and every feL. 
Proof. Define the linear map cp from L onto the Riesz subspace M = 

= {f/e:feL} of R" by cp(f) = fle for every feL. Let J :M->X be defined by 
J(<f(f)) = I(f) for every feL. Then the statements follow. 

We are now ready to show that every saturable Daniell integral can be extended 
to a quasi-closed Daniell integral. 

Theorem 8.13. Let I:L^>Xbe a saturable Daniell integral which satisfies (26). 
Then there exist a set (l, a Riesz subspace L of Ra, a saturable, quasi-closed 
Daniell integral I: L—•X and a Riesz homomorphism &: L-+L{(I) = L/LnN(I) 
such that 

(i) <P(L) is a dense subspace of Li(I); 
(ii) [/](<*>(/)) = Kf) for every feL; 

(iii) p(I)(<P(f)) = p(I)(f) for every p e P(X) and every feL; 
(iv) 0 induces a topological Riesz isomorphism <$> Irom L(I) onto a dense 

subspace of LX(I) such that <P([f])= <P(f) for every fe L. 
In particular, if X is complete, then I is closed. 
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Proof. (I) Take a saturable Daniell integral I:L-*X as in Theorem 8.10. 
There exist an index set A and a system {gk}keA in L+ such that (i) to (iv) of 
Lemma 8.11 hold. Given X e A, let Lk denote the Riesz subspace {fQk:fe L} of 
RfiA. The restriction Ik of I to Lk is a saturable Daniell integral. 

(II) Fix an arbitrary XeA. There exist a Riesz subspace Mk of R"A, a Riesz 
isomorphism cpk: Lk —> Mk and a Daniell integral Jk: Mk —> X such that (i) to (iii) of 
Lemma 8.12 are valid. Let JU(A) = ju(.JA). Theorem 7.8 implies that 

(J^ = (I^y and K1(JO = E0i(A)). 

Let jk: Mk-+E(ii(X)) be the natural injection. By Proposition 8,4 and Lemmas 8.8, 
8.9, there exist a set &k, a Riesz subspace Hk of R*\ a saturable and closed Daniell 
integral Jk:Hk^>X and a Riesz homomorphism xpk which maps E({i(X)) onto 
a dense subspace of Hk(Jk) such that [Jk]o\pk=(Jk)i and p(Jk)o\pk =p(l*(X)) for 
every p eP (X) . 

(III) Let Q be the disjoint union of the family {Ctk: X e A} of sets. Let J: H—> X 
be the direct sum of the family {Jk:XeA} of Daniell integrals. Then J is 
a quasi-closed, saturable Daniell integral by Propositions 6.4 and 6.5. 

(IV) For every XeA, let <&k = \pkojkoCpk. Fix a seminorm p e P ( X ) and a set 
A e D(A). We claim that 

p(D(2^(/o)=p(t)(2A) 
\ A e A / U e A ! 

for every fkeLk, XeA. Indeed, this follows from the fact that <&k(Lk) is a dense 
subspace of Hk(Jk) for every XeA. 

(V) Let feL. For every XeA, there exists a function gkeHk such that 
[ ^ ] = ^ A ( M ) . Let 

A e A 

for every coe &. To show that the function g belongs to H, we may assume 
that / ^ 0 and gk^0, XeA. For each XeA, we take any function hkeH\ such 
that hk^gk. Fix a seminorm peP(X). Since the net (17) is convergent to / 
in L, Proposition 2.9 and Theorem 5.12 ensure that the set 

S = {XeA:p(I)(fQk)>0}, 

is countable, and so we can write S = {Xn: n eN}. Note that p(I)(hk) = 0 whenever 
X e A \ S. For every n e N, let 

Ln = Lkn, &n = <Pkn a n d hn = hkn. 

Given £ > 0 and neN, there exists a function kneL+
n such that kn ^fn and 

p(J)([hn]-&n(kn))<e2n. 
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Thus if m and n are natural numbers such that m^n, then it follows from (IV) that 

PO)(E A. W(J)(§ «M - *.(*.)))+P(/)(£ fc) *= 

^ + P( I ) ( ]>>) . 

Since by Theorem 5.12 the sequence | 2 ) M *s Cauchy in L, the net 
U = l J n e N 

U e 4 ) AeD(A) 

is Cauchy in X. Since this net is bounded in X, it is convergent in X. Hence the 
function g belongs to H. Furthermore, from (IV), Proposition 6.3 and Lemma 8.11 
(iv), it follows that 

p(J)(g)=p(D(f) (30) 

for every p eP(X). 
(VI) Take a function feL. For every A e A, let gx be as in (V) and let hk e Hk be 

a function such that [gk] = [hx] in H(J). It follows from Proposition 6.3 and (V) that 

p(j)(2(в*-м)=o 
U є Л / 

for every p e P(X). This enables us to define the Riesz homomorphism 17: 
L^H(J) by 

П"(Л = [XøЧ' Iє£-
Lлєл J 

Then it follows from (30) that 

p(J)(n(f)) = p(I)(f) 

for every p eP(X). Moreover, Proposition 6.3 and Lemma 8.11 (iv) ensure that 
[J]oiT = I on L. 

(VII) Let <P = n0W: L^>H(J). Then <P is a Riesz homomorphism. Let JT: 
H-+H(J) be the natural projection, and let £ be the quasi-closure of JZ~1(<P(L)) 

in H. The restriction I of J to £ is a saturable Daniell integral. We can 
identify LX(I) = L/LnN(I) with the quasi-closure of <P(L) in H(J). Hence 
we may regard d> as a map into Li(I). Statements (i) and (ii) are now clear. 

(VIII) Given a seminorm p e P(X), we claim that the equality 

p(t) = P(J) (31) 

holds on L. Since p(J)^p(l) on £, the seminorm p(t) is continuous on L with 
respect to the topology induced from H. Hence, it suffices to prove that p(I)^p(J) 
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on Jt l (0 (L) ) . For each function gen 1(<P(L)) there exists a function feL such 
that [g] = <£(/). Then Theorem 8.10 (vi) and (V) imply that 

p(J)(g) = p(I)(f). 

Thus p(J)(g)^p(I)(g). That is, (31) holds on L. 
(IX) By (VIII) the topology of convergence in mean on £ is identical to the 

topology induced from H. Since L is a quasi-closed subspace of the quasicomplete 
space H, it is quasi-complete. In other words, I is quasi-closed. Moreover, from 
Theorem 5.6, the integral I is saturable. Statement (iii) now follows from (V) and 
(VIII). 

(X) If X is complete, then H is complete by Proposition 6.4. Thus I is closed. 
The Riesz space constructed in Theorem 8.13 will be called the Li-extension of L 

with respect to I. 

Proposition 8.14. If I: L —> X is a saturable, quasi-closable Daniell integral such 
that (26) holds, then KX(I) coincides with LX(I). 

Proof. Since KX(I) is quasi-complete, it is topologically Riesz isomorphic to 
L,(r). 
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А^5ТКА^IА 

ВЕКТОРНЫЕ ИНТЕГРАЛЫ ДАНИЭЛЯ 

8и8ити Окас1а 

Резюме 

В работе строится теория интегралов Даниэля на абстрактном множестве со значениями 
в локально выпуклых пространствах. Главное внимание уделено следующим вопросам: теоремам 
Беппо Леви и Лебега и полноте пространства ^,. Для получения теоремы Беппо Леви следует 
расширить интеграл по схеме Стоуна. Теорема Лебега имеет место тогда и только тогда, когда 
интеграл Даниэля отображает упорядоченные промежутки в слабо компактные множества. 
Пространство ^ 1, полученное нами из стоуновского расширения, не всегда является квази 
полным. Поэтому в § 8 мы строим другое расширение, обеспечивающее квази полноту соответ­
ствующего пространства ^^. Здесь предполагается выполнение известного т т (/, 1) — условия 
Стоуна. Прямые суммы интегралов Даниэля рассматриваем в §6, а связь между интегралом 
Даниэля и векторными мерамы в §7. 
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