Bohdan Zelinka Geodetic graphs which are homeomorphic to complete graphs

Mathematica Slovaca, Vol. 27 (1977), No. 2, 129--132

Persistent URL: http://dml.cz/dmlcz/132259

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

GEODETIC GRAPHS WHICH ARE HOMEOMORPHIC TO COMPLETE GRAPHS

BOHDAN ZELINKA

This paper is a contribution to the paper by J. Plesník [2]. Finite undirected graphs without loops and multiple edges are considered.

A geodetic graph [1] is a graph in which to any two vertices exactly one path of the minimal length connecting them exists; this path is called the geodesic of these two vertices.

A graph G homeomorphic to a complete graph with n vertices has the following structure. The vertex set V of G contains a subset V_0 of the cardinality n whose elements are called basic vertices of G. To any two vertices of V_0 there exists exactly one simple path which connects these two vertices and whose inner vertices (if any) belong to $V - V_0$; this path is called the segment connecting these vertices. Any vertex of $V - V_0$ and any edge of the graph G belongs exactly to one segment. This means that each vertex of $V - V_0$ has degree two. The class of all graphs homeomorphic to a complete graph with n vertices for a fixed n will be denoted by \Re_n .

J. Plesník has studied a certain subclass of \mathcal{N}_n which will be denoted here by \mathcal{N}_n^* (in [2] a different notation is used). Let $G \in \mathcal{N}_n$, let the basic vertices of G be $v_1, ..., v_n$. By s_{ij} the length of the segment connecting v_i and v_j in G will be denoted, where $1 \le i \le n, 1 \le j \le n, i \ne j$. The graph G belongs to \mathcal{N}_n^* , if and only if there exist non-negative integers $h_1, ..., h_n$ such that $s_{ij} = h_i + h_j + 1$ for each *i* and *j* such that $1 \le i \le n, 1 \le j \le n, i \ne j$.

J. Plesník has suggested the following conjecture:

If a geodetic graph is homeomorphic to a complete graph with n vertices for $n \ge 4$, then it belongs to \mathcal{M}_n^* .

He has proved this for n = 4.

We shall prove a weakened variant of this conjecture.

Theorem. Let G be a geodetic graph from \mathfrak{N}_n for some positive integer n. For any two basic vertices of G let the geodesic connecting them be the segment connecting them. Then $G \in \mathfrak{N}_n^*$.

Before proving this theorem we shall state two lemmas.

Lemma 1. Let s_{12} , s_{23} , s_{13} be three positive integers such that $s_{12} < s_{23} + s_{13}$, $s_{23} < s_{12} + s_{13}$, $s_{13} < s_{12} + s_{23}$. Then there exist non-negative numbers h_1 , h_2 , h_3 such that

(1)
$$\begin{array}{c} h_1 + h_2 + 1 = s_{12}, \\ h_2 + h_3 + 1 = s_{23}, \\ h_1 + h_3 + 1 = s_{13}, \end{array}$$

These numbers h_1 , h_2 , h_3 are uniquely determined.

Proof. The system of equations (1) has the unique solution

(2)
$$\begin{array}{c} h_1 = \frac{1}{2}(s_{12} + s_{13} - s_{23} - 1), \\ h_2 = \frac{1}{2}(s_{12} + s_{23} - s_{13} - 1), \\ h_3 = \frac{1}{2}(s_{13} + s_{23} - s_{12} - 1). \end{array}$$

As $s_{23} < s_{12} + s_{13}$, the number $s_{12} + s_{13} - s_{23}$ is positive. As the numbers s_{12} , s_{23} , s_{13} are integers, we have $s_{12} + s_{13} - s_{23} \ge 1$ and thus $s_{12} + s_{13} - s_{23} - 1 \ge 0$ and $h_1 \ge 0$. Analogously $h_2 \ge 0$, $h_3 \ge 0$.

Lemma 2. Let G be a geodetic graph from \Re_n for some positive integer n. For any two basic vertices of G let the geodesic connecting them be the segment connecting them. Let G' be the subgraph of G consisting of some m basic vertices of G, m < n, and all segments connecting pairs of these vertices. Then G' is a geodetic graph from \Re_m and for any two basic vertices of G' the geodesic connecting them is the segment connecting them.

Proof. It is easy to see that $G' \in \Re_m$. For proving the rest of the assertion it is sufficient to prove that for any two vertices of G' the geodesic connecting them in G is also a path of minimal length connecting them in G'. Let u, v be two vertices of G', let P be the geodesic connecting u and v in G. If P does not contain basic vertices of G, then u and v both lie on the same segment of G; as u and v are in G', also this segment is in G' and the path P is in G'. It is a geodesic connecting uand v in G', because no path in G' can have length smaller than or equal to the length of P; such a path would be contained also in G, which would be a contradiction. Now let P contain at least one basic vertex of G. Let u_0 (or v_0) be the basic vertex of G lying on P whose distance from u (or v respectively) is minimal. (We admit the cases $u = u_0$, $v = v_0$, $u_0 = v_0$.) If $u_0 \neq v_0$, then the geodesic connecting u_0 and v_0 in G is the segment connecting them. This segment must be contained in P; otherwise P would not be the geodesic connecting u and v. Thus P does not contain other basic vertices of G than u_0 and v_0 . The vertex u lies on a segment whose end vertex is u_0 , therefore u_0 must be in G'. Analogously v_0 must be in G' and also the segment connecting u_0 and v_0 must be in G'. The path P consists of one segment and two parts of segments which are in G', therefore it is in G'. If $u_0 = v_0$, the proof is analogous.

Proof of Theorem. For n = 1 and n = 2 the assertion is trivial; for n = 1 the graph G consists of only one vertex, for n = 2 the graph G is a simple path. For n = 3 the graph G is a circuit. It is well-known that a circuit is a geodetic graph if and only if its length is odd. In such a graph we cannot distinguish basic vertices from the others, because all vertices have degree two. But suppose that we have a graph G satisfying the assumption of the theorem for n=3 and that its basic vertices are labelled in it. (This does not make our work easier by any way.) We have three basic vertices v_1, v_2, v_3 . As for any two of them the geodesic connecting them is a segment, we must have $s_{12} < s_{13} + s_{23}$, $s_{23} < s_{12} + s_{13}$, $s_{13} < s_{12} + s_{23}$. By Lemma 1 there exist numbers h_1 , h_2 , h_3 satisfying (1); these numbers are given by (2) and are non-negative. It remains to determine when they are integers. The difference between the numbers $s_{12} + s_{13} + s_{23}$ and $s_{12} + s_{13} - s_{23} - 1$ is $2s_{23} + 1$, which is an odd number. Thus $s_{12} + s_{13} - s_{23} - 1$ is even if and only if $s_{12} + s_{13} + s_{23}$ is odd; in this case h_1 is an integer. But $s_{12} + s_{13} + s_{23}$ is the length of the circuit G. Therefore if it is odd, the assertion is true; in the opposite case G is not geodetic. Analogously for h_2 and h_3 . For n = 4 the assertion was proved in [2]. Now for $n \ge 5$ we can use the induction. Let $G \in \mathfrak{N}_m$ for $m \ge 5$ and let G fulfill the assumption of the theorem. Let the basic vertices of G be v_1, \ldots, v_m . Suppose that the assertion is true for each $n \leq m - 1$. Let G_1 (or G_2 , or G_3) be the subgraph of G obtained by deleting v_1 (or v_2 , or v_3) and all sements connecting v_1 (or v_2 , or v_3 respectively) with other basic vertices. According to Lemma 2 the graphs G_1, G_2, G_3 are in \Re_{m-1} and fulfill the assumption of the theorem. According to the induction assumption the assertion of the theorem is true for G_1 , G_2 , G_3 . For G_1 we can determine h_2 , h_3 , ..., h_m , for G_2 we can determine $h_1, h_3, ..., h_m$. If $3 \le i \le m$, then h_i is the same in G_1 and in G_2 . In fact, the graph G has at least five vertices, therefore we can take some j and k from the numbers 3, ..., m such that $i \neq j \neq k \neq i$. The vertices v_i , v_j , v_k are in both G_1 and G_2 , the lengths s_{ij} , s_{ik} , s_{jk} are the same in G_1 and G_2 , thus by Lemma 1 so are h_i , h_j , h_k . Analogously we can determine h_1 , h_2 , h_4 , ..., h_m in G_3 and prove that they are the same as the corresponding numbers in G_1 and G_2 . Each segment of G is contained at least in one of the graphs G_1 , G_2 , G_3 . Thus the assertion is true also for G.

REFERENCES

[1] ORE, O.: Theory of Graphs. Providence 1962.

[2] PLESNÍK, J.: Two constructions of geodetic graphs. Math. Slovaca 27, 1977, 65-71.

Received September 1, 1975

Katedra matematiky Vysokej školy strojnej a textilnej Komenského 2 461 17 Liberec

ГЕОДЕТИЧЕСКИЕ ГРАФЫ, КОТОРЫЕ ГОМЕОМОРФНЫ ПОЛНЫМ ГРАФАМ

Богдан Зелинка

Резюме

Статья изучает одну гипотезу Я. Плесника касаюшуюся геодетических графов, которые гомеоморфны полным графам. Доказан ослабленный вариант этой гипотезы.