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SOLUTIONS AND KERNELS
OF A DIRECTED GRAPH

MATUS HARMINC

In this note the solutions and the kernels of directed graphs are dealt with. The
following theorem will be proved : The number of solutions (kernels) of a directed
graph is equal to the number of solutions (kernels) of its line graph. It will be shown
how to construct the solutions of a line graph by means of the solutions of the
original graph, and conversely.

Preliminaries

A directed graph G=(V, A) with the set of points V and the set of lines
A c VX V without loops and multiple lines is shortly called a graph. Concepts as
a path, initial and terminal points of a line and others are used as in [3]. A point
which is not an initial point of any line of G is called a receiver of G. We denote by
P(M) the system of all subsets of a set M and the cardinality of M by card M. Now
we define basic concepts: The line graph of G=(V, A)is a graph L(G)=(A, B),
the point set of which is the set of lines of G, and for any h, k € A there is hk € B if
and only if the corresponding lines 4, k induce a path in G, i.e., the terminal point
of h is the initial point of k. In what follows we denote the line # = uv in G and the
point A in L(G) by the same symbol. If H is a set of lines of G, it is also a set of
points of L(G). If we want to emphasize our interest in H as the set of points of
L(G) we use the symbol H, instead of H.

A subset R of V is a solution of G=(V, A)if R is independent in G (i.e. if u,
v € G implies uv ¢ A) and if R is dominant in G (i.e. if for each v € V— R there
exists ue R such that uv e A). (See [1, 6, 7, 8].) In the literature this concept is
known also as a 1-basis [3].

A subset J of Vis a kernel of G=(V, A) if J is independent in G and if J is
absorbent in G (for each v € V — J there exists u € J such that vu € A). (See [2].)
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Results

Let & be the system of all solutions of a graph G—(V, A) and let ./ be the
system of all solutions of L(G).

Theorem 1. Card R = card &.

Before proving this theorem, we present some lemmas. Let us define a mapping
f: AV)—P(A) as follows: If Zc V, then f(Z) is the set of all such lines, the
initial point of which is in Z.

Lemma 1. If Re R, then f(R). € f.

Proof. f(R), is independent: if hk € B, then {4, k} & f(R): since in the other
case h € R X R, but this contradicts the independence of R. Now, let k be a point of
L(G), ke AL f(R).. By the definition of f(R). the initial point of k in G is not
in R. From the dominance of R in G it is clear that there exists a line 4 in G with
the initial point in R, the terminal point of which is identical with the initial point of
k. Therefore he f(R). and hk € B so that lemma is proved.

Lemma 2. The mapping f: R —f is injective.

Proof. Let R, Pe % and R+ P. Let us suppose, e.g., that R—P#+@,veR P.
Because P is a solution of G there is a point u € P such that uv e A. Clearly
uv € f(P).. The independence of R in G implies u é R. Hence uv & f(R). and the
lemma is proved.

Define a mapping g: P(A)—>P(V) as follows: If Hc A, then g(H)=
X(H)uY(H), where X(H) is a set of all initial points of lines of H and Y(H) is
a set of all receivers r of G such that r is adjacent with no point of X(H).

Lemma 3. If H, € ¥, then g(H)e X.

Proof. In proving the independence of g(H) let us assume that u, v € g(H), u,
t € V. We shall distinguish three cases:
(1) u, ve X(H),
(2) ue X(H), ve Y(H),
(3) ue Y(H).
In the case (1) u is the initial point of some line /4 and v is the initial point of some
line k; h, ke H,.. If h = uv, there is a line hk in G which is a contradiction with the
independence of H;. If h=uw# uv =d, then the independence of H, implies
déH,_ and from the dominance of H, it follows that there is b € H; such that
bd € B. The terminal point of b and the initial point of 4 are identical with u«; it
follows that bh € B and this is a contradiction with the independence of H;. In the
cases (2) and (3) it follows immediately from the definitions of X(H) and Y(H)
that uv & A. There will be proved the dominance of g(H): Let ve V—g(H)
= V—-X(H) Y(H). For the point v we have one of the following two
possibilities :
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(a) v is an initial point of some line

(b) v is an initial point of no line and it is adjacent with some points of X(H).

In the case (a) there exists vte A. Since v & X(H), we obtain vt € H,. The
dominance of H. in L(G) implies the existence uv € H; ; thus u e X(H). In the
case (b) the proof of the dominance of g(H) follows from the definitions of X( H)
and Y(H) immediately.

Lemma 4. The mapping g: ¥— R is injective.

Proof. Let S;# T.; S, T. e ¥. We suppose for example that S, — T #0,
he S, — T.. Let us denote by v the initial point of A. Thus v € g(S), since v is the
initial point of a line of S. As h ¢ T, and because T; is dominant in L(G), there
exists a line k in G such that k € T, and k/ € B. Let us denote by « the initial point
of k; the terminal point of k is v. The point k belongs to T, hence u € g(T) and
the independence of g(T) in G implies v € g(T). Thus the lemma is proved.

Proof of Theorem 1. According to Lemma 2 and Lemma 4 we obtain

cardR <card ¥ < card R,
which implies

card R = card ¥.
Corollary 1. The graph G has a solution iff its line graph L(G) has a solution.

Corollary 2. If there is an isomorphism between L(G,) and L(G), then G, and
G, have the same number of solutions.

Remark 1. It is possible to verify that in the graph G each R € R satisfies the
identity g(f(R))= R. Analogously, f(g(S))=S for each Se .

Let G be a graph, G =(V, A) and let con G be the graph with the point set V in
which uveconG if and only if vue A. It is easy to see that the following
propositions are equivalent:

(i) M is a solution of G.

(ii) M is a kernel of con G.

We shall denote the system of all kernels of G by the symbol ¥ and the system of
all kernels of L(G) by £.

Theorem 2. Card X = card £.

Proof. With respect to the equivalence of (i) to (ii) the system ¥ consists of all
solutions of con G and £ is the system of all solutions of con L(G). The definitions
of graphs L(G) and con G imply immediately con L(G) = L (con G). The systems
of solutions of the graphs conG and L (conG) have the same cardinality (cf.
Theorem 1), i.e. the systems of solutions of the graphs con G and con L(G) have
the same cardinality, too. Thus card ¥ = card &.

Corollary 3. G has a kernel iff L(G) has a kernel.
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Corollary 4. If there is an isomorphism between L(G,) and L(G.), then G, and
G, have the same numoer ol kernels.

Remark 2 If we define the line graph L(G) of a graph G in the sense of 5],
then Theorem 1 and Theorem 2 are not valid.

VA VX~

Fig

According to 5] the I ne graph of G (V, A) is defined by L(G)=(A, B),
where hk € B for /, k € A if and only if the nitial or the terminal points of 4 and &
coincide or 1f the terminal point of 4 is the initial point of k (since, from our point
of view, the multiplicity of lines is irrelevant, the oniginal definition is modified here
to suit our purpose).

Loe. Y V.

Fig. 2 Fig 3

Examples. Figure 1 shows a graph G with a solution and its line graph L(G)
with no solution. The graph G of Figu e 2 has no solution, but its line graph L(G)
has a solution

Remark 3 If we define the line graph L(G) of an undirected graph G in the
usual way (see [4]), then Theorem 1 and Theorem 2 are not valid.

] G i LG
Fgd

Examples. I'he graph G of Figure 3 has two solutions and its line graph L(G)
has three solutions. On the other hand, Figure 4 shows a graph G with five
solutions and 1ts hne graph L(G) with four solutions.
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PEILEHHUSA U SOPA OPI'PAD®A
MaTym l'apMuHL
Pe3ome
B pa6ore pokazaHa Teopema: MOLHOCTE MHOXECTBA pellICHHH (smmep) rpaha paBHa MOLLHOCTH

MHOXecTBa pellieHui (siep) ero peGepHoro rpacda. IToxazana KOHCTPYKUMA pewieHHi peGepHoro
rpada L(G) c nomoursio pewenuit rpada G u HaoGopoT.
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