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ABSTRACT. Let V be a vector space over an ordered field F . The ternary 
betweenness relation T v on V , induced by the linear structure of V and the 
ordering of F , is defined by 

T v ( x , y , z ) <=> (3teF)(0 <t <1 & y - x = t(z-x)) 

for x,y,z G V. We will prove that the class C of all linear ternary structures, i.e., 
the class of all structures ( A , T ) with a single ternary relation T which can be 
embedded into (V, T v ) for some vector space V over an arbitrary ordered field F 
(not just the real numbers), is an elementary class which can be axiomatized by a 
set of universal sentences. Further, we will show tha t the first-order theory of C is 
recursively axiomatizable, and its universal part is decidable. On the other hand, 
the theory of C is not finitely axiomatizable, and the theory of finite members of 
C is hereditarily undecidable. 

Introduction 

In our previous paper [MnZl], we have been examining metrizable between­
ness spaces, i.e., structures of the form (A,Td), where d is a metric on A with 
values in some ordered Abelian group G, and Td is the ternary betweenness 
relation on A induced by d, denned by 

Td(x,y,z) <=> d(x,z) = d(x,y)+d(y,z) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 03B25, 03B30, 52A01; Secondary 03C52, 
08A02, 12J15. 
K e y w o r d s betweenness relation, convex geometry, vector space, ordered field, first-order 
theory, elementary class, axiomatization, universal sentence, decidable, hereditarily undecid­
able, semantic embedding, graph. 
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for x,y,z G A. We have proved that the class M of all metrizable betweenness 
spaces, regarded as a class of structures of the first-order language with equality 
= and a single ternary predicate T , is an elementary class with a recursive set 
of universal Horn axioms and decidable universal part of its theory. On the other 
hand, ThJW is not finitely axiomatizable, and the theory of the finite members 
of M. is hereditarily undecidable. 

In the present paper, we are going to prove, using rather similar methods, 
analogous results for the class C of all linear betweenness spaces which has been 
defined in the abstract. 

It is just a matter of skill to verify that for T = T v in every vector space V 
over an ordered field, and consequently in any linear betweenness space (/i, 7'). 
the following eight axioms are satisfied: 

(BO) T(x,y,x) = > x = y, 
(Bl) T(x,x,y), 
(B2) T(x,y,z) = > T(z,y,x), 
(B3) T(x,y,z) & T(x,z,u) = > T(x,y,u), 
(B4) T(x,y,z) & T(x,z,u) = > T(y,z,u), 
(B5) T(x,y,z) & T(x,u,z) = > T(x,y,u) V T(x,u,y), 
(B6) T(x,y,z) & T(x,y,u) & x ^ y ==> T(y, z,u)\/ T(y,u, z), 
(B7) T(x,y,z) & T(y,z,u) & y ^ z = > T(x,y,u). 

Note that they are all universal sentences involving at most four variables. They 
can also be regarded as "transitivities" in the sense of [PtSm]. 

Ternary structures (A, T) satisfying (BO) - (B4) have been called between­
ness spaces in [MnZl]. It can easily be seen that these conditions are true in any 
metrizable betweenness space, justifying our terminology. On the other hand. 
none of the remaining conditions (B5) (B7) is valid in every metrizable be­
tweenness space. Moreover, none of them is preserved under the formation of 
direct products of two linear betweenness spaces. This shows that C, in con­
tradistinction to M., cannot be a Horn class. 

As a direct consequence of conditions (BO), (Bl), (B3), for every ternary 
structure (A, T) satisfying them and for each x G A the relation 

V <x z <=> T(x,y,z) 

is a partial order on A. Now, introducing the segments 

(xy)T •= {z e A; T(x,z,y)} 

for x,y G A, the intuitive meaning of the remaining axioms can be summed up 
as follows: 
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(B2): The partial order <x is reversed to the partial order <z on the segment 
(xz)T. 

(B4): Both the partial orders <x and < coincide on the set {z £ A ; y <x z} . 
(B5): All the segments (xz)T are linearly ordered with respect to < 
(B6): Segments do not split, in other words, "snake tongues" do not occur. 
(B7): Two segments (xz)T, (yu)T with a nontrivial overlap (yz)T can be put 

together and extended into the segment (xu)T. 

In addition to C, let us also introduce the class CQ of all members of C which 
can embedded into a vector space over the ordered field R of real numbers. 
Similarly as in [MnZl], for the class A4Q of all betweenness spaces metrizable 
by a real-valued metric, one can easily show that CQ, being not closed under 
elementary extensions, is not an elementary class. Unfortunately, this analogy 
goes even further, as both the next questions remain open: 

Is the smallest elementary class containing AiQ equal to Ai ? 

Is the smallest elementary class containing CQ equal to C? 

In what follows, we will use freely the usual terminology and notation common 
in model theory, as well as some results belonging to model-theoretical folklore. 
The standcird references are the monographs [ChK], [H] and [Sh], where also 
the necessary information on ordered fields can be found. For the needed facts 
concerning (un)decidability of first-order theories, the reader is referred either 
to [BrSn] or to [ELTT]. 

1. Linear betweenness spaces 

The connection between the linear betweenness relation T v on a normed 
vector space V and the metric betweenness relation Td on V , where d is the 
metric induced by the norm, was already studied by M. F. S m i l e y in [Sin]. 
He observed the inclusion T v C Td and proved the equivalence of the notion of 
strict convexity, introduced by J. A. C 1 a r k s o n [CI], to the equality T v = Td. 
Though S m i l e y stated the mentioned results for vector spaces over M and 
real-valued norms, only, a brief inspection shows that the same arguments work 
for an arbitrary ordered field F and any vector space V over F , endowed with 
a norm taking values in any ordered field F extending F . 

Following up the just mentioned work, let us quote the next simple fact. 

PROPOSITION 1. All linear betweenness spaces are metrizable, i.e., C C M.. 

P r o o f It suffices to show that given any vector space V over an. ordered 
field F and denoting F the real closure of F , there is an F-valued metric d such 
that T{ = T v . Using an arbitrary Hamel basis H of V , V can be endowed 

307 



ROBERT MENDRIS — PAVOL ZLATOS 

with an F-valued norm 

'ixn = ( Y^\xh\2 

V h<EH 

where xh G F are the co-ordinates of x G V wi th respect to H, i.e., x = ]P xh^ 
hen 

and {h G H; x^ ^ 0} is finite. T h e argument from [CI] can be used to show 
t h a t V with the norm ||x|| is str ict ly convex ( C l a r k s o n even proved the 
uniform convexity which is a stronger p roper ty ) . Hence, for the F-valued metr ic 
d(x, y) = ||x - y\\ we have T v =- Td. D 

T H E O R E M 1. The class C of all linear betweenness spaces is an elementary 

class which can be axiomatized by a set of universal axioms. 

P r o o f . T h e class C of ail te rnary s t ruc tures which are isomorphic to 

(V, T v ) for some vector space V over some ordered field F is in fact the 

class of all (isomorphic copies of) reducts of two-sorted s t ruc tures of the form 

(T, V, + , •, 0 , 1 , < , 0 , 0 , 0, T ) , such t h a t F = (T, + , • , 0 , 1 , < ) is an ordered field, 

V := (V, 0 , 0 , 0 ) is a vector space over F ( the signs 0 , 0 and 0 are used just 

in this place in order to dist inguish the opera t ions in F and V ) and T — T v . 

which obviously form an elementary class. Thus £ , being the class of all s t ruc­

tures (A, T ) embeddable into some s t ruc ture from the pseudoelementary class 

£ , is a universal e lementary class. D 

Let us denote Cf- the class of all finite members of C. Obviously, each 

(A, T ) G Cfin can be embedded into some finite-dimensional vector space over 

some ordered field F , i.e., into F n for some n G N. Now, using the facts tha t 

(a) the first-order theory of real-closed ordered fields is complete; 

(b) R is real-closed; 
(c) every ordered field can be embedded into a real-closed one; 
(d) by t he Feferman-Vaught theorem, direct p roduc t s of s t ruc tures preserve 

elementary equivalence; 

(see, e.g., [Sh; §5.5] and [H; §8.4 and §9.5]), one can easily see t h a t Cfin coincides 

with the class of all finite te rnary s t ruc tures embeddable into (R n , Tn) for some 

n , where T is the linear betweenness relation on the vector space IRn . 

P R O P O S I T I O N 2 . Cfin coincides with the class of all finite ternary structures 

embeddable into ( R 2 , T 2 ) . 

P r o o f . We will show t h a t for each n > 2 and every finite set A C ~Rn + l , 
the te rnary s t ruc ture (A, T n + 1 HA3) can be embedded into ( I R n , T n ) . T h e n the 
needed conclusion follows by an induct ion a rgument . 

Let us identify E n wi th the subspace { (x 0 , x p . . . , xn) G IRH+1 ; .r() = 0} 
of IRn + 1 . Then T n l induces Tn on IRn . For each element p of the projective 
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space RPn
 ? with homogeneous co-ordinates [p0 ,p1 ? . .. , p j such that p0 ^ 0, 

and x £ R a + 1 let us denote p(x) the parallel projection of x into the hyperplane 
M" along the direction p. We put p(^4) = {p(x) ; x G vl} . As 1̂ is finite, there 
are only finitely many p ' s such that the corresponding projection of A onto 
p(A) is not one-to-one. Projections mapping some pairs of distinct lines with 
endpoints in A into one line are represented by p 's from a union of finitely 
many one-dimensional projective subspaces of R P n . As n > 2, there is a p 
determining a bijective projection A —» p(A), such that Tn , 1(.r,r/, z) if and 
only if Tn(p(x),p(y)1p(z)) for all x,y,z £ A. • 

As it follows from the last Proposition, the only information concerning the 
dimension of a vector space V over an ordered field F which can be deduced 
from the finite betweenness subspaces of (V, T v ) is the answer to the question 
whether dim V = 0 or d imV — 1 or d imV > 2. 

THEOREM 2. The first-order theory of C is recursively axiomatizable, and the 
universal part of Th C is decidable. 

P r o o f . A formula p> will be called a basic formula if it is of the form 
0l V • • • V 9m, where each 0l is an atomic formula or negation of an atomic 
formula. We will say that a formula ip occurs in such a basic forruula ip if 
i\> is among the formulas 0^... ,0m. According to Theorem 1, it suffices to 
describe an algorithm deciding for each basic formula (p in the language of C 
whether C \= ip or not. Then (the universal closures of) the basic formulas ip 
which are true in C will form a recursive set of axioms for T h £ . Furthermore, 
the decidability question for any universal formula (after putting it into prenex 
form with matrix consisting of a conjunction of basic formulas) Ccin be reduced 
to the same question for its maximal basic subformulas. 

Now, let ip be a basic formula of the form 9X V • • • V 9m, where each 9t is 
an atomic formula or negation of an atomic formula with variables included in 
the list z 1 5 . . . , zn. Let us denote £ the system of polynomial equations and 
inequalities in the unknowns x{, y{, ti-k, where 2,j, k — l , . . . , n , ((xi,yi) are 
the co-ordinates of z{ in M2), constructed as follows: 

hjk ^ ° f o r a11 ?:' i » fe> 
liij ~ ° f o r a11 ^ 3, 

hjk+hji = l for all z, j , fe, 

(xj ~ x l ' y> ~ 2/*) = lijk(xk ~ xi^ 2/fc ~ yd i f _ l T ( 2 z ' zj>zk) o ccurs in <p, 

(*j ~ xv Vj ~ yt) T4 tijk(xk - xt, yk - y{) if T(z{, zpzk) occurs in ip, 

(xi^yi) = (xj>yj) i f zi ^ zj occUrs in ip, 

(xi,yi) + (xjiyj) i f zi = zj occurs iri ip. 
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We use the vector (or ordered pairs) notation for abbreviation's sake. Note that 
the inequality of the form (a, b) 7-= (c, d), i.e., the disjunction (a / c) V (b ^ d), 
is equivalent to the single inequality (a — c)2 + (b — d)2 > 0. Also note that, in 
general, E may contain many redundant equations and inequalities, which can 
be omitted in concrete situations. 

From Proposition 2, it follows that the condition C |= ip holds if and only if 
E has no solution in R. The decidability of the last problem is clear, according 
to the decidability of the first-order theory of the ordered field R, based on 
quantifier elimination, due to A. T a r s k i [T] (see also [ELTT]). • 

In the proof of the next theorem, we shall need the following slight and 
straightforward generalization of a result from [Vt]. 

LEMMA. Let K be a universal class of structures of a first-order language con­
taining only finitely many relational symbols and without any constant and func­
tional symbols. Then for a class J C K the following conditions are equivalent: 

(i) There is a single universal sentence <p such that 

J = {AG AC; A f = r f . 

(ii) There is a natural number n > 0 such that for every A G /C we have 
A G J if and only if each n-element substructure B of A can be em­
bedded into a suitable structure from J. 

Let J, K be two classes of structures of the same first-order language. We 
will say that J is (finitely) axiomatizable with respect to /C if there is a (finite) 
set of sentences S such that 

J = {AG/C; A h S}. 

THEOREM 3. The class C of linear betweenness spaces is not finitely axio­
matizable with respect to the class M. of all metrizable betweenness spaces. 

P r o o f . As C is a universal class as well, according to the Lemma, it is 
enough to show that for each sufficiently large n G N there is a ternary structure 
(A.T) G A4 such that (-4,T) ^ £ , and each n-element substructure of (A,T) 
is in C. 

For each n > 1 let us introduce the (An -f 2)-element set 

An = {a- ; 1 < i < n} U {fc. ; 0 < 7 < 2n) U {c. ; 0 < i < n} . 

Let Tn be the ternary relation on A consisting of the triples 

( c o A . a i ) . ( cn .&i .c j , 
all the triples of the form 

(bvbpbk) for 0 < i < j < k < 2n, 

(anb2Hci) f o r l ^ l < ni 

(cn b2i+i' a . ;+i) for 1 < I < n - 1, 
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and, of course, all the triples which one has to add in order to satisfy the condi­
tions (Bl), (B2). 

The structures (A 1 ,T 1 ) and (^43,T3) can be seen on the following diagram 
(for three distinct vertices x, ?/, z there is a (maybe broken) line from x to z 
passing through y if and only if T(x,y,z) holds): 

C o 

[AVTX) И3.Г3) 

DIAGRAM 1. 

It can easily be verified that any of the ternary structures (AnlTn) even 
satisfies the axioms (BO) (B7) and (after a suitable embedding) is metrizable 
by the metric d, inherited from the E]uclidean plane, except for the distance of 
r() and c for which we put 

d( C 0> C J = d ( c o A ) + d ( 6 l > C n ) -

However, in order to guarantee the strict inequalities d(cQ,c ) < d(c{)1x) -f 
d(j\rn) for each x G An \ {b 1 ? c 0 ,c n }, one has to arrange the situation in such 
a way that b1 lies on the ellipse with foci c 0 , cn, and all the remaining points 
of A lie outside of the ellipse. This obviously can always be achieved see 
Diagram 2. 
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DIAGRAM 2 . 

On the o ther hand , none of the betweenness spaces (An, Tn), n ___ 1, is linear. 
To see this , it suffices to realize t ha t , in such a case, the members of the three 
couples of points (a1 ? c{)), (a}, c j and (c0 , c,n) have to lie in different half-planes 
wi th respect to the line bQbn. However, c x , c n lie in the same half-plane. This 
is a contradict ion. (Consult any of the Diagrams 1,2.) 

The proof will be complete once we show tha t omi t t ing any point .r from 
An , the t e rnary s t ruc ture (A,n \ {#} , Tn H (An \ {x})3) thus obta ined, already is 
embeddable into the Eucl idean plane. The more, every n-element subs t ruc tu re 
of (A , T ) is then embeddable into the plane. This is, however, clear, since 
omi t t ing any poin t will break the circle (i\b()c()bxcnb2nanb.>n_ ,c^ __. . . . a2b.i>clb2a . 
winch we have used for deriving the contradict ion in proving the nonlinearity of 
the s t ruc tures (An,Tn). 12 

COROLLARY. The theory T h C is not finitely a.riomatizablc. 

The s t ruc tures (A ,T ) , for n > 2 , can be regarded as a kind of "forbidden 
pa t t e rns" for the class C Obviously, their occurrence as subs t ruc tures can be 
excluded by satisfaction of some universal (even basic) formulas. Vnfortunately. 

.T12 
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they are by far not all finite nonlinear (metrizable) betweenness spaces. Several 
sequences of structures of such a kind, as well as some isolated ones, can be 
constructed and even put together and combined in diverse manners. Thus there 
seems to be little hope for finding some reasonable axiom schemes for the class 
C (with respect to AA), consisting of such "forbidding" formulas. This is again 
similar to the situation with the metrizable betweenness spaces - cf. [MnZl]. 

An example of a finite nonlinear metrizable betweenness space satisfying all 
the axioms (BO) - (B7), different from the (An, Tn) 's, can be seen on Diagram 3, 
representing (a part of) a slightly modified square (it would become a square 
and a linear betweenness space under the identification of a and h). 

By the term "graph" we understand a first-order structure (V, E), where E 
is an irreflexive and symmetric binary relation on V. It is known that the first-
order theory of the class of all finite graphs is hereditarily undecidable - see, 
e.g., [BrSn] or [ELTT]. 

There is a rather natural interpretation of the theory of graphs in the theory 
of betweenness spaces (axioms (BO) - (B4)). Namely, a point x of a betweenness 
space (A, T) will be called a vertex if and only if it does not lie properly between 
any pair of points of (A, T), and two vertices x, y are connected by an edge if 
and only if t here is a 2: £ v4, x ^ z ^ H , between them. The formal definition can 
be found in [MnZl], where we have proved that every finite graph can be obtained 
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from a finite metrizable betweenness space in this way. However, just a brief look 
at that proof shows that every finite graph can be obtained from a finite linear 
betweenness space using the described interpretation (the corresponding metric 
was obtained by embedding the graph into the Euclidean plane). Thus in fact 
we have constructed a semantic embedding of the class of all finite graphs into 
the class Cfin and proved the following theorem in [MnZl]. 

THEOREM 4. The first-order theory of the class £fin of all finite linear be­
tweenness spaces is hereditarily undecidable. 

COROLLARY. Both the classes C of all linear betweenness spaces and C{) of 
all betweenness spaces embeddable into a vector space over K have hereditarily 
undecidable first-order theories. 

However, as already mentioned in the final part of the Introduction, wre do 
not know whether the theories T h £ and T h £ n coincide or not. 

REFERENCES 

[BrSn 

[ChK 

[ci; 

[ELTT 

[H; 

[MnZl 

[PtSm 

[Sh 

[Sm 

BURRIS, S.—SANKAPPANAVAR, H. P. : A Course in Universal Algebra, Springer-
Verlag, Berlin-Heidelberg-New York, 1981. 

CHANG, C C—KEISLER, H. J. : Model Theory (3rd ed.), Elsevier, North-Holland, Am­
sterdam, 1990. 

CLARKSON, J. A. : Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396 414. 

ERSHOV, YU. L.—LAVROV, I. A . - -TAIMANOV, A. D. —TAICLIN, M. A. : Elementary 
theories, Uspekhi Mat. Nauk 20 (1965), 37-108. (Russian) 

HODGES, W. : Model Theory, Cambridge Univ. Press, Cambridge, 1993. 

MENDRIS, R.—ZLATOS, P. : Axiomatization and undecidabihty results for metrizable 
betweenness relations, Proc. Amer. Math. Soc. (To appear). 

P ITCHER, E. SMILEY, M. F. : Transitivities of betweenness, Trans. Amer. Math. Soc. 
52 (1942), 95-114. 

SHOENFIELD, J. R. : Mathematical Logic, Addison-Wesley Reading, Mass., 1967. 

SMILEY, M. F. : A comparison of algebraic, metric, and lattice betweenness, Bull. Amer. 
Math. Soc. 49 (1943), 246-252. 

[T] TARSKI, A. : A Decision Method for Elementary Algebra arid Geometry, Univ. of Cali­
fornia Press, Berkeley, 1951. 

314 



LINEAR BETWEENNESS RELATIONS 

[Vt] VAUGHT, R. : Remarks on universal classes of relational systems, Indag. Math. 16 (1954), 
589-591. 

Received January 16, 1995 * Department of Mathematics 
Faculty of Electrical Engineering 
Slovak Technical University 
SK-812 19 Bratislava 
SLOVAKIA 

E-mail: mendris@elf.stuba.sk 

Department of Algebra 
and Number Theory 
Faculty of Mathematics and Physics 
Comenius University 
SK-842 15 Bratislava 
SLOVAKIA 

E-mail: zlatos@fmph.uniba.sk 

315 


		webmaster@dml.cz
	2012-08-01T10:55:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




