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EDGE AND VERTEX OPERATIONS 
ON U P P E R EMBEDDABLE G R A P H S 1 

H U N G - L I N Fu — M I N G - C H U N T S A I 

(Communicated by Martin Skoviera) 

ABSTRACT. A connected graph G is called upper embeddab le if its maximum 
genus equals [0(G)/2\ , where 0(G) = \E(G)\ - \V(G)\ + 1 is the Betti number of 
G. In this paper, we investigate the effect of adding or deleting an edge (possibly 
a multi-edge or a loop) and the effect of adding a vertex (or vertices) to an upper 
embeddable graph. Subsequently, several new classes of upper embeddab le graphs 
are obtained. 

0. Introduc t ion 

This paper is devoted to an investigation of those graphs which are upper 
embeddable. Since the maximum genus is invariant under homeomorphisms, 
the results we obtain below obviously extend to graphs homeomorphic to these 
graphs. Recall that the maximum genus JM(G) of a connected graph G is 
the largest genus of an orientable surface on which G has a 2-cell embedding. 
A connected graph G is called upper embeddable if its maximum genus equals 
[8(G)/2\, where (3(G) = \E(G)\~\V(G)\ + 1 is the Betti number of G. For basic 
information and results, we refer the reader to the book Graphs and Digraphs 

Unless explicitly stated, we shall consider graphs in which multi-edges and 
loops are allowed, i.e., pseudographs. Thus, without mentioning otherwise, 
"graph" stcinds for "pseudograph". If loops are not permitted, then the graph is 
a multigraph, and a simple graph is one which contains no multi-edges and no 
loops. 

A spanning tree T of a connected graph G is a splitting tree of G if at 
most one component of G — E(T) has odd size. It follows that, if G — E(T) is 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C10. 
K e y w o r d s : upper embeddable graph, Betti deficiency. 
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connected, then T is a splitting tree. In [3], [10], J u n g e r m a n and X u o n g 
independently gave a characterization of upper embeddable graphs. 

THEOREM 1. ([3], [10]) A graph G is upper embeddable if and only if G has 
a splitting tree. 

Thus, to determine whether a graph is upper embeddable, it suffices to check 
the existence of a splitting tree. Later, N e b e s k y [5] gave another character
ization theorem for the upper embeddable graphs. Before stating the theorem, 
we need two notations. We denote the number of components in a graph H by 
c(H). Furthermore, let b(H) be the number of components C such that the 
Betti number of C is odd. 

THEOREM 2. ([5]) A connected graph G is upper embeddable if and only if 
b(G - A) + c(G - A) - 2 < \A\ for every subset A of E(G). 

Using either Theorem 1 or Theorem 2, many interesting families of graphs 
have been shown to be upper embeddable. We recall here the following two of 
the results: 

THEOREM 3. ([9]) Any multigraph of diameter two is upper embeddable. 

THEOREM 4. Any 4-edge-connected graph is upper embeddable. 

In fact, Theorem 4 is a direct consequence of the following non-trivial result. 

THEOREM 5. ([4]) Every 4-edge-connected graph contains two pairwise edge-
disjoint spanning trees. 

Note that the two classes of graphs mentioned in Theorems 3 and 4 have as 
their common property that the addition of an edge or a multi-edge results in 
an upper embeddable graph. This is not true in general. 

In Section 1, we investigate the effect of adding or deleting an edge (or a 
multi-edge) and then, in Section 2, we study the operation of adding vertex (or 
vertices) to an upper embeddable graph; as a consequence, several new classes 
of upper embeddable graphs are obtained. 

1. Edge opera t ions 

In [6], N e b e s k y gave the following definition: A simple graph G is abso
lutely upper embeddable if every simple graph which is spanned by G is upper 
embeddable. Thus if G is absolutely upper embeddable, then we can add any 
edge to G (as long as the new graph is simple) to obtain a new upper embeddable 
graph. He also characterized absolutely upper embeddable simple graphs. 
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THEOREM 1.1. ([6]) A connected simple graph G is absolutely upper embed-
dable if and only if i(G - A) + c(G — A) — 2 < |A\ for every subset A of E(G), 
where i(H) denotes the number of components F of H with the property that 
either /3(F) is odd or F is not a complete graph. 

However, if we start with a multigraph G which is upper embeddable, for 
example with the one in Figure 1.1, then the above theorem does not guarantee 
that the addition of an edge (or a multi-edge) to G will produce an upper 
embeddable graph. 

Figure 1.1. 

Nevertheless, there are multigraphs which are upper embeddable and the 
addition of any edge (including multi-edges) will end up with a new upper em
beddable graph. We will call them absolutely upper embeddable multigraphs. 
Thus a multigraph G is absolutely upper embeddable if every multigraph which is 
spanned by G is upper embeddable. Loopless graphs of diameter 2 and 4-edge-
connected graphs are examples of absolutely upper embeddable multigraphs. 
The next result provides a characterization of these graphs. 

THEOREM 1.2. A connected multigraph G is absolutely upper embeddable if 
and only if c(G — A) + nt(G — A) — 2 < \A\ for every subset A of E(G), where 
nt(H) denotes the number of nontrivial components of H. 

P r o o f . 
Necessity: Assume that there exists a subset A0 of E(G) such that c(G—A0) 

+ nt(G — A0) — 2 > \A0\. Consider the graph G obtained from G in such a way 
that one new edge is inserted into each nontrivial component F of G — A0 

whenever (3(F) is even. Clearly, G is spanned by G and c(G — A0) -= c(G — A0) 
and b(G — A0) = nt(G — A0). This implies that 

c(G - A0) + b(G -A0)-2 = c(G - A0) + nt(G - A0) - 2 > \A0\. 

By Theorem 2, G is not upper embeddable. Thus, G is not absolutely upper 
embeddable. 

Sufficiency: Assume that a multigraph G is not absolutely upper embed
dable. Let H be a minimal spanning supergraph of G such that H is not u p p e r 

embeddable. Prom Theorem 2, we known that b(H - A) + c(H - A)-2 > \A\ for 
some subset A of E(G). Among such subsets A, let A* be a subset of E(H) 
with minimum number of elements such that b(H — A*) + c(H — A*) — 2 > \A*\-
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Also, let AG = A* n E(G). Since G - A*G is a subgraph of H - A* and 
V(G - A*G) = V(H - A*), we have c(G - A*.) > c(H - A*). Now we claim that 
nt(G - A*G) > b(H - A*), i.e., each component F of H - A* with /3(F) odd 
contains some edges which belong to E(G — A*G). 

Suppose the contrary. There exists a component of H — A*, F' with /3(F') 
odd such that V(F') induces an empty graph in G — A*G. Since G is connected, 
there exists a vertex u G V(F') which is joined to a vertex v in a component 
Fv with f3(Fv) odd and uv G A*G. (If /3(FV) is even, by letting A! = A* \ {uv}, 
we get |A'| < |A*|, b(H - .A7) = 6(H - A*), and c(H - A') = c(H - A*) - 1. 
This implies that b(H - A') + c(H -A')-2> b(H - A*) + c(H - A*) - 1 - 2 > 
|A*| — 1 > \A'\, contradicting the assumption that A* is minimal.) In fact, 
there are at least two vertices u and u' in F' which are adjacent to v and 
v' respectively, where v and v' lie in two distinct components Fv and Fv, 
respectively, and /3(FV) and /3(FV,) are both odd. Suppose the contrary. Since 
G,is connected and [V^F')! > 2 (for f3(F') is odd and F' contains no loops), 
there exists an edge e G A*G which joins two vertices of F'. Also, (3(F') is odd 
and E(F') C E(H) - E(G), therefore there exists an edge e' of E(H) - E(G) 
which lies on a cycle of F'. Thus, by letting H0 = H — e', AQ = A* — {e}, we 
get c(HQ-A0) = c(H -A*), b(HQ - AQ) = b(H - A*) and |A0 | < |A*|. This 
implies that c(HQ — AQ) + b(HQ — AQ) — 2 > \AQ\, contradicting the minimality 
of \E(H)\. Now, let H' = H - F ( F ' ) , and let A" = A* - {e | e is an edge 
joining a vertex of F' and a vertex in a component Fu of H — A* with d(Fu) 
o d d } . Then c(H'-A") >c(H-A*)-l and b(H'- A") =--b(H - A*) - I. But 
|-4"| < |-4*| - 2, and this implies that 

b(H' - A") + c(H' - A") -2>b(H- A*) + c(H-A*)-2-2 > \A*\ - 2 > \A"\ . 

Since \H'\ < |H | , this contradicts the minimality of H. Thus we have shown 
that nt(G - A*G) > b(H -A*), and hence 

c(G-A*G) + nt(G-A*G)-2 > c(H - A*) + b(H - A*) - 2 > |A*| > \A*G\ , 

concluding the proof of sufficiency. • 

As pointed out by one of the referees, Theorem 1.2 can also be derived from 
Corollary 2 in [7]. First a multigraph G in question is replaced by a multigraph 
G obtained from G in such a way that exactly one new edge joining u and v is 
added between every pair of distinct vertices u and v. By Theorem 1, G is an ab
solutely upper embeddable multigraph if and only if every multigraph spanning 
G and simultaneously spanned by G is upper embeddable. Now, Corollary 2 of 
[7] can be applied to derive Theorem 1.2. 

We also remark that Theorem 1.2 can be used to give a new proof of The
orem 1 due to S k o v i e r a , see F u and T s a i [2]. While the original proof in 
[9] was based on Theorem 1, the one given in [2] employs, in fact, a variation of 
Theorem 2. 
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A connected graph is said to be minimally non-upper embeddable if it is not 
upper embeddable, but the deletion of any edge, not a bridge, yields an upper 
embeddable graph. The graph in Figure 1.2 is an example of a minimally non-
upper embeddable graph. 

Figure 1.2. 

Our next aim is to characterize minimally non-upper-embeddable graphs. 
First we show that the edge-connectivity of a minimally non-upper embeddable 
graph must be less than two. 

PROPOSITION 1.3. In every non-upper embeddable 2-edge-connected graph G, 
there exists an edge e such that G — e is non-upper embeddable. 

P r o o f . Assume that G is 2-edge-connected and non-upper embeddable. 
By Theorem 2, there exists a subset A of E(G) such that b(G — A) + c(G — A) 
- 2 > \A\. Let e e A. Since G — e is connected, b(G — e — (A. - {e})) + 
c(G-e- (A - {e})) - 2 = b(G - A) + c(G - A) - 2 > \A\ >\A- {e}\. Using 
Theorem 2 again we see that G — e is not upper embeddable. D 

Thus a minimally non-upper embeddable graph contains a bridge. We also 
need the following lemma. 

LEMMA 1.4. If G is minimally non-upper embeddable, then /3(G) is even. 

P r o o f . Assume that (3(G) is odd. Clearly, G is not a tree. Since G is 
minimally non-upper embeddable, there exists an edge e G E(G) (which is 
not a bridge) such that G — e is upper embeddable. By Theorem 1, G — e 
has a spanning tree T such that G — e — E(T) contains at most one odd-size 
component. Since (3(G — e) is even, G — e — E(T) contains no odd size component. 
This implies that T is a splitting tree for G, and G is upper embeddable, a 
contradiction. D 

THEOREM 1.5. A connected graph G is minimally non-upper embeddable if 
and only if 

(1) G contains a bridge e such that G — e — Gx U G2, f3(Gx) and /3(G2) 
are odd; and 

(2) b(G - A) + c(G - A) - 1 < \A\ for every subset A of E(G) except A is 
a bridge or an empty set. 
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Necessity: By way of contradiction, let H be a minimally non-upper em-

beddable graph that does not satisfy (1) and has minimum order. Then, by 

Lemma 4.1, for every bridge e of /I, both components H{ and H.y of / / - ( 

have even Betti number. Suppose that e1? e2,. . . , en are the bridges of II. anc, let 

H-ei = H^UH^\ i = l , 2 , . . . , n . Since (1(H[I)) and /3(H{
2
n) are even and G 

(i) (i) 

is non-upper embeddable, either H\ or H2 is non-upper embeddable. We may 
(i) 

assume that H\ is non-upper embeddable. Moreover, since G is minimally non-
(i) 

upper embeddable, H\ must be minimally non-upper embeddable. By Proposi-
^ ' r Y i n n f s-> y% -n +- c. -i -»-> r< k v i r l r r n / n 1 I 1 -i -i i-\ -f-/~v 4- L /-\ 4-«-./-»-•- f h O f 1 / / i—l \ ' 1 tion 1.3, H\l) must contains bridge(s). Due to the fact that | V(H+ ) | < |V(H 

M o , i ^ fi io+- IT(Z) 
or there exists a bridge e0 of H\ such that H\ — e0 = Ha U Hh, and /3(Ha 

f3(Hb) is odd. By Lemma 1.4, we conclude that both (3(Ha) and /3(Hb) are odd. 

Obviously, e0 is also a bridge of if, and H — e0 -= Ha U (Hb U {e-} U H2 ) o r 

H -e0 = HbU (Ha U { e j U H^) • T h u s H
a
 o r ^ 6 i s a component of H with 

odd Betti number. This contradicts the assumption, which proves (1). 

Next, we claim that (2) holds. Suppose the contrary. Then we can find a subset 
AQ of E(G), where A0 is not a bridge or an empty set, such that b(G — AQ) 

-r- c(G — AL0) — 1 > |^40|. Let e0 G A0 and e0 be not a bridge of G. Clearly, 

6 ( G - e 0 - ( ^ 0 - { e 0 } ) ) + c ( G - e 0 - ( A 0 - { e 0 } ) ) - l > | A 0 | = | A 0 - { e 0 } | + l . 

This implies that 

b(G - e0 - (A0 - {e0})) + c(G - e0 - (A0 - {e0})) - 2 > |A0 - {e0}|. 

By Theorem 2, G — e0 is not upper embeddable. This contradicts the assumption 

that G is minimally non-upper embeddable, and we have (2). 

Sufficiency: Obviously, (1) implies that G is non-upper embeddable. Now., if 
there exists an edge e0 E E(G) which is not a bridge such that G — e() is not 
upper embeddable, then, from Theorem 2, we get that there exists a nonempty 
subset A± of E(G - e0) such that b(G — e0 — Ax) + c(G - e0 - Ax) — 2 > \AY\. 
Thus 6 (G- (A 1 U{e 0 }) )+c (G- (A 1 U{e 0 }) ) - l> | .A 1 U{e 0 } | , where A{U{(()} 
is not a bridge or an empty set. This contradicts (2). • 

Now we shall study the effect of deleting an edge from an upper embeddable 
graph. We are mainly interested in those graphs which are still upper embeddable 
after deleting any edge (as long as the graph is still connected). For example, 
the graph in Figure 1.3 is upper embeddable and the deletion of any edge (not 
a bridge) will not affect the upper embeddability. 
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Figure 1.3. 

An upper embeddable g raph G is said to be strongly upper embeddable if for 

any edge e (no t a bridge) in G, G — e is uppe r embeddable . For example, the 

graph in Figure 1.3 is a s trongly uppe r embeddab le graph . We no te that, in an 

upper embeddab le g raph G which is no t a tree, we can always find an edge e 

such that G — e is also upper embeddable . Since the proof is easy, we simply 

s ta te the resul t . 

PROPOSIT ION 1.6. Let G be an upper embeddable graph which is not a tree. 
Then there exists an edge e G E(G) such that G — e is also upper embeddable. 

T h e following two theorems charac terize s trongly uppe r embeddab le graphs . 

THEOREM 1.7. A 2-edge-connected graph G is strongly upper embeddable if 
and only if b(G — A) + c(G — A) — 1 < \A\ for each nonempty subset A of E(G). 

P r o o f . Let G be a 2-edge-connected s t rongly uppe r embeddab le graph . 

Assume t h a t there exists a nonempty subset A0 of E(G) such t h a t b(G — A0) + 

c(G — A0) - 1 > \A0\. Let e be an edge in A0. B y direct checking, we deduce 

t h a t G — e is not upper embeddable . Hence G is not s t rongly upper embeddable , 

which is a contradict ion. 

Conversely, let G be a 2-edge-connected and b(G — A) + c(G - A) — 1 < | A \ 

for each nonempty subset A of E(G). Assume t h a t G is not s t rongly upper 

embeddable . B y Theorem 2, G is upper embeddab le . Since G is not s trongly 

upper embeddable , there exists an edge e £ E(G) such t h a t G — e is not 

upper embeddable . This implies t h a t there exists Ax C E(G — e) such t h a t 

b((G - e) - Ax) + c((G - e) - Ax) - 2 > \AX\. Then b(G - (Ax U { e } ) ) + 
c(G - (Ax U {e})) - 1 > \AX U {e} | for the nonempty subset Ax U {e} of E(G), 

which is a con tradic t ion. • 

THEOREM 1.8. A connected graph G which contains bridges is strongly upper 

embeddable if and only if 

(1) for any bridge e of G, if G — e = G1U G2, then f3(G1)/3'(G2) is even; 

and 

(2) b(G - A) + c(G - A) - 1 < \A\ for every subset A of E(G) except A 

consists of bridges or is an empty set. 
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P r o o f . Assume that G is strongly upper embeddable and that G contains 
bridges. Then (1) is obvious. Now, if b(G — AQ) + c(G — A0) — 1 > |.A0| for some 
nonempty subset A0 of E(G) where A0 does not only contain bridges, then by 
letting e be an edge in A0 which is not a bridge we obtain that G — e is not 
upper embeddable. Hence G is not strongly upper embeddable. 

Conversely, let (1) and (2) hold. Then Theorem 2 readily implies that G 
is upper embeddable. Now, if G is not strongly upper embeddable, then there 
exists an edge e G E(G) (not a bridge) such that G — e is not upper embeddable. 
This implies that there exists an subset Ax C E(G — e) such that b((G — e) — A1) 
+ c((G-e)-A1)-2> lA-J.Then b(G - (Ax U{e})) +c(G- (Ax U {e})j>- 1 > 
\A± U {e}| for the nonempty subset Ax U {e} of E(G). This is a contradiction. 

• 
We remark that there are strongly upper embeddable graphs which are not 

absolutely upper embeddable and vice versa. In Figure 1.4, (a) is strongly upper 
embeddable but not absolutely upper embeddable, and (b) is absolutely upper 
embeddable but not strongly upper embeddable. 

(a) (b) 
Figure 1.4. 

2. Vertex operations 

First we deal with the addition of only one vertex. For convenience, we will 
let the resulting graph be G and the original graph be G — u. 

For a spanning tree T of a graph G, let £(G,T) denote the number of 
components of G — E(T) which have odd size. Then it is well known that £(G) 
the Betti deficiency, is equal to min{£(G, T) | T is a spanning tree of G } , see 
[1*0]. Note that G is upper embeddable if and only if £(G) < 1. 

LEMMA 2 .1 . Let G be a connected graph. If there exists a vertex of odd degree 
u such that G — u is connected, then £(G) < £(G — u). 

P r o o f . Let T0 be a spanning tree of G — u such that £(G — u,T0) — 
£(G — u). Now let v be an arbitrary vertex in V(G — u) such that uv E E(G). 
It is clear that T0U{iAU} == T is a spanning tree of G and £(G, T) < £(G —H, T0) 
since deg (u) is odd. Hence, £(G) < £(G — u). • 
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For another proof, see N e d e 1 a and S k o v i e r a [8]. 

With the above lemma, it is easy to see that, if we start with an upper 
embeddable graph, then we can always add an odd vertex to it to obtain a new 
upper embeddable graph. This is not true in general for an even vertex; see 
Figure 2.1, for example. 

Figure 2.L 

For the addition of an even vertex we need one more condition. 

LEMMA 2.2. Let G be a connected multigraph with an even vertex u such that 
G — u is connected. Then G is upper embeddable whenever G — u is an absolutely 
upper embeddable multigraph and no multi-edge is incident with u. 

P r o o f . Let G' be the graph obtained by deleting degG u — 2 edges in E{G) 
which are incident to u. Then G' is homeomorphic to a supergraph of G — u, 
and hence, G' is upper embeddable due to the absolute upper embeddability of 
G — u. Futhermore, £{G) < £{G') < 1, whence G is upper embeddable. • 

Here, no multi-edge is allowed between the vertex u and the vertex in G — u, 
otherwise we may obtain a graph which is not upper embeddable; see Figure 2.2, 
for example. 

u 

Figure 2.2. 

By a similar idea, we can add more than just one even vertex as long as these 
vertices are not adjacent. Hence the following corollary is obtained. 

COROLLARY 2.3 . Let G be a connected multigraph with an independent set S 
such that G — S is an absolutely upper embeddable multigraph and no multi-edge 
is incident with a vertex in S. Then G is upper embeddable. 

If we want to add several even vertices to an upper embeddable graph in 
order to obtain a new upper embeddable graph, we can add two even vertices 
at one time. 

17 
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LEMMA 2.4. Let G be a connected multigraph. If there exist two nonadjacent 
even degree vertices u and v such that N(u) n N(v) ^ 0 and G — u — v is 
connected, then £(G) < £(G — u — v). 

P r o o f . Let T0 be a spanning tree of G — u — v such that ^(G—u—v, T0) 
= i(G—u—L>), and w G TV(^) H N(v). Since degG ii and degG v are even, there 
exist u' and U' such that u' ^ w, v' ^ w and u?/ , UU' are edges of G. By 
letting T = T0 U {uu',vv'}, we obtain a spanning tree T of G, and £(G) < 
€(G,T) < i(G-u-v,T0) = f ( G - i i - v ) can be checked directly. D 

COROLLARY 2.5. A connected graph G is upper embeddable if there exist two 
nonadjacent even degree vertices u and v such that N(u)(lN(v) ^ 0. G — u — v 
is connected and G — u — v is upper embeddable. 

The above lemmas enable us to construct an infinite class of upper embed
dable multigraphs starting from a given one by adding either a vertex of odd 
degree or two nonadjacent even degree vertices which have at least one common 
neighbour. If we start with an absolutely upper embeddable multigraph, then 
an independent set of vertices can be added with no multi-edge incident with 
any vertex of the set. Of course, this can be done with the complete graphs; the 
resulting class of upper embeddable graphs is that of split graphs. Recall that 
a simple graph G is a split graph if its vertex set can be partitioned into two 
subsets V1 and V2 such that (VX)G is a clique and V2 is independent in G. 

PROPOSITION 2.6. A split graph is upper embeddable. 

P r o o f . The result follows immediately from Corollary 2.3 and the fact that 
the complete graph is absolutely upper embeddable. • 

PROPOSITION 2.7. A split graph is strongly upper embeddable. 

P r o o f . Let G be a split graph, and let V(G) = V1UV2, where (V1)G 

is complete, and V2 is independent in G. Let e = uv G E(G), not a bridge. 
Clearly, u G Vx or v G V1, without loss of generality, let v G Vx. We consider 
the following two cases. 

(i) u G V1. Then G — e — V2 has diameter 2. Recall that a multigraph of 
diameter 2 is absolutely upper embeddable, see S k o v i e r a [9] and the remarks 
preceding Theorem 1.2. Hence G — e is upper embeddable. 

(ii) u EV2. Then G — e is also a split graph, which is upper embeddable by 
Proposition 2.6. • 
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Since 4-edge-connected graphs and graphs of diameter 2 are all absolutely 
upper embeddable multigraphs, we have the following: 

PROPOSITION 2.8. Let G be a multigraph, and let S C V(G) be an indepen
dent set. If G — S is 4-edge-connected or has diameter 2. and no multi-edge is 
incident with S, then G is upper embeddable. 

Finally, we remark that some more new classes of graphs can be obtained by 
using the ideas mentioned in this section. The results will appear elsewhere. 
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