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ON SOME VERSIONS OF JENSEN'S INEQUALITY 
ON OPERATOR ALGEBRAS 

RYSZARD J A J T E 

(Communicated by Michal Zajac ) 

A B S T R A C T . Jensen's type inequalities are proved for convex polynomials of 
linear operators . 

1. Introduc t ion 

The classical Jensen's inequality (for the conditional expectations) reads as 
follows 

EFf(X) > f(EFX) a.s. E\X\ < oc , 

where / : I —• R is an arbitrary convex function defined on an open interval / 
such that Prob(X e / ) = 1. 

In the context of operator algebras, a similar result holds ([5]). Namely, if / 
is an operator-convex function on (—c^c)^ and a is a normalized positive linear 
map on a C*-algebra A, then 

otf{0 > / K ) (i) 
for all self-adjoint operators £ in A of norm less than c. 

If A is a von Neumann algebra with a faithful normal semifinite trace r , 
then, for a convex function / , the following inequality 

r ( a / ( 0 ) > r ( / ( a O ) (2) 

holds ([12], [10]). 
The inequality (2) is closely related to the previous results concerning the 

special cases (canonical trace, special positive maps, etc., see [3], [4], [11], [13]). 
The main goal of this paper is to prove some results related to (1) and (2). We 

consider a noncommutative polynomial W(x,x*) such that £ H-> W(£,£*) is a 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 47A63, 46L50. 
K e y w o r d s : Jensen's inequality, noncommutative polynomials, completely positive linear 
map. 
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convex map in an algebra of operators acting in a Hilbert space. The inequalities 
of the form 

<xf(W(t,e))>f(W(a£,ae)) 

and 

T{<*f(W(Um)) >T(f{W(at,aC))) 

are proved, where a is a positive linear map, f is a (operator) convex and 
(operator) monotone function, and r is a semifinite trace. 

2. Preliminaries 

We begin with some notation. Let FT be a complex separable Hilbert space, 
and let L(H) be the algebra of all bounded linear operators in H. Denote byv 

LS(H) the self-adjoint part of L(H). Let V C L(H) be a convex set. 

2 . 1 . DEFINITION. A (nonlinear) map a: V —» LS(H) is said to be convex if 

a f —^—J < - ( a f + 0.77), for £,77 e F . 

E X A M P L E S . The maps f *-* f + £*, £ >-> f*f, f i-> (£ + f*) 2 , £ ^ *(f - f ) , 
£ ^ - ( £ - D 2 , £ -> 5f *£ + 7f £* - £2 - ( r ) 2 are convex in L(H). This follows 
from the above definition and from the operator convexity of the function t >—> t2 

(for the basic facts concerning the operator convex and operator monotone func­
tions, we refer to [1], [6], [8]). 

We shall show only the convexity of the map £ t—> £*£. Indeed, we have 

—Y~J ~Y~ ^^Z+^V+^V+vO 

<\(2Ci + 2 7 7 * 7 7 ) ^ ^ + ^ * 7 7 . 

Let us notice that also the inequality 

a V c > > a*£*aa*£a 

holds for ||a|| < 1 (since a*£*(l — aa*)£a > 0) . This is a special case of a more 
general inequality as we shall see in the next section. 
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ON SOME VERSIONS OF JENSEN'S INEQUALITY ON OPERATOR ALGEBRAS 

3. Jensen's inequalities for operators 

3 .1 . THEOREM. Assume that W(x,x*) is a noncommutative polynomial such 
that the map £ -> W(£,£*) is convex in L(H). Let W(0,0) = 0. Then, for 
\\a\\ < 1 and every £ G L(H), the inequality 

a*(W(£,e))a>W(a*tia,a*ea) (3) 

holds. 

P r o o f . We follow some general idea in [8]. Let b G L(H) such that bb* = 
1 - aa* . Put 

M o o ) . « - ( ; ~o6). *={ol 
In the sequel, we shall briefly write W(£) instead of W(£,£*). Before starting 
some calculations, let us remark that, by the condition bb* + aa* = 1, the maps 

Z —> A* ZA and Z —> B* ZB are *-homomorphisms of matrices I ^ ) into 

( c 1 . This implies that, for the polynomial W and X = ( ^ I , we have 

\7 o) V° °/ 

A*W(X)A = A* (W^ Q ) -4 = W(.A*-X.4). 

We have that 

W(a*cla) 0 ^ _w(o.*£a 0 0 W(ò*^ò)У ^ 0 ò*£ò 
= W(±A*xл + |D*XD) 

< ìW(Л*XЛ) + \W(B*XB) 

= k ( T S ^ + H T S)B 
a * W ( 0 a 0 

0 6*w(0&1' 

Consequently, in particular, 

a*W(i)a> W(a*£a), 

which ends the proof. • 
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3.2. THEOREM. Let V = {£ e L(H) : ||£|| < c } ; and let, as before, W(£) = 
W(£,£*) be a convex (noncommutative) polynomial of £ and £* such that for 
£ £ V, | |W(£,£*)|| < ri. Let / . ivzt/z / (0) < 0. be an operator convex and 
operator monotone function on the interval (—D,D), where D = max(c, d). 
Then 

a*f(W(Z,C))a > f(W{a*ta,a*Ca)) , (4) 
for a G L(H) with \\a\\ < 1. £eV. 

P r o o f . Let bb* = 1 — aa*, and let A, B and X be as in the proof of The 

sm 3.1. Let us pi 

of / , we have that 

orem 3.1. Let us put </?(£) = f ^ ) . By Theorem 3.1 and the properties 

(f(W(a'£a)) 0 \ (f(a*W(Z)a) 0 \ 
V 0 f(W(b*tb)))~\ 0 f(b*W(t)b)) 

_f(a*W(Í)a 0 
~ J \ 0 b*W(Í)b 

= f(\A*v(£)A + \B*<p(0B) 

<\f(A*<p(OA) + \f(B*ip(OB) 

= \A*f(<p(0)A + \B*f(<p(0)B 

< /V/(W(£))a o 
o b*f(w(0)b, 

so f(W(a*£a))< a* f(W(£))a. • 

As a corollary, we obtain the following: 

3.3. THEOREM. Let a: L(H) —> £ ( # ) 6e a completely positive linear contrac­
tion, and let f, W and £ be as in Theorem 3.2. Then 

afW((,C)>fW(a(,aC). (5) 

P r o o f . It is enough to apply the S t i n e s p r i n g theorem ([14]) and an 
obvious modification of Theorem 3.2 (comp. [7], [8]). • 

The assumption that the function / is operator monotone and operator 
convex is rather restrictive. Putting the both sides of (5) under the sign of 
a semifinite trace we can obtain a version of Jensen's inequality for a func­
tion / which is only nondecreasing and convex. Let r be a faithful normal 
semifinite trace on a von Neumann algebra A. Let us recall that r admits an 
extension to a linear functional on the ideal mT linearly spanned by the set 
pT — {x G A+ : T(X) < oo} . Let £ = £x — £2 be the Jordan decomposition 
of a self-adjoint operator £ E A. We say that r(£) is defined if r(£j) < oo or 
T(Q < oo. 
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3.4. THEOREM. Let A be a semifinite von Neumann algebra with a faithful 
normal semiinfinite trace r. and let a: A —• A be a unital completely positive 
linear map. Let W(x,x*) be a noncommutative polynomial such that the map 
€ -> W ( £ , C ) is convex. Assume that ||f|| < a and | |W(f,f*) | | < b. Let f 
be a nondecreasing and convex function on the interval I = (—a, cr), where 
a — max(a, b). Then the inequality 

T{af(W(t,C))) > r(f(W(ati,ae))) (6) 
holds also for infinite values of r. provided that both the sides of (6) are defined. 

P r o o f . In the sequel, as before, we shall write W(£) instead of VV(£, £*). 
Let (an) and (bn) be sequences of real numbers (an > 0) such that 

f(u) = sup(anu + bn), u € I = (-cr, or) 
n 

(see, e.g., [2]). Consequently, 

f{W(i))>anW(0 + bnl 

and 

af(W(0)>anaW(i) + bnl 

>anW(at) + bnl 

(by Theorem 3.3, for f(t) = t). 
Let 

a 

aţ)= í Ae(dЛ) VV( 

be the spectral representation of W(a£). 

We split the proof into two parts. 
Part I. f(s) > 0, for s E I. 

Let 0 < eN —> 0. Fix some N and take a finite partition (Z[ , . . . , Z^) 

of the interval [c, d] and real numbers cn ^ (n = 1, 2 , . . . , TV; k = 1, 2 , . . . , m ^ ) 

such that putting p̂ - ' = e(ZJ ') we have 
з 

rnк 

í(an\ + bn)e(d\)-J2cnJcP
(
i; 

J i i 

< Č ^ , for n = 1,2,... ,1V 
(7) 

and 

mдr 
(N) 

/

i i ь y V 

к m ^ ( a - A + ò » } e(dA) - Šíж^K 
„ ~ ~ fc=l - -

< єN • ( 8 ) 
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For Z{N) with r(p) *) — oo, we fix an increasing net K?- ' of projections q 

in A with q < P{N), r(q) < oo and limq = pz
(7V). For Z{N) with r ^ , ^ ) < oo, 

we put K. = 0. Let B ^ be a von Neumann subalgebra of A generated by 
P{N) and K2

(7V), i.e., BN = (p{N),K{N), i = 1, 2 , . . . ,mN)». Then the trace 
r restricted to B ^ is semifinite. By [15; Proposition 2.36], there is a faithful 
normal conditional expectation EEN from A onto MN such that r o EByv = 
Put D = a / ( W ( 0 ) • W e h a v e 

anW(aO + bnl 

anWK) + 6nl - E ^ H + E ^ * ^ < a/(^(0) = -> , 

r . 

k=l 7 k=l 

so 

k=i 

Consequently, 

£c^<EB»D+£;vl, 
k=l 

and finally, we get 
mN 

k=i ~n-

Thus we have, for gM(\) = max (a A + & ), 
7V l < n < 7 V n n 

d 

J gN(\)e(d\)<DN + 2eNl, (11) 

where DN=E*ND (N = 1, 2 , . . . ). 
The operators D ^ are positive since / > 0. There is a net (Ns) such that 

DN converges weakly to some positive operator, say B. By the weak Mower 
semicontinuity of r , we have 

r(DNs) = T(af(W(0)>r(B). (12) 

On the other hand, the sequence of functions (gN) converges uniformly on the 
spectrum of W(a£) to the function / . Thus 9N(W(a£) -> f(W(a£)) in the 
uniform topology, so, by (11), 

d 

f(\)e(d\) = f(W(aO)<B. (13) 
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Consequently, we get the formula 

r(/(W(aO) < r(B) < r(af(W(0)) , (14) 

still under the assumption that f(s) > 0, for s 6 / • 
Part II. 

Let us assume now that f(s) < 0 for some s G / . In this case, the set 
of zero's of / is one point set (if not empty) . Let f(sQ) = 0, and assume for 
a moment that T(\f(W(a£))\) < oo. Then, for every Borel subset Z C [c, d] 
separated from sQ (i.e., with dist(s0 ,Z) > 0), we have r(e(Z)) < oo. More­
over, if T(e({s0})) < oo, then the trace r restricted to the von Neumann 
algebra (W(a£)) is semifinite. In the case T(e({s0})) = oo, we can fix an 
increasing net K of projections q in A such that q < e({s0}) , r(q) < oo, and 
limq = e({s0}). Let B be a von Neumann subalgebra generated by W(a£) and 

K 

K. Then T|J$ is semifinite, and there exists a T-preserving normal faithful con­
ditional expectation EE of A onto B, and we have EBaf(W(£)) > f(W(a£)) . 
Consequently, 

r(af(W(0)) > r(f(W(aO)) 

under the assumption that the both sides of this inequality are finite. 

The cases r(af(W(£))) = -f-oo and r(f (a(W(£)))) = - o o are trivial. Let 

us consider the case r(af(W(^))) = —oo (which means that r(af(W(^)) + ) 

< oo and r(af(W(^))_) = +oo) . Keeping the notation of the first part of the 

proof, we can start from formula (11) and use the fact that 

d 

gN(\)e(d\)-^f(W(aO) I 
in the uniform operator topology as N —> oo, say 

d 

I gN(\)e(d\)-f(W(aO) = 6N 

Putting uN = max(2eN , 6N), we obtain 

f(W(aO)<EB»f(W(0)+2u;N. 

Modifying slightly the definition of the sequence of the algebras 3N , we can 
assume that it is increasing-

Take an increasing net (ps) of projections such that T(PS) < oo, ps G 3^a 

(DN —> B weakly) and u)Nj{ps) -> 0 (clearly, such (p ) exists). Then we have 

r(PfiE
B»>af(W(0)) > r(pj(W(aO)) + ^Nj{pa) • 
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Since ps G B>N , we obtain 

T(psaf(W(0))>T(psf(W(aO))+as, with as - 0 . 

On the other hand, by the normality of r , we have 

T(af(W(0)) =-\imr(psaf(W(0)_) . 

Consequently, 

+00 = \imT(Psaf(W(0)_) = -\imT(Psaf(W(0)) 

< ___r(pa(-f(W{at))+ + f(W(aO)_)) 
S 

<\imT(psf(W(aO)_), 

so r(f (W(at;))_) = +00, which means that r(f(W(at;))) = —oo. It remains 
to consider the case r(f(W(a^))) = +00. Going back to formula (11), we 
can construct the operator B as before (as the weak limit of DN ). The only 
difference is that now B is not necessarily positive. We take the positive part 
B+ of B, and by (13), we get the inequality 

f(W(aO) <B+= l i m E B ^ a / ( ^ ( 0 ) + . 

By the weak *-lower semicontinuity of T , we obtain 

T(B+) < T(af(W(t))+). 

Taking an increasing net of projections (ps) with r(ps) < 00 and limp = 1, 
s 

we obtain 

+00 = \imT(psf(W(aO)+) = \imT(psf(W(at))) 

<\imT(psB+) <T(af(W(0)+), 

which concludes the proof. • 

Remark . A very special case of formula (6) can be found in [10]. 
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