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ON THE (m, n)-BASIS OF A DIGRAPH 

MATUS HARMINC 

In the presented paper there is introduced the notion of an (m, n)-basis of 
a digraph (where m and n are positive integers). There is investigated the existence 
of an (m, rc)-basis for digraphs of certain types. Some results of R i c h a r d s o n [6] 
and von N e u m a n n and M o r g e n s t e r n [5] are generalized. 

Let us recall some fundamental notions. A finite directed graph D = (V, A) with 
the set of points V and with the set of lines A c V x V with no loops or multiple 
lines is called a digraph. The concepts of a path, a cycle, an indegree of a point v 
(denoted id (v)) are used like in [4]. A transmitter is a point whose indegree is 0. 
The n-th power of a given digraph D is the digraph D(n), which has the same point 
set as D and a line uv is in D(n) if and only if there is a path in D from u to v of 
length d^n (see [4]). Throughout the paper the symbols c, d, k, m, n denote 
positive integers. For each set M c V of points of D we denote by H(M) the set 
consisting of terminal points of those lines that have initial points in M. 

A set 5cz V is m-independent if for no two distinct points u,veS there exists 
a path of length d S m from u to v. A set S c V is an n-cover in D if for each 
v eV — S there exists at least one ueS such that there exists a path of length d^n 
from u to v. A set S is an n-basis for D if it is n-independent and an n-cover for D 
(see Harary, Norman, Cartwright [4]). This concept is a generalization of the 
concept of a 1-basis (a solution) of a digraph ([1], [6]). (Some authors study the 
dual concept — the kernel of a digraph [2].) 

Definition. A subset S of Vin a digraph D = (V,A)is called an (m,n )-basis of 
Dif 

(i) S is m-independent, and 
(ii) S is an n-cover in D. 
By definition of the (m, n)-basis it is clear that an (m, rc)-basis is a (k, c)-basis 

of the same digraph for all k^m and c S n . 
For each positive integer n the notion of an (n, n)-basis coincides with the 

notion of an n-basis. In [4] it is established that, instead of studying the existence of 
an (n, n)-basis of a digraph D it suffices to study the existence of a 1-basis of D ( n ) . 
We note that the situation with an (m, n)-basis in the case m i= n is rather different. 
Further we remark that the problem of the existence of a 1-basis for an arbitrary 
digraph is not solved in general (see [1]). 
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Theorem 1. a) Every digraph has an (m, n)-basis for n ^2m. 
b) For each pair (m, n), n<2m, there exists a digraph without an (m, n)-basis. 
Proof. The proof of a) will be established in two steps. 
1) Using mathematical induction with respect to the number of points of 

a digraph we shall prove the theorem for m = 1. The digraph with one point and 
digraphs with two points have a (1, 2)-basis. Let each digraph with k points have 
a (1, 2)-basis for each k <c and let a digraph D have c points. Let us take a point v 
and construct a digraph G generated in D by a set of points V — {v} - H({v}). 
Let 5 be a (I, 2)-basis for G. If there exists ueS such that v eH({u}), then 5 is 
a (1, 2)-basis for D too. In the opposite case we can easily verify that Su{v} is 
a (1, 2)-basis for D. 

2) Now let us construct the digraph D(m) and denote by 5 (m) a (1, 2)-basis for 
D (m) . We have 5(m)cz V; the 1-independence in D(m) is equivalent to the m-indep-
endence in D and similarly the 2-cover for D(m) is the 2m-cover for D. The set 5 ( m ) 

is an (m, 2m)-basis for D, i.e. an (m, rz)-basis for D for each n^2m. 
b) If n <2m, then a digraph that consists of two cycles of length 2m + 1 having 

a unique common line, has no (m, 2m — l)-basis and therefore no (m, rz)-basis for 
n <2m. 

Corollary 1 (Landau [4]). In every tournament there exists a point v such that 
every point different from v is reachable from vbya path of length one or two. 

Corollary 2. If in a digraph D there is no path of length n + \, then D has an 
(m, n)-basis for each m. 

To prove this it is sufficient to take an (m, 2m)-basis 5 for D (such a basis exists 
according to Theorem 1). Since every path is of length at most n, the set 5 is an 
(m, rz)-basis for D, too. 

It is possible to establish stronger results than Theorem 1 for some special classes 
of digraphs. A digraph D = (V, A) is called: 

transitive, if uv e A, vw e A implies uw eA for each triple of distinct points u, v, 
w; 

acyclic, if D has no cycle; 
symmetric, if for each pair of distinct point u, v the. condition uveA is 

equivalent to vueA; 
asymmetric, if uv eA implies vu£A for each pair of distinct points u, v. 

Theorem 2. a) Every transitive digraph has an (m,n)-basis for each pair 
(m, n). 

b) Every acyclic digraph has an (m, n)-basis for m^n. Let m>n; there exists 
an acyclic digraph having no (m, n)-basis. 

c) Every symmetric digraph has an (m, n)-basis for each m^n. Let m>n; 
there exists a symmetric digraph having no (m, n)-basis. 
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Proof, a) In a transitive digraph the existence of a path from u to v is 
equivalent to the existence of the line uv. According to this fact and to the 
definition of an (m, zi )-basis it is evident that the following assertion holds: A set S 
is an (m, n)-basis for a transitive digraph if and only if it is a 1-basis for this 
digraph. As a transitive digraph has a 1-basis (see [2], [4]), part a) is proved. 

b) It is known (cf. [4]) that an acyclic digraph has an m-basis for every m, 
therefore it has an (m, n)-basis for each n^m. The digraph consisting of points w0, 
uu ...,um and of lines u0uu uxu2, ..., um-xum has no (m, m — l)-basis and therefore 
no (m, n)-basis for n<m. Moreover, the following holds: Assume that D is an 
acyclic digraph, n <m and let W be the set of transmitters of D. Then D has an 
(m, n)-basis iff V = W u H(W) u H(H(W)) u ... u Hn(W). (And in this case 
W is the (m, n)-basis of D.) 

c) If a digraph D is symmetric, the digraph D(m) is symmetric, too. We denote by 
5 a 1-basis of D(m) (in a symmetric digraph such a basis exists, cf. Berge [2]). The 
set 5 is an m-basis for D ; it is also an (m, n)-basis for D for n^m. The digraph 
which consists of the points u0, uu ..., u2m and of the lines u0uu uxu0, uxu2, u2uu ..., 
u2m-iu2m, u2mu2m-u u2muQ, u0u2m has no (m, m-l)-basis. 

Theorem 3. For any asymmetric digraph D the following statements are 
equivalent. 

(i) V= WuH(W), where W is the set of transmitters. 
(ii) For any pair (m,n) the digraph D has an (m, n)-basis. 

(iii) The digraph D has a (2, \)-basis. 
Proof, (i) implies (ii): W is an m-independent set for any m and it is a 1-cover, 

(ii) implies (iii) immediately. Let S be a (2, l)-basis for the digraph D, s e V — W — 
H(W). If s &S, there exists w eS such that ws eA. If s eS, we take w=s. Then 
there exists v eV — S such that vw eA. Because the set 5 is a 1-cover, there is 
u e V in S such that uveA; since D is asymmetric we have ui^w. This is 
a contradiction, since 5 is a 2-independent set. 

Corollary. Every asymmetric digraph with no transmitter has no (m, \)-basis 
for each m>\. 

Proof. If m > l , then every (m, l)-basis is a (2, l)-basis. In an asymmetric 
digraph we have a contradiction between (i) of Theorem 3 and the assumption of 
the corollary. 

Theorem 4. Let D have an (m, n)-basis. Let C be a cycle such that id (v) = 1 
for each v eC. Let d be the length of C Then 

d e ( 2 ; n + l ) u U ( c ( m + l ) ; c(n + l)>. 

Proof. The cycle C as described in the theorem must have the property that 
each point of C is covered only by points from C. We denote by c the number of 
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those points of the cycle, which are contained in an (m, n)-basis S. In the case c = 1 
we obtain that for the length d of the cycle C we have de (2; n + l). Let c ^ 2 . If 
d<c(m + 1), the set S is not m-independent. If d>c(n + 1), it is not an n-cover. 
Thus d e ( c ( m + l ) ; c(/i + l)>. 

The opposite assertion is not valid in general: A digraph consisting of the points 
Mi, ^2, u3, vu v2, v3 and of the lines uxu2, u2u3, u3uu uxvu u2v2, u3v3 has 
d e (2\n + \) for m = 3, n = 2, but has no (3, 2)-basis. 

After this paper has been submitted I have found that the step 1 (in the part a) of 
Theorem 1 was proved already by V. Chvatal and L. Lovasz (Hypergraphs Semi­
nar, Lecture Notes in Mathematics, 411, Springer-Verlag, Berlin 1974), 
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ОБ (т,п)-БАЗЕ ОРИЕНТИРОВАННОГО ГРАФА 

Матуш Г а р м и н ц 

Р е з ю м е 

В работе определяется понятие (га,и)-базы ориентированного графа. Изучается сущест­
вование (га, л)-базы для всех пар натуральных чисел га, п. Доказаны теоремы о необходимых 
и достаточных условиях существованиа (га, л)-базы графов определенных классов. 
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