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REMARKS ON THE INTEGRABILITY 
IN BANACH SPACES 

IVAN DOBRAKOV 

Z. Lipecki in [8] pointed out that the proof of Theorem 1 in [10] is invalid. In 
fact, the measure JU constructed there is countably additive only in the strong 
operator topology, see [11]. In the proof of Theorem 2 below, using the Dvoretz-
ky—Rogers theorem, see Theorem IV.1.2 in [2], we construct the required 
measure countably additive in the uniform operator topology. Thus Theorems 1 
and 2 below give a correct proof of Theorem 1 in [10]. Although our Theorem 1 is 
equivalent to Theorem 6 in [10], we give a very simple proof of it. Finally in 
Theorem 3, which is a complement to [9], we characterize the integrability of 
a measurable function using its weak (in [9] called scalar) integrability. 

Let SP be a 8-ring of subsets of a non empty set T, let Xand Ybe Banach spaces 
(both real, or complex) and let L(X, Y) be the Banach space of all bounded linear 
operators from X to Y We say that a set function m: $P-*L(X, Y) is an operator 
valued measure countably additive in the strong operator topology, if for every 
x e X the set function E—> m(E)x, E e SP, is a countably additive vector measure. 
In [3] we started to develop a Lebesgue type integration theory for functions on T 
with values in X with respect to such a measure. The basic quantity of the theory is 
the semivariation m of the measure m, which is defined by the equality 

m(-E) = sup 2 m(EnEt)Xi XieX, |x, |šl , £ e 0 \ 

E,nE, = 0 for /-£/, i , / = l , ..., r, r = l ,2 , . . . l 

= sup v(y*m, E), Eeo(SP), 
lyi-s-

where o(5P) denotes the smallest a-ring containing SP, and v(y*m,. ) , y* e Y* = 
the dual of Y, is the variation of the measure A —>y*m(A)eX*, AeSP. We 
immediately see that m(0) = O, m is monotone, subadditive and has the Fatou 
property: En eo(SP), n = l, 2, ... and En/E implies m(En)/m(E). We say that 
m is continuous on SP if En e SP, n == 1, 2 , . . . and En\0 implies m(E^)—>0. It is 
easy to see that mis continuous on SP if and only if it is locally exhaustive on SP, i. e., 
A € SP; En e SP, n = 1, 2, ... pairwise disjoint implies m(AnE,)—>0. 
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The basic assumption of the theory is the requirement of finiteness of the 
semivariation m on 0>. In Theorem 5 in [3] we proved that if the semivariation m is 
continuous on 3P, if / : T—>Xis a bounded measurable function, and Ae&, then 
the function /. XA is integrable. As Theorem 6 in [10] shows, the result is in a sense 
the best possible. We now give a very simple proof of Theorem 6 from [10]. 

Theorem 1. Suppose that the semivariation m is not continuous on £P 
(equivalently, not locally exhaustive on &). Then there is a set AeSP and 
a bounded ^-elementary function f: T—>X such that the function f . XA is not 
integrable. 

Proof. By assumption there is an e > 0 a set A e 2P, and a sequence of pairwise 
disjoint sets Ene 2P, n = 1, 2, ... such that m(AnEn)>e for each n = 1, 2, ... . 
According to the definition of the semivariation m for each n = l, 2, ... there is 

imple function /„: T—>X, sup | fn(t)\ .= 1 such that fn dm 
teAoEn | J E„nA 

> є . Now 

/ = 2 ^ • %En™ SP-elementary, and / . XA cannot be integrable, since the indefinite 

n = l 

integral E—> I /dm, E e o($F), of an integrable function / is a countably additive 

vector measure, see Theorem 3 in [3]. 

If the Banach space Y contains no subspace isomorphic to c0, see pp. 160 and 
161 in [1], then the finiteness of the semivariation m on ^ is equivalent to its 
continuity on &, see the *-Theorem in [3] and the Corollary of Theorem 5 in [4]. 
We now show that the assumption* c0 <fc Y is essential for the finiteness of m to 
imply its continuity. 

Theorem 2. LetXbe an infinite dimensional Banach space and let $P = 2N be the 
power set of the set N of positive integers. Then there exists a measure 
m: 5P->L(X, c0) countably additive in the uniform operator topology with finite 
but not continuous semivariation m on $P. 

Proof. Since X*, the dual of X, is also infinite dimensional, according to the 
Dvoretzky—Rogers theorem (see Theorem IV. 1.2 in [2]) there is a sequence 

x*ne X*, n = 1, 2, ... such that the series 2 ** is unconditionally convergent in X* 
n = l 

CO 

and 2 \x%\ = + 0 0 - Without loss of generality we may suppose that \x*n\ ̂  1 for each 
n = l 

n = 1 2 .. • P u t Ho = 0and let nt be the first positive integer such that ^ | * * | > 1 -
i = l 

Clearly 5* I*?I = 2 . Similarly, let n2 be the first positive integer such that 
i = * 

n-> 

N^ \x*\yrl. Then obviously n 2 >rt i + l and again 2 1**1=2- Continuing in 

324 



this way we obtain a subsequence nk, k= 1, 2, ... such that 1 < 2 |x*| =2 for 
l = « A c - l + l 

each fc = l ,2 , ..., where no = 0. Put I*=={n*-i + l-..., n*} and let ek = 

(0, . . . ,0,1,0, ...)e c0, fc = l ,2 , . . . . Clearly T= Q 4 and IknJ, = 0 for k=tj, 

7, fc = l , 2 , . . . . For iefk put 3i = *k and Lkc = x** . yte c0, xeX. Obviously 

U e L(X, c0) for each i = 1, 2, ... and 2 UJX = 2 *** • 3* e c0 for any EG & and 

xeX. Evidently 2 ^ : -*-*co is linear and 2 ^ — 2 **- • Hence if we put 
ieE ieE ieE 

™(-5) = 2 ^ f o r £ e ^ » then m: 0>->L(X, CQ) is countably additive in the 
ieE 

uniform operator topology. 
Now according to the definition of the norm in X* there are x,eX, | x . | ^ l , 

i= 1, 2, ... such that 2 **x.>l for each k= 1, 2, ..., From the definition of 
. = n * - l + l 

the semivariation m we h^ve 

m(T) = sup | 2 ™(EІ)XІ 

for i 

, x,eX, | x . | ^ l , Eie0>, £ , 0 ^ = 0 

" - / , 0 - 5 = - " ' W = L ••-,/•, r=1 .2 , . . . } 

= s u p { 2 2 « - i | . - ] 
I 1=1 feE. I J 

=sup | 2 2 *** • *L •••[ 
I i = l i€Ei I J 

= max| 2****L •••[> where I, = I for IeE, 
k I i € l k I J 

Šmax2l** . |Ž2 . 

On the other hand m(I*)i^ £ **& > 1 for each fc=l,2, . . . . Since Ik, 
| i - n k - i + l 

/c = 1, 2, ... are pairwise disjoint elements of 3* with union equal to Te £r\ m is not 
continuous on 9. The theorem is proved. 

The next theorem, a complement to [9], characterizes the integrability of 
a measurable function using its weak (in [9] called scalar) integrability. It may be 
proved similarly as Theorem 17 in [3]. 
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Theorem 3. A measurable function f: T—>X is integrable with respect to 
m: SP-+L(X, Y) if and only if fis integrable with respect to y*m: SP-+X* for 

eachy* e Y* and the scalar measures {j f d(y*m), y* e Y*, | y * | S l } are uniform

ly countably additive on o(SP) (equivalently, uniformly exhaustive on SP). 

Note a certain similarity between integrable functions and the elements of 
$i(m), see Definition 4 in [4]. Namely, a measurable function / : T—>X belongs to 
%(m) if and only if the function | / | is integrable with respect to the measure 

v(y*m,.): ^-->[0, +oo) for each f e Y* and the integrals {J | / | dv(y*m, . ), 

y*eY*, | y * | ^ l } are uniformly a-additive on o(3P) (equivalently, uniformly 
exhaustive on 0). 

Let us note also that if SP is generated by a ring SJl, i.e., if 3P=<5(£%), or if 
SP= 6(^0) is the 6-ring of relatively compact Baire subsets of a locally compact 
Hausdorff topological space, then according to Theorem 11 and Lemma 7 in [6] 
the above mentioned uniform exhaustivity on & may be replaced by a uniform 
exhaustivity on 01, or on %, respectively. (%0 denotes the lattice of all compact G8 

subsets). 
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ЗАМЕТКИ ОБ ИНТЕГРИРУЕМОСТИ В ПРОСТРАНСТВАХ БАНАХА 

Ь̂ ап ^оЬ^акоV 

Резюме 

Основным результатом работы является доказательство следующей 
Теоремы 2. Пусть X бесконечномерное пространство банаха и пусть 0* семейство всех 

подмножеств множества натуральных чисел. Тогда существует мера т: &-+Ь(Х, Со) счетно 
аддитивная в равномерной операторной топологии, имеющая конечную полувариацию т на 0\ 
которая не является непрерывной сверху на пустом множестве. 

Из этого результата вытекает корректное доказательство Теоремы 1 из [10]. 
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