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T H E INTERSECTIONS 
OF R A N D O M FINITE SETS 

JAN HURT, JOSEF MACHEK, JOSEF STEPAN, DANA VORLiCKOVA 

1. Introduction 

The present paper deals with a particular scheme of the capture-recapture 
procedure. Suppose we have a finite set S of n elements numbered 1, ..., n. The 
sample procedure is performed in k independent stages in the following way. At 
each stage we draw randomly m elements from S without replacement. Each 

combination of m elements is thus drawn with probability ( 1 . Let M, be the set 

of elements drawn at stage j , / = 1, ..., k and let M be the set of elements which 
* 

have been drawn at all k stages, i.e. M = C] My. Let Cnk denote the cardinality of 
/ - i 

M. The aim of this paper is to derive some basic properties of G*. As it will be seen 
later, the exact distribution of C„k is not easy to handle and hence some asymptotic 
results would be helpful. We shall state conditions under which C„* is asymptotical­
ly normally distributed or possesses an asymptotically Poisson distribution. The 
entrance time into zero will be investigated and some numerical results given. For 
some other aspects of the capture-recapture theory see [4]. 

2. Exact distribution and auxiliary results 

Let L denote the indicator of M, i.e. I, = 1 if i € M, 7i = 0 otherwise, i = 1, ..., m. 
n 

Obviously, G* = 2 ^ - To derive the exact distribution of G* we make use of 
1=1 

Jordan's identity. Let Au ..., A. be random events on the same probability space, 
and let Wn,r denote the probability of the event that exactly r events from among 
Ai,..., Ai occur. Then we have 

w...=|'(-iy(гJ))&+/, 
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where 

5,= 2 P(Л,n...nЛ,), / ' = 1 , ..., n, S 0 = l . 
I - £ i l < <iy«Sn 

The event {C„* = r} occurs iff just r of I,, ...,/„ equal to 1. In our case we identify 
A, with {1 = 1}, i = l , ..., n, and obtain 

p(A.n..nA,,=[(;,-4)/p]*. ,-. -, 
= 0 otherwise. 

Therefore 

5 o = l , 

-c 
= 0 otherwise, 

H") [(::»]'• '-«•— 
and 

nc.^z<-<;U:>)[(::;:M:)]' <21> 
= 0 otherwise, r = 0, ..., m, 

or . using the identity ( ' *>) ( ^ . ) = ("){" j ) , 

r<a.=,K:)(;ri<-<70(r-;:iy. <"> 
= 0 otherwise. r = 0, ..., m, 

It should be noted that for k = 2 this becomes a hypergeometrical distribution. To 
the best of our knowledge last formulas cannot be substantially simplified. 

Sometimes the following Markovian property may be useful. The intersection 
r 

P) Mh t = 0, 1, 2 , . . . , may be considered as a system observed at time points t. The 

r 

system will be said to be in the state i iff D M contains exactly i elements, 

i = 0, ..., m. The transition probabilities are 

*«G) U:;)/U) • /=0 ' -• '• j"+1- ••••m' (23) 

= 0, 

and the initial distribution is am = 1, a, = 0, 0 ^ / ' ^ m - 1 . This completely defines 
a discrete homogeneous Markov chain with states 0, ..., m. 

For further investigation the moments of C„k are of fundamental importance. To 
simplify the notation we put 
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m (m-j\k . 

#»=„•. Iи^V y = o ' - ' m. 

Then, EF, = p0, EI',r, = p0pi for ii=j, Er,r,rh = p0p\p2 for all /', /, h different, 
EI,I,IhIi = p0p\p2p3 for all i, j , h, I different and s, r, t natural. We immediately 
obtain 

ECnk = np0 = npk. (2.4) 
Further, 

E C\k = _]E J? + _]E/.J} = np0 + n(n - \)p0p\, 

and hence 
var CU = n2p0(pi -p 0 ) + np0(\ -p\). (2.5) 

After a straightforward but tedious algebra we can obtain higher moments. We just 
put the formulas for two higher moments 

E C°„k = n3p0p\p2 + 3n2p0p\(\ -p2) + np0(\ -3px + 2ptp2), 
ECnk= n*p0p\p2p3 + 6n3p0p\p2(\ -p3) + n2p0p\(l - \8p2 + 1 \p2p3) + 

+ np0(\ — lp\ + \2p\p2 — 6p\p2p3) 

from which we get 

/is = n3p0(pxp2 - 3p0pi + 2pl) + 3n2p0\p\(\ - p2) -p0(\- p\)] + 

and 
+ np0(\ -3pt + 2p\p2) 

\U = n*p0(p\p2p3 — 4p0p\p2 + 6p%p\ — 3 pi) + 
+ 6n3p0[p\p2(\ - P3) - 2p0p\(\ - pi) + pl(\ - p\)] + 

+ n2po[pt(l -18/?2 + l \p2p3) - 4p0(l - 3p, + 2p\p2)\ + 
+ np0(\ - lp\ + \2p\p2 - 6pip2p3) 

for the third and fourth central moment, respectively. 
Using the obvious fact that the conditional distribution of C* given C,*-i is 

hypergeometrical, we can evaluate the factorial moments of CU which will be 
helpful for deriving the asymptotic-Poisson-distribution of C* in Section 3. 

We have 

E ( ^ | a . * - i = c) = E [ C U ( 0 * - l ) . . . ( G * - ( r - l ) ) | a . * - i = c ] -

____--, c! (n-c)\ _c ( r W f ) 

t « \ 2 ' ; 0 ' - ' ' ) ! ( c - / ) ! ( m - y ) ! ( n - c - m + / ) ! /i(" " 

Then, 
m" 

E(CÍЙ) = E[E(CÍ,2|C.*-i)]=^r --(Cí?*-.), (2-6) 
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which is the recurrent formula for the evaluation of E ( C A ) - Applying (2.6) 
repeatedly we get 

E ( C V ) ("" , )* l-E(c:i). 

However, Cl = m with probability 1, so that 

F f C ^ - K Y * ,o__!!(______(^__i______ (21) 
E(a* )-U , 'V [n(n-l)...(n-(r-l))]kl ( 2 ? ) 

Lemma 2 .1 . / / n—>~ and m—>~ ,'n suc/i a way fftaf p remains fixed then 

lim ] varC*-e*=p*[l kpk +(k-\)pk]. (2.8) 

Proof. First note that 

('->!,)'(• l,)'-
1+£<'- ,>+<'<" ,>-

Then 

^ v a r C 4 = « p * { p * [ l + ; | ( p l ) + 0 ( „ ' ) ] - / } + 

+ p * { l - / / [ l - ^ ( p - l ) + o ( « ' )]}-p*[l * p " + (* l)p*], 

Q.E.D. 

Remark. Denote the expression in (2.5) as g(k). Using standard methodes of 
calculus we can find that g(k)>0 for 0 < p < l . 

Lemma 2.2. Under the assumptions of Lemma 2 1. 

1 p 

G* —> z? as «—>~. 

Proof. This follows from Chebyshev inequality and from lemma 2.1. Q.E.D. 
Now let us leave the assumption of a fixed number k of stages and study the case 

when the sampling is repeated until at some stage the set M is found empty for the 
first time. Denote by T the first entrance time into zero, i.e., T = min {v: C„ =0). 
Using the facts that 

p(c. o)-£»-,y (;)[(: ;)/(:)] 
and 

P ( T = -0 = P ( T < S , T > S - 1 ) - P ( T < S ) P ( T - 5 1 ) - P ( C 0) P ( C , , - 0 ) 
we find that the distribution of T is 
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-<-)=2(-.v(;)[(r-M:)]"[(::M:)-']' <«> 
s = 2, 3, .... 

Next we give a formula for E T . Since 

E T = | > ( T ^ S ) = 2 [ 1 - P ( T ^ S ) ] + _ > ( T = 5) = 2 [ 1 - P ( C J = 0 ) ] + 1 
J I j i j i J i 

we have 

E,=i+iE(-ir-(;)[(::M:)r= 
(n\(n-i\ 

- i i Vr iv- \i'\m-i' 

' '• ( : ) - ( : : ; • ) 
OГ 

(m) (n) 

- ( ; ) - ( ; ) 

The numerical illustration for m = -. 

8 10 12 20 30 50 

E T 3 3,8 4,3 4,67 4,93 5,16 5,82 6,37 7,06 

Finally, we derive the characteristic function qpnk of C„*. First remark that 

exp {ia,) = 1 + 2 1 (UI,y = 1 + 1, (e" - 1). 
5 — 1 S . 

Then 

^ ( 0 = Eexpfu2/() = E n [ l + /;(e''-l)] = E2(")/*(e' '-iy 
I / 1 J / i / o \ / / 

where /* are such random variables that 

E J 8 - 1 , 
EI*=p0...p, i, / = 1 , ..., m, 

= 0, j= m + 1, ..., n. 

Hence, 

<M0 = l + 2 (")(e"-iy tip- (2-10) 
/ 1 \ / / J - 0 
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3. Convergence to the Poisson distribution 

Now we shall study conditions under which the asymptotic distribution of C„k for 
n —»°° is the Poisson one. In this situation m = m„, k = k„, so that C„k

 — C„k„mn — C„. 
The ratio m„ n = p is fixed as in the preceding sections. First, we shall investigate 
the behaviour of the factorial moments E(C„*), given by (2.7), when «—>°°. 

Lemma 3.1. Let us suppose that n —»°°, m„ —»°°, A: = &„ —> °° in such a way that 
for fixed p np" = m"„ n" '->A, 0 < A < ° ° . Then, 

E(C„ r l)->A r. (3.1) 

Proof. According to (2.7), we have 

E(C,") = (np.y V ""' 

ПH) 
The rest is obvious Q.E.D. 

R e m a r k . The sufficient condition for fulfilling npk"-*\ is k„ =0(n), e.g. 
Having calculated the factorial moments of the Poisson distribution ^(A) with 

the parameter A we can see that the limiting values in (3.1) are the same. This fact 
enables us to prove easily that the limiting distribution of C„ is Poisson. It is 
interesting to note that the same procedure applied to (not factorial) moments of 
C„ would involve much more difficulties. 

Theorem 3.1. Suppose that «—>°°, w„—»°°, k = k„—»°° in such a way that for 
a fixedp, npk = mk nk '—»A, 0 < A < = ° . Then the asymptotic distribution of C„ is 
Poisson with the parameter A. 

Proof. As it follows from Lemma 3.1, the limiting values of the factorial 
moments E(C„r>) are equal to the corresponding moments of ^?(A). Obviously, the 
same relation holds for moments. The Poisson distribution (having an analytic 
characteristic function) is completely characterized by its moments. The assertion 
follows from Theorem B in [2] p. 198. Q.E.D. 

Now we shall return to the case of fixed k. Investigating the asymptotic 
distribution we shall see that to get the Poisson distribution we shall not be able to 
continue to fix p—p(m) m„ n. 

Theorem 3.2. Let us assume fAaf/.—>°°, w„—>°° in such a way that n[p(n)]k —> A, 
0 < A < °°, for fixed k. Then, C„ has the asymptotically Poisson distribution with the 
parameter A. 

Proof. Having proved that E f C l ^ ^ A ' for ElCil] given by (2.7) (which is 
obvious) we use the same argument as in the proof of Theorem 3.1. Q E.D. 
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4. Asymptotic normality of C„* 

Consider the model of random intersections introduced in Section 1 with a fixed 

number of repetitions k>\ and a fixed ratio — = I —")=P, P e [0, 1 ]• Recall that 

E C„k = npk and, according to Lemma 1.1, — var C„k -+Qk, n —> °°, where Qk is given 

by (2.8). According to Lemma 2.2, C„„/n —>/?*, n—»°°, in probability. 
The asymptotic normality of C„k (for n—>°°) with the parameters npk and nQk 

seems to be an abvious conjecture but its analytical treatment is definitely 
uncomfortable even in the relatively simple case k = 2. This fact may be easily seen 
when looking over the proof of the limit theorem for the hypergeometrical 
distribution (see [3], p. 398). 

We suggest to utilize the invariance principle for exchangeable random variables 
and the possibility to represent C„*'s on the corresponding empirical processes to 
get a simple verification of our conjecture which may be formally stated as follows: 

Theorem. Assume that—" = p for each n. Then, for each k>\ and pe[0, 1] 

C„k — npk a 
1^——>N(0, Qk) as n->°°, (4.1) 

\n 
where Qk = Qk(p) is defined by (2.8) and the symbol 3) denotes the convergence in 
distribution. 

Proof. Without loss of generality assume that pe(0, 1) and put for n = \ 

y„,= r—-L=, l S i " ^ m „ , 
V n ( l - p ) p 

, m„ + \=\i = n. 
V n ( l - p ) p 

Obviously, 

2y„ , = 0, £ y „ , = l and m a x | y „ , | ^ 0 , л->°°. (4.2) 
, = 1 , 1 I S I S / I 

Further, let £,i, §,2, ••.,§„,„ be a random permutation of these numbers (on 

a suitable probability space (£2„, si„, P„)) each permutation having probability —-
n! 

and define a stochastic process Y„ with trajectories in Skorochod space D[0, 1] by 

y„(r,a>) = 2 ; £,,(a>), n'x^t^\, (4.3) 
,=i 

= 0, 0=\t<n~\ neN, weQ. 
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It follows directly from Theorem 24.1 in [1] and relations (4.2) that 

y . A w 0 , n —oo, (4.4) 

where W° denotes a Brownian bridge on D[0, 1]. On the other hand a simple 
probabilistic argument shows that 

y - ( p ) - S 6 , - ( 1 " ^ " ^ " a a ) - - ^ - ^ = , (4.5) 
,_! V « ( l - p ) p V n ( l - p ) p 

where D„2 is a random variable with the same distribution as C„2. 
Now, since &(W°(p)) = N(0, p(\ -p)) and Qi(p) = [p(\ -p)]2 it follows from 

(4.4) and (4.5) that our assertion (4.1) works in the special case k = 2. 
To proceed by mathematical induction assume the validity of (4.1) for some 

k ^ 2 and choose a probability space (_2„, sin, P„) which permits to define the 
stochastic process Y„ in the way of (4.3) together with a random variable D„k such 
that for each « = 1 

£e(D„k) = 2(Cnk) and Dnk, Yn are independent. (4.6) 

It follows from (4.6) using (4.1) and (4.4) 

p(Dnk-np*)+ ^ N + w > a s 

V n p ( l - p ) 
where 

W° is a Brownian bridge, 2(N) = N (o, ^ - ) , (4.8) 

n, W° are independent and defined on a suitable probability space. 

Now, employing the random change of time t —*———- in (4.7) and using Lemma 

2.2, we may argue by (17.7), (17.8) and (17.9) in [1], p. 145, to conclude that 

Zik=P^-np")+Yn (?A ^ N+ -y^ as „_,__. ( 4 9 ) 
V n p ( l - p ) \ n I 

Obviously, by (4.8) and (4.9) we have 

^ " ( " • i ^ ' ' * 1 - ' * ' ) - " ^ ^ ) - < 4 1 0 ) 

On the other hand we may easily see that 

Znk = p(D„k-np) + £ p(Dnk-np) + 
V « p ( l - p ) ГГi V n p ( l - p ) 
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, (l-p)Dn.k+i-p(Dnk-D»,k+i) D„.k+i-npk+1

 > . 
+ = — r - , n § l , 

V n p ( l - p ) V n p ( l - p ) 

where D„,.+i is a random variable with the same distribution as C,»+i. Thus, 

combining (4.10) and (4.11) we verify the validity of our theorem for k+\ and 

hence, by mathematical induction, (4.1) holds for arbitrary k =\ 2. Q.E.D. 
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ПЕРЕСЕЧЕНИЯ СЛУЧАЙНЫХ КОНЕЧНЫХ МНОЖЕСТВ 

Ян Хурт, Иосеф Махек, Иосеф Штепан, Дана Ворличкова 

Резюме 

Мы предполагаем, что множество 5 состоит из п элементов 1, ..., п. Из него выбирается к раз 
независимо т элементов при помощи простого случайного выбора. Изучаются свойства числа 
С» элементов, которые находятся в пересечении всех к выборочных совокупностей. 

Кроме точного распределения С . и его основных характеристик были получены асимп­
тотические свойства С» при л—»<*>. Асимптотическое распределение С* является или Пуас-
соновым или нормальным по условиям, которые выполнены для т = пи и к = к„ при п—»°°. 
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