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THE INTERSECTIONS
OF RANDOM FINITE SETS

JAN HURT, JOSEF MACHEK, JOSEF STEPAN, DANA VORLICKOVA

1. Introduction

The present paper deals with a particular scheme of the capture-recapture
procedure. Suppose we have a finite set S of n elements numbered 1, ..., n. The
sample procedure is performed in k independent stages in the following way. At
each stage we draw randomly m elements from S without replacement. Each

-1
combination of m elements is thus drawn with probability (:l) . Let M; be the set
of elements drawn at stage j, j=1, ..., k and let M be the set of elements which

k
have been drawn at all k stages, i.e. M=[|M,. Let C. denote the cardinality of

j=1

M. The aim of this paper is to derive some basic properties of C,:. As it will be seen
later, the exact distribution of G, is not easy to handle and hence some asymptotic
results would be helpful. We shall state conditions under which C,, is asymptotical-
ly normally distributed or possesses an asymptotically Poisson distribution. The
entrance time into zero will be investigated and some numerical results given. For
some other aspects of the capture-recapture theory see [4].

2. Exact distribution and auxiliary results

Let I denote the indicator of M, i.e. I, =1 if ie M, I, =0 otherwise, i=1, ..., m.

Obviously, Cu = I. To derive the exact distribution of C.. we make use of

=1

Jordan’s identity. Let A,, ..., A, be random events on the same probability space,
and let W, , denote the probability of the event that exactly r events from among
Ay, ..., A, occur. Then we have

W = 2 (1) (';’) Seor

j=0
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where

S= Y PAN..nA), j=1,...n, S=1.

1€n< <ymn

The e.vent {Cu = r} occurs iff just rof I, ..., I, equal to 1. In our case we identify
A; with {I,=1}, i=1, ..., n, and obtain

P(A,N...nA,))= [(:l:]])/(':)]k, j=0, ..., m,

=0 otherwise.

Therefore
SO=1,
n n—j n\1* .
S=\. =
=)/ =0
=0 otherwise,
and

eeen-Ser ()TN e

= 0 otherwise, r=0, ..., m,

or, using the identity (r‘-;-i) (r-':']) =(:l) (n ;’) ’

reo-() () S ()G e
=0 otherwise. r=0,...,m,

It should be noted that for k =2 this becomes a hypergeometrical distribution. To

the best of our knowledge last formulas cannot be substantially simplified.
Sometimes the following Markovian property may be useful. The intersection

ﬁ M, t=0,1, 2, ..., may be considered as a system observed at time points ¢. The

j=1

system will be said to be in the state i iff [|M, contains exactly i elements,
j=1

i=0, ..., m. The transition probabilities are

p,~,=(;) (;:;)/(':) y =0, ., jmitl, .., m, 2.3)

=0,

and the initial distribution is @, =1, a,=0, 0=i=m — 1. This completely defines
a discrete homogeneous Markov chain with states O, ..., m.

For further investigation the moments of C.« are of fundamental importance. To
simplify the notation we put
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_mo ("= i
p e Di (n—j) , Jj=0,...,m.
Then, EI=p,, ELI}=pop, for i#j, ELLI,=pop\p. for all i, j, h different,
E LLLIL = pop:p.ps for all i, j, h, [ different and s, r, ¢t natural. We immediately
obtain

E C. = npo=np*. (24)
Further,
ECru=2EL+ YELL = npo+ n(n—1)pop,

i*)
and hence
var G = n’po(p1 — po) + npo(1 — p1). (2.5)

After a straightforward but tedious algebra we can obtain higher moments. We just
put the formulas for two higher moments

E Cr=n’popip2+3n°popi(1 — p2) + npo(1 = 3p1 + 2p1p2),
E Cr=n*poprp2ps + 6n’pop1p2(1 — ps) + n’popi(7T—18p2+ 11paps) +
+ npo(1 —7p1+ 12p,p: — 6 p1p2p3)

from which we get

s = n’po(p1p2 — 3pop1 +2p5) + 3n”po[pi(1 — p2) — po(1 — p1)] +
+npo(1-3p:1+2p.p2)
and
te=n*po(p1p2p3s — 4pop\p2+ 6pipr —3p3) +
+6n°po[p1p2(1 — ps) — 2popi(1 — p2) + p3(1 — p1)] +
+ n’po[p1(7 — 18p; + 11 paps) —4po(1 —3pi + 2 p1p2)] +
+npo(1 —7p1+ 12p,p. — 6 p1p2ps)

for the third and fourth central moment, respectively.

Using the obvious fact that the conditional distribution of C. given G, . is
hypergeometrical, we can evaluate the factorial moments of G. which will be
helpful for deriving the asymptotic-Poisson-distribution of C. in Section 3.

We have

E(CO|C.k-1=¢)=E[Cu(Cu—1)...(Cu — (r—1))| G .x1=c]=

-1 5 c! (n—o)! _cPm®
B ") iG=D'(c=-Pt(m=)(n—c—m+j)! n?
(m
Then,
E(C2) =E[E(C|Co xt)] =2 E(CO1or), @6)

n
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which is the recurrent formula for the evaluation of E(CV/)). Applying (2.6)
repeatedly we gct

(r k1
E(C‘n,k) (:l( )) 'E(Cl’l) .
However, C\=m with probability I, so that

(r)

(M L [mm D). (m—-(r D]
E(Cx ‘(n"’) m =)= =) * (2.7

Lemma 2.1. If n— o and m—o in such a way that p remains fixed then

n s

limrllvarC,,k—gk=p"[1 kp*  +(k—1)p*]. (2.8)

Proof. First note that

m

(1— l)k (1 ’11) k=1+n—,;(p—1)+0(n .
Then

1 k
;varC,,k=np" {p" [1 +n—p (p D+o(n ')] ‘Pk} +

+pk{1_p*[1 n—/;(p—l)+o(n ‘)]}—p*[l kp* '+ (k  1)p*],
Q.E.D.

Remark. Denote the expression in (2.5) as p(k). Using standard methodes of
calculus we can find that o(k)>0 for O<p<1.

Lemma 2.2. Under the assumptions of Lemma 2 1.
1 P,
i Cuk—>p° as n—oo,

Proof. This follows from Chebyshev inequality and from lemma 2.1. Q.E.D.

Now let us leave the assumption of a fixed number & of stages and study the case
when the sampling is repeated until at some stage the set M is found empty for the
first time. Denote by 7 the first entrance time into zero, i.e., t=min {s: C, =0}.
Using the facts that

P(C. 0)—2](—1)’ (7) [(r':: ,,)/(:1)]

P(r=s5)=P(r<s,t>s-1)-P(r<s) P(z=s 1)-P(C, 0) P(C., .—0)
we find that the distribution of 7 is
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remn=Son (/T G/ e

Next we give a formula for E r. Since

Er=3P(rZs5)=S[1-P(r=s)]+ SP(r=s5)= S[1 = P(C. =0)] + 1

we have
ee=1e 2 300 ()(R2)/G)] -
n\ (n—j
e )
m m—j

SRGEG

. . n
The numerical illustration for m =5

n 2 4 6 8 10 12 20 30 50
Et 3 3,8 43 467 493 5,16 582 6,37 7,06

Finally, we derive the characteristic function @.« of C.. First remark that

exp (i) =1+ % Gy =1+1 (" —1).
Then
@u(1) =E exp {itlflll,} =E,ﬁ [1+L(e"~1)]=E 2 (;‘) It (e" -1y

where I* are such random variables that

EIf=1,
EI?=P0--~P; 15 j=1,..., m,
=0, j=m+1,.., n.
Hence,
m 1
Pu()=1+2, (7) @ -1y {1 p. (2.10)
;1 s—0
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3. Convergence to the Poisson distribution

Now we shall study conditions under which the asymptotic distribution of C.. for
n — o is the Poisson one. In this situation m = m,,, k = k,, so that C.x — Cum, — C..
The ratio m, n=p is fixed as in the preceding sections. First, we shall investigate
the behaviour of the factorial moments E(C%), given by (2.7), when n— .

Lemma 3.1. Let us suppose that n— o, m,— ©, k= k,— o in such a way that
for fixed p np*=my; n* ' A1, 0<A<w. Then,

E(C™M)—A". (3.1)
Proof. According to (2.7), we have
r 1 k,
m(-5)
E(CY)=(np »y =00

( )
[ n
Ihe rest 1s ObVlOuS Q.E.D.

Remark. The sufficient condition for fulfilling np*—A is k, =0(n), e.g.

Having calculated the factorial moments of the Poisson distribution (1) with
the parameter A we can see that the limiting values in (3.1) are the same. This fact
enables us to prove easily that the limiting distribution of C, is Poisson. It is
interesting to note that the same procedure applied to (not factorial) moments of
C. would involve much more difficulties.

Theorem 3.1. Suppose that n— o, m,—», k=k,— in such a way that for
a fixed p, np* =m"* n* ' A, 0<A <. Then the asymptotic distribution of C, is
Poisson with the parameter A.

Proof. As it follows from Lemma 3.1, the limiting values of the factorial
moments E(C)’) are equal to the corresponding moments of 2(4). Obviously, the
same relation holds for moments. The Poisson distribution (having an analytic
characteristic function) is completely characterized by its moments. The assertion
follows from Theorem B in [2] p. 198. Q.E.D.

Now we shall return to the case of fixed k. Investigating the asymptotic
distribution we shall see that to get the Poisson distribution we shall not be able to
continue to fix p —p(m) m, n.

Theorem 3.2. Let us assume that n— ®, m, — = in such a way that n[p(n)]* — A,
0 <A<, for fixed k. Then, C, has the asymptotically Poisson distribution with the
parameter A.

Proof. Having proved that E[C{]—> A" for E[C%!] given by (2.7) (which is
obvious) we use the same argument as in the proof of Theorem 3.1. QE.D.
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4. Asymptotic normality of C,.

Consider the model of random intersections introduced in Section 1 with a fixed

number of repetitions k>1 and a fixed ratio r;n= (':") =p, p €[0, 1]. Recall that

E C.« = np* and, according to Lemma 2.1, % var G« — ok, n — %, where g is given

by (2.8). According to Lemma 2.2, C../n— p*, n—, in probability.

The asymptotic normality of C.x (for n— ) with the parameters np“ and ng.
seems to be an abvious conjecture but its analytical treatment is definitely
uncomfortable even in the relatively simple case k =2. This fact may be easily seen
when looking over the proof of the limit theorem for the hypergeometrical
distribution (see [3], p. 398).

We suggest to utilize the invariance principle for exchangeable random variables
and the possibility to represent C.’s on the corresponding empirical processes to
get a simple verification of our conjecture which may be formally stated as follows :

Theorem. Assume that L:—"= p for each n. Then, for each k>1 and p €0, 1]

ok
CL\/_"—p—Q»N(O, Q) as n—o o, 4.1)
n

where o« = o«(p) is defined by (2.8) and the symbol 9 denotes the convergence in
distribution.

Proof. Without loss of generality assume that p €(0, 1) and put for n=1

1-p .
Vi =—TF/—, lélém,,,
Vn(1-p)p
=L _  m+1=isn
Vn(l—-p)p
Obviously,
n _ n 2 _
;ym—O, .Ely'"_l and Fs].as’f.ly’"l—’o’ n—oo, (4.2)
Further, let &., &., ..., §..» be a random permutation of these numbers (on

a suitable probability space (£2., ., P.)) each permutation having probability %

and define a stochastic process Y, with trajectories in Skorochod space D[0, 1] by
Y. (¢, w)=E§...(w), nT'=t=1, (4.3)
i=1
=0, 0=t<n™', neN,we Q.

235



It follows directly from Theorem 24.1 in [1] and relations (4.2) that

Y, 2 W, nooo, (4.4)

where W° denotes a Brownian bridge on D[0, 1]. On the other hand a simple
probabilistic argument shows that

(1—=p)Dw:—p(m. — D,2) _ — np?
Y. = ni =
®) -2-:15 Vn(1-p)p \/n(l p)p

where D,; is a random variable with the same distribution as C,..

Now, since Z(W°(p))=N(0, p(1—p)) and g:(p)=[p(1—p)]’ it follows from
(4.4) and (4.5) that our assertion (4.1) works in the special case k=2.

To proceed by mathematical induction assume the validity of (4.1) for some
k=2 and choose a probability space (£2,, &4., P,) which permits to define the
stochastic process Y, in the way of (4.3) together with a random variable D, such
that for each n=1

(4.5)

L(Du)=%(Cx) and Dy, Y, areindependent. (4.6)
It follows from (4.6) using (4.1) and (4.4)
p\(/_%';"(__l"—p;)+}’ 2L N+W° as noeo, 4.7)
where
W° isaBrownian bridge, $(N)=N ( lp 9;) (4.8)
n, W° are independent and defined on a suitable probability space.
,.k(w)

Now, employing the random change of time t—+———=in (4.7) and using Lemma

2.2, we may argue by (17.7), (17.8) and (17.9) in [1], p. 145, to conclude that

_p(Du—npY) ) 2 —w,
s Y(n) N+W(p*) as n (4.9)

Obviously, by (4.8) and (4.9) we have

Z. 5 N(o, 2+ pt1- p")) =N(o, . é’*jp)) : (4.10)

On the other hand we may easily see that

_p(Du—np") &, _ p(Du—np")
o Gy &5 Vapaop) 10
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+ (1 —p)D,.‘ k+1 —P(an - D,._k+|)_ Dn,k+l —_ r!pk+l
Vnp(1-p) Vnp(1-p) ’
where D, .1 is a random variable with the same distribution as C, «.;. Thus,

combining (4.10) and (4.11) we verify the validity of our theorem for k+1 and
hence, by mathematical induction, (4.1) holds for arbitrary k =2. Q.ED.

n=1

REFERENCES

[1] BILLINGSLEY, P.- Convergence of Probability measures. John Wiley, New York (1968).

[2] LOEVE, M.: Teorija verojatnostej. 1. I. L. Moskva, (1962).

(3] RENYI, A.: Teorie pravdépodobnosti, Academia, Praha (1972).

(4] ROSEN, B.: A tool for derivation of asymptotic results for sampling and occupancy problems.
Proceedings of the 2nd Prague Symposium on Asymptotic Statistics (1979), 67—80.

Received May 4, 1980 Katedra pravdépodobnosti a matematické statistiky

Matematicko-fyzikalni fakulta UK
Sokolovska 83
186 00 Praha 8

MEPECEYEHHMSA CITYUYAHHBIX KOHEYHBIX MHOXECTB
Au XypT, Hoced Maxek, Hoced lliTenan, [Java Bopanukosa
Pe3ome

Me1 npeinonaraem, 4To MHOXECTBO S COCTOHT U3 11 ANieMEHTOB 1, ..., n. 3 Hero BuiGHpaeTca k pa3
HE3aBHCMMO M 3NEMEHTOB MPH MOMOLIM NpocToro cnydaiHoro Bei6opa. Usyualoresa cBolicTBa ukcna
C.x 3NEMEHTOB, KOTOPbIE HAXONATCHA B NMEPECEYEHHH BCEX K BbIGOPOYHBIX COBOKYMHOCTEM.

Kpome TouHoro pacnpeneneHusi C.. MW €ro OCHOBHBIX XapaKTEPHCTHK GbUIH MONYyuYEeHbI acHMI-
ToTH4Yeckne cBoicTBa C.. NpU n— ©, AcHMOTOTH4YecKoe pacnpeneneHue C,. sBnsercs win [Myac-
COHOBbBIM WIIH HOPMANbHbIM NO YCJIOBHSM, KOTOPbIE BbLIMONHEHbI AN m=m, U k=k, npu n— o,
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