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Math. Slovaca 33,1983, No. 3,249—256 

GENERALIZED TOPOLOGICAL SPACES 

IGOR ZUZCAK 

The properties of structures defined by a given set X and a relation, respectively 
relations defined on a class of subsets of X and satisfying some conditions are often 
studied. Such structures are given for example in [1], [2], [3], [5], [7] and [8]. The 
best known structures of such type are topological spaces defined by a closure 
operation [6]. 

In the present paper we introduce a new class of spaces, called r-spaces, as 
a generalization of topological spaces. 

We shall use the notations from [4] and 2X will denote the class of all subsets of 
X. The notation A cz B means that A is a subset of B and if A is a proper subset of 
B we write A cz B. Specific terms will be explained when used for the first time. 

Let X be a nonempty set and Q be a relation on 2X. Let us consider the following 
properties of Q: 
R I ) for each subset A of X there is a subset B of X such that AQB 
R2) 0Q0 
R3) if AQB, then A c B 
R4) if AQB, then BQB 
R5) if A c B and BQB, then there is a subset C of X such that AQC and CcB 
R6) if AQB, then there is no subset C of X such that A czCczB and CQC. 

R e m a r k L i t i s easy to prove that the properties Rx—R6 are independent. 
R e m a r k 2. Let (X, ST) be a topological space, where ST is the class of closed 

sets. Let us define a relation Q on 2X as follows: 

AQB iff B is the closure of A. 

It is clear that Q satisfies Rj—R6. 

Definiction 1. The relation Q with the properties Ri—R6 wi71 be called a relation 
of closure on 2X. 

The pair (X, Q) is called an r-space if X is a nonempty set and Q is a relation of 
closure on 2X. 

Let (X, Q) be an r-space. If for the subsets A, B of X we have AQB, then we say 
that B is a closure of A. A set A cz X satisfying AQA will be called a closed set. The 
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complement of a closed set will be called an open set. A set A cz X is said to be an 
interior of BczX if X - A is a closure of X-B. The relation o defined by 

AoB iff (X-B)Q(X-A) 

is called the relation of the interior relative to Q. 
From Remark 2 we can see that each topological space is an r-space. Unlike 

topological spaces in an r-space a set may have more than one closure — see the 
next example. 

E x a m p l e 1. Let (X, 3~x) and (X, 3~2) be two topological spaces, where ZTX and 
?T2 are classes of closed sets in (X, STX) and (X, ZT2), respectively. Let A cz X. Let B 
be the closure of A in (X, STX) and let C be the closure of A in (X, 3~2). Define 
a relation Q on 2X as follows 
a) if B cz C, then AQB 
b) if CczB, then AQC 
c) if B£C and C<£B, then AQB and AQC. 
The relation Q satisfies the properties Ri—R6. It is clear that in the case c) the set A 
has two distinct closures B and C. 

In what follows we shall give another characterizations of r-spaces. 
Since the notion of the relation o of the interior relative to Q is dual to the 

relation Q of the closure, from the properties Ri—R6 it follows: 

Theorem 1. Let (X, Q) be an r-space. Let o be the relation of the interior 
relative to Q. Then Q satisfies the following conditions 
Ki) for each subset A of X there is a subset B of X such that Bo A 
K2) XoX 
K3) if Bo A, then B cz A 
K4) if BoA, then BoB 
K5) ifB cz A and BoB, then there is a subset C of X such that Co A andB cz C 
K6) if BoA, then there is no subset C of X such that B cz C c A and CoC. 

Theorem 2. Let obe a relation on 2X satisfying conditions Kx—K6. Let us define 
a relation Q on 2X as follows 

AQB iff (X-B)o(X-A). 

Then Q is a relation of closure on 2X, (X, Q) is an r-space and o is the relation of 
the interior relative to Q. 

Let & be a nonempty class of subsets of a set X, let A cz X and let x e X. 
Throughout this paper the symbols A2F, A?F and SF(x) denote 

(1) A&={Be&:AczB}, 
(2) A ^ = { B € ^ : B c z A } , 
(3) ^(x) = { B e ^ : j t e B } . 

250 



Theorem 3. Let (X, Q) be an r-space. Then the class of closed subsets ofX, i.e., 
the class 3~= {A czX: AQA} satisfies the following conditions: 
Qx: 0,Xe3~ 
Q2: for every A cz X and B e A3~ there is a minimal element C of A3~ such that 

AczCczB. 
Moreover, AQB iff B is a minimal element of the class A3~. 

Proof. From the property R2 it follows that 0e 3" and from the properties Ri 
and R3 we have Xe3~. Let A czX. According to Rl9 R3 and R4 the class A3~ is 
nonempty. If B eA3~ then by R5 there is a subset C of X such that AQC and C cz B. 
By R3 AQC implies A c z C c z B . C e : T according to R4, hence CeA3~ and by R6 the 
set C is a minimal element in A3~. To show that AQB iff B is a minimal element of 
the class A3~ suppose first AQB. Then by R4 B e 3~ and from R6 it follows that B is 
a minimal element of A3~. To prove the converse suppose that B is a minimal 
element of A3~. Since B e A3~, then Be3~, i.e. BQB and A cz B. From R5 it follows 
that there is a subset C of X such that AQC and C cz B. From AQC we have CeA3~ 
by R3 and R4. The minimality of B implies C = B. Hence AQB. 

Theorem 4. Let X be a nonempty se and 3~be a class of subsets of X satisfying Qx 

and Q2. Let us define a relation Q on 2X as follows 
(4) AQB iffB is a minimal element of the class A3~. Then Q satisfies Ri—R6 and 3~ 

is precisely the class of all closed subsets of the r-space (X, Q), i.e., 
3~={ACZX:AQA}. 

Proof. First we prove the property Rj. For every Ae2x the class A3~ is 
nonempty, as it contains X according to Qx. Then by Q2 there is an element B e A3~ 
such that AQB. 

Since 0 e 3~, it is clear that 0 is a minimal element of 03~ and so we have R2. 
The property R3 follows from the fact that for every element Be2x for which 

AQB we have B eA3~ by the definition of Q. But A3~ contains only subsets of X 
containing A. 

AQB implies that B eA3~, hence Be3~. From this it follows that B is a minimal 
element of B3~, i.e., BQB holds. This proves R .̂ 

To prove R5 suppose that A c B and BQB. Then B eB3~ and so B e 3~. Since 
A cz B, we have B eA3~. According to Q2 there is a minimal element C of A3~ such 
that A czCczB. Therefore, by the definition of Q we have AQC and CczB. 

The last property R6 follows immediately from the definition of Q: if AQB, then 
B is a minimal element of A3~. Hence there is no C 6 3~ such that A cz C and CczB. 

We complete the proof by showing that 3~={A c X : AQA}. Let Ae3~ holds. 
Then A is a minimal element of A3~. Hence by (4) AQA is true. This means that 
3~c:{A czX: AQA}. NOW let AQA hold. Then by (4) A is a minimal element of 
A3~. Hence we have Ae3~. This means that {A czX: AQA} CZ 3~. From these 
inclusions we get 3~= {A czX: AQA}. 

By duality we get the following theorems. 
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Theorem 5. Let (X, g) be an r-space and let T be the class of all closed subsets 
of X. Then the class of all open subsets of X, i.e., the class 3) = 
{AcX:(X — A)e?T} satisfies the following conditions: 
Q[: 0,Xe3 
Q2: for every A czX and B e A3) there is a maximal element C of A3) such that 

B c C c A . 

Theorem 6. Lef X be a nonempty set and 3) be a class of subsets of X satisfying 
Q[ and Q2. Then the class 

5T={AczX:(X-A)6^} 

satisfies Qx and Q2 and 3 is precisely the class of all open subsets of the r-space 
(X, g), where g is the relation on 2X defined by (4). The relation o defined on 2X 

by 
(5) AoB iff A is a maximal element of the class B3 is a relation of the interior 

relative to g. 
R e m a r k 3. From the above theorem it is clear that if 3 is a class of subsets of X 

satisfying Q[ and Q2, then there is a unique r-space having 3 for the system of all 
open sets. 

E x a m p l e 2. Let G be a universal algebra. Let 3 be the class that consists of all 
subalgebras of G and of the empty set. We shall prove that 3 satisfies Q[ and Q2. 

The proof of Q[ follows easily from the definition of 3. To prove Q2 let A be 
a subset of G. The system A3 is partially ordered by the relation of inclusion c . 
Since 0 e A3, it is clear that A3 is nonempty. Moreover it is clear that the union of 
an arbitrary chain of subalgebras of G belonging to A3 is a subalgebra of G 
belonging to A3. Hence by the Kuratowski—Zorn Theorem it follows that each 
element B e A3 is contained in a maximal element CeA3. This means that Q2 is 
satisfied. 

E x a m p l e 3, Let X be a partially ordered set and let 3 be the class of all convex 
subsets of X (see, e.g., Fuchs [9]). Then 3 satisfies Q[ and Q2. 

E x a m p l e 4. Let X be a connected topological space. Let 3 be the class of all 
connected subsets of X. Then 3 satisfies Q[ and Q2. 

In Examples 3 and 4 the proof of the properties Q[ and Q2 is analogous to the 
proof of the corresponding parts in Example 2. We recall that the proof of Q2 

depends largely on the use of the statement: the union of an arbitrary chain of 
elements of A3 is an element of A3. But in Example 3 this statement is clear and in 
Example 4 it follows from Theorem 21 of [4]. 

R e m a r k 4. It is easy to see that if we consider the class 3 described in 
Examples 2 and 3, then the intersection of an arbitrary class of elements of 3 is an 
element of 3. But the class 3 described in Example 4 does not satisfy this 
condition. 
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Definition 2. Let (X, Q) be an r-space. A preneighbourhood ofxeXisa subset 
of X of the form {JC}U,A, where A is an open set. By a neighbourhood of a point 
x e X we mean any open subset of X containing x. 

Remark 5. If (X, Q) is an r-space and 3 is the class of all open subsets of X, 
then by (3) 3(x) denotes for each xeX the class of all neighbourhoods of x. 

As an immediate consequence of Theorem 5 and Definition 2 we have the 
following 

Theorem 7. Let (X, Q) be an r-space and 3 be the class of all open subsets ofX. 
Then {3(x)}xeX satisfies the following conditions: 
N,) There is a point xeX such that Xe3(x). 
N2) If Ve3(x), then xeV. 
N3) / / Ve3(x) andyeV, then Ve3(y). 
N4) Let A be a subset of X, letxeA and let V e 3(x) such that Vcz A. Then there 

is a maximal element Vm in A3(x) such that Vcz VmczA. 

Moreover, 3 = {0}u (J 3(x) holds. 
xeX 

Theorem 8. Let X be a nonempty set. For each xeX let 3(x) be a class of 
subsets of X such that {3(x)}xeX satisfies the conditions Ni, N2, N3 and N4 of 

Theorem 7. Then the class 3X = (J S>(jt)u{0} of the subsets of X satisfies the 
xeX 

conditions Q[ and Q2 of Theorem 5. Moreover let (X, Q) be the r-space 
(uniquely) determined by 3X (Theorem 6). Then for every x e X the system of all 
neighbourhoods of x in the r-space (X, Q) is the system {3(x)}xeX, i.e., 3)(x) = 
3x(x) for each xeX. 

Proof. The proof of Q[ follows easily from the definition of 3X and from N-. To 
prove Q2 let A be a subset of X and let Ve3x, where Vcz A. Suppose first V=£ 0. 

From this and from the fact that 3X = (J 3(x)u{0} it follows that there is an 
xeX 

element xeX such that V e 3(x). Then by N4 there is a maximal element Vm of 
A3(x) such that Vcz Vm cz A. It remains to be proved that there is no element Vx of 
3X such that Vm cz Vi cz A. Suppose that this is not true, i.e., there is Vi e 3X with 
Vm cz Vi cz A. Since Vx e 3X and Vx ?- 0, we see at once that there is an y e X such 
that Vi e 3(y). But by N2 we have xeV and since Vcz Vx, then x e Vx. And so by 
N3 Vi e A3(x), which is impossible, since Vm cz Vi and Vm is a maximal element in 
A3(x). Now let V = 0. Consider two cases: 

1) There does not exists Vi e A3X such that Vx =>-= 0. In this case it is clear that the 
empty set is the maximal element of 3X contained in A. 

2) There is V! e A3X such that Vx + 0. This case has already been discussed in the 
first half of the proof. 
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We have shown that 2>i satisfies Q[ and Q2. According to Remark 3 there is 
a unique r-space (X, p) having 3)x for the system of all open sets. Now it remains to 
be shown that {3)(x)}xeX is the class of all neighbourhoods of the r-space (X, p), 
i.e., that 3)(x) = ^(x) for each xeX. Let first x e X and V e 3)(x). Then by N2 and 
definition of 3)x we have xeV and Ve3)r. Thus Ve3)x(x). If Ve3)x(x), where 

xeX, then Ve3)x and xeV. Since V e ® , and 3)l= [J 3)(x)u{0}, then there is 
xeX 

a yeX such that Ve3)(y). But then VeQ)(x) by N3. 
In the theorems of this chapter we have proved that an r-space can be described 

in several ways: 
1) by a relation p c z 2 x x 2 x sati fying Ri—R6; 
2) by a relation o c 2X X 2X satisfying K,—K6; 
3) by a class 5~cz2x satisfying Qx and Q2\ 
4) by a class 3) gz2x satisfying Q[ and Q2; 
5) by a class (®(x)}Jtex satisfying Ni—N4. 
We have also seen that in every r-space there are always uniquely defined: 
1) the class of all closed sets; 
2) the class of all open sets; 
3) the relation of closure; 
4) the relation of the interior; 
5) the class of all neighbourhoods. 

If it does not cause ambiguity we often refer to the r-space as X instead of the 
more proper form (X, p). We shall be explicit in cases where precision is necessary 
(for example if we are considering two different relations of closure for the same set 
X). 

Some properti s of closures and closed sets 

Theorem 9. Let there be given an r space X and let ST be the class of all closed 
subsets of X. Then 
a) ifB and C are closures of a set A cz X and B±C, then B<£C and also C<L B (i.e. 

(B-C)±0 and ( C - B ) - £ 0 ) ; 
b) ifBisa closure of a set A gzXandA czCczB, then B is also a closure of C; 
c) each closed subset of X has only one closure. 

Proof. 
a) since B and C are closures of A, then B, C e A 5 \ If B cz C (CczB), then C(B) 

cannot be a minimal element of A&~, which contradicts(4); 
b) if B is a closure of A, then B is a minimal element of A 5 \ Since A cz C cz B then 

B belongs to c^ and it is clear that B is a minimal element also of c3'; 
c) if A is closed, then A e A:T and A is even the smallest element of A:T. Therefore 

by (4) A has only one clo ure and A is the unique closure of A. 
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Theorem 10. Let X be an r-space and {As}seS is a class of closed subsets of X. 
Then all sets of {As}s?s are closures of the same set iff As is a closure of the set 

n As, for each s eS. 
s eS 

Proof. If all sets of {A,} s6s are closures of (~) As, they are evidently closures of 
seS 

the same set. On the contrary, if all the sets of {A s } s e S are closures of the same set 

B cz X, then by R3 B cz ((~) A5). According to b) of Theorem 9 each set of {As}seS 

must be a closure of (~]AS. 
seS 

Corollary 1. If X is an r-space, A , B cz X, A and B are closures of the same set 
and A + B, then AnB cannot be closed. 

Proof. By Theorem 10 A and B are closures of AnB. But by c) of Theorem 9 
each closed set has only one closure. Therefore At »B cannot be closed. 

We shall now characterize closed sets, closures and interiors of sets in terms of 
neighbourhoods and preneighbourhoods. 

Let X be an r-space, {3)(x)}xeX be the class of all neighbourhoods and 2> be the 
class of all open subsets of X. 

Theorem 11. Lef X be an r-space, A cz B cz X and let A be open. Then A is an 
interior of B iff for each xeX — A and each neighbourhood V of x containing the 
preneighbourhood Vi = {x}uA of x we have Vn(X — B) + 0. 

Proof. By (5) A is an interior of B iff A is a maximal element of the class B3). 
But this is if and only if for each open subset V of X containing { x } u A , where 
j t e B - A , we have V n ( X - B ) ^ 0 . 

Since closed sets are complements of open sets, the dual statement of 
Theorem 11 also holds. 

Corollary 2. Let X be an r-space, A cz B cz X and B is closed. Then B is a closure 
of A iff VnA-£0 for each xeB and each neighbourhood V of x containing the 
preneighbourhood Vx = { J C } U ( X - B ) of x. 

Theorem 12. Let X be an r-space and A cz X. Then A is an open set iff for each 
xeA and each preneighbourhood Vx of x such that Vx cz A there is a neighbour
hood V2 of x satisfying Vi cz V2 cz A. 

Proof. If A is open, then for each x e A the set A is a neighbourhood of x. This 
proves one half of the theorem. To prove the other half suppose that A is not open. 
Then there is an interior C of A such that CczA and C is open. Let xeA — C. 
Then the set Vi = {JC}UC is a preneighbourhood of x and we have Ccz Vi cz A. 
Since C is an interior of A, C is a maximal element of A2). Therefore for the 
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preneighbourhood Vi of x there is no neighbourhood V2 of x such that V, cz V2 cz 
A. 

As a dual consequence of Theorem 12 we have the following coiollary. 

Corollary 3. Let X be an r-space and B cz X. Then B is a closed set iff for each 
x^B and each preneighbourhood Vx of x such that VinB = 0 there is 
a neighbourhood V2 of x such that Vx cz V2 and V2nB = 0 
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ОБОБЩЕННЫЕ ТОПОЛОГИЧЕСКИЕ ПРОСТРАНСТВА 

1§ог 2 и г с а к 

Р е з ю м е 

В настоящей работе изучаются стр>ктуры, называемые г-пространствами, определенными 

как пара (X, р), где X — непустое множество ид — отношение в 2 х , исполняющее условия 

К,—К6. Эти структуры являются обобщением топологических пространств. 
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