Mathematic Slovaca

Alana Vanžurová
 Differential forms on manifolds with a polynomial structure

Mathematica Slovaca, Vol. 48 (1998), No. 5, 527--533

Persistent URL: http://dml.cz/dmlcz/133155

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

DIFFERENTIAL FORMS ON MANIFOLDS WITH A POLYNOMIAL STRUCTURE

Alena Vanžurová
(Communicated by Július Korbaš)

Abstract

On a C^{∞}-manifold endowed with an integrable polynomial structure (with only simple roots of the characteristic polynomial), the decomposition of the tangent bundle which corresponds to the decomposition of the characteristic polynomial, induces a decomposition of the bundle of complex p-forms. This decomposition enables us to introduce derivation operators (of degree 1) of three types on the graded commutative algebra of differential forms. For these operators, we prove Poincaré Lemma (that every closed form is exact).

All objects under considerations are supposed to be smooth (of class C^{∞}). M will denote a manifold, $T M$ and $T^{*} M$ denote the tangent and cotangent bundle of M, respectively, $T^{\mathbb{C}} M$ and $T^{\mathbb{C} *} M$ the corresponding complexifications. Let us denote by $\Omega^{p} M$ the bundle of differential p-forms on M.

1. Let (M, f) be a polynomial structure, i. e. a smooth m-dimensional manifold M endowed with a $(1,1)$-tensor field f satisfying an equation $R(f)=0$ where R is a polynomial. Suppose that R is a minimal polynomial of the endomorphism $f_{x}: T_{x} M \rightarrow T_{x} M$ of the tangent space at each point $x \in M$. In what follows we shall suppose that R has only simple roots. A polynomial structure f on M is called integrable if there are local coordinates in a neighborhood U (abbreviated as nbd) of any point x in which the matrix representation of f_{x} has a constant canonical form on U ([3], [5], [6], [9]).

The decomposition of $R(\xi)$ over \mathbb{C} into pairwise distinct prime factors

$$
\begin{equation*}
R(\xi)=\prod_{i=1}^{r}\left(\xi-b_{i}\right) \prod_{j=1}^{s}\left(\xi-c_{j}\right) \prod_{j=1}^{s}\left(\xi-\bar{c}_{j}\right) \tag{1}
\end{equation*}
$$

[^0]Supported by Grant No. 201/96/0227 of The Grant Agency of Czech Republic.

ALENA VANŽUROVÁ

with $b_{i} \in \mathbb{R}, c_{j} \in \mathbb{C}$ gives decompositions of both the complex tangent bundle and the complex cotangent bundle as follows. Let us denote

$$
\begin{align*}
H_{i} & =\operatorname{ker}\left(f-b_{i} I\right), & & i=1, \ldots, r, \\
H_{r+j} & =\operatorname{ker}\left(\xi^{2}-\left(c_{j}+\bar{c}_{j}\right) \xi+c_{j} \bar{c}_{j}\right), & & j=1, \ldots, s, \tag{2}
\end{align*}
$$

where I denotes the identity isomorphism of $T^{\mathbb{C}} M .\left(H_{1}, \ldots, H_{r+s}\right)$ is an almostproduct structure associated with f. Let P_{t} be a projector projecting onto the subspace $H_{t}, t=1, \ldots, r+s$. Further, let

$$
\begin{align*}
\mathcal{H}_{i} & =H_{i}^{\mathbb{C}}=\operatorname{ker}\left(f^{\mathbb{C}}-b_{i} I\right) & & \text { for } i=1, \ldots, r, \\
\mathcal{H}_{r+j} & =\operatorname{ker}\left(f^{\mathbb{C}}-c_{j} I\right) & & \text { for } j=1, \ldots, s, \tag{3}\\
\mathcal{H}_{r+s+j} & =\operatorname{ker}\left(f^{\mathbb{C}}-\bar{c}_{j} I\right)=\overline{\mathcal{H}}_{r+j} & & \text { for } j=1, \ldots, s .
\end{align*}
$$

It follows that $H_{r+j}^{\mathbb{C}}=\mathcal{H}_{r+j} \oplus \overline{\mathcal{H}}_{r+j}, j=1, \ldots, s$. Now the complex tangent bundle has decomposition $T^{\mathbb{C}} M=\bigoplus_{t=1}^{n} \mathcal{H}_{t}, n=r+2 s$, and ($\mathcal{H}_{1}, \ldots, \mathcal{H}_{r+2 s}$) is a complex almost product structure associated with f. The subbundle H_{r+j}, $j \in\{1, \ldots, s\}$, is equipped with the endomorphism J_{j} satisfying $J_{j}^{2}=-I_{j}^{2}$, $I_{j}=\left.\mathrm{id}\right|_{H_{r+j}}, j=1, \ldots, s$,

$$
\begin{equation*}
J_{j}=\frac{2 f-\left(c_{j}+\bar{c}_{j}\right)}{\sqrt{-\left(c_{j}-\bar{c}_{j}\right)^{2}}} P_{r+j}, \quad j=1, \ldots, s \tag{4}
\end{equation*}
$$

That is, J_{j} is an almost complex structure on H_{r+j}, and the complex linear extension of J_{j} to $H_{r+j}^{\mathbb{C}}$ acts on \mathcal{H}_{r+j} (respectively, on $\overline{\mathcal{H}}_{r+j}$) as multiplication by i (respectively by -i). The (1,1)-tensor field $\Phi=\sum_{j}^{r+2} J_{j} P_{r+j}$ satisfies $\Phi^{3}+\Phi=0$ (and is called an almost contact structure associated with f, or an f-structure ([7], [12])).

The following can be verified:
THEOREM 1.1. The polynomial structure (with characteristic polynomial having simple roots) is integrable if and only if the associated complex almost product structure is integrable (which means that $\mathcal{H}_{t} \oplus \mathcal{H}_{w}$ are integrable for all the pairs $1 \leqq t<w \leqq n)$.

Let us define, for $t=1, \ldots, r+2 s$,

$$
\begin{equation*}
\mathcal{C}_{t}=\left\{\omega \in T^{* \mathbb{C}_{M}} M \mid\langle X, \omega\rangle=0 \text { for all } X \in \mathcal{H}_{k}, k \neq t, k=1, \ldots, r+2 s\right\} . \tag{5}
\end{equation*}
$$

For any multi-index $\alpha=\left(a_{1}, \ldots, a_{n}\right), n=r+2 s$ of weight $|\alpha|=\sum_{i} a_{i}=p$, let us introduce the subspace

$$
\mathcal{C}^{\alpha}=\underbrace{\mathcal{C}_{1} \wedge \cdots \wedge \mathcal{C}_{1}}_{a_{1} \text {-times }} \wedge \cdots \wedge \underbrace{\mathcal{C}_{n} \wedge \cdots \wedge \mathcal{C}_{n}}_{a_{n} \text {-times }} .
$$

Now the complexification of the cotangent bundle $T^{* \mathbb{C}} M=\Lambda^{1}(M)$ has a decomposition $T^{* \mathbb{C}} M=\bigoplus_{t=1}^{n} \mathcal{C}_{t}$, and the bundle of complex differential p-forms on $M, \Lambda^{p}(M)=\left(\Omega^{p}(M)\right)^{\mathbb{C}}$ is decomposable as follows: $\Lambda^{p}(M)=\bigoplus_{|\alpha|=p} \mathcal{C}^{\alpha}$.
2. In what follows, we suppose that the polynomial structure f on M is integrable. The following can be proved:

THEOREM 2.1. The structure f is integrable if and only if the following condition is satisfied:
(i) if $\omega \in \mathcal{C}^{\alpha}, \alpha=\left(a_{1}, \ldots, a_{n}\right), n=r+2 s$ then $\mathrm{d} \omega \in \bigoplus_{j=1}^{n} \mathcal{C}^{\beta}$ where $\beta=\left(a_{1}+\delta_{1}^{j}, \ldots, a_{n}+\delta_{n}^{j}\right)$.
Example 2.1. A complex m-manifold M can be viewed in particular as a real $2 m$-dimensional manifold equipped with an integrable almost complex structure, $J^{2}=-I$ and vice versa, any integrable almost complex structure on M turns a real manifold $M_{2 m}$ into a complex manifold M_{m}. The tangent bundle of an almost complex (respectively, complex) manifold admits the decomposition

$$
T^{\mathbb{C}} M=\operatorname{ker}(J-\mathrm{i} I) \oplus \operatorname{ker}(J+\mathrm{i} I)
$$

and the algebra of complex differential forms can be bigraded as $\Lambda(M)=$ $\bigoplus_{p, q}^{m} \mathcal{C}^{(p, q)}$. By integrability [4], $\mathrm{d} \mathcal{C}^{(p, q)} \subset \mathcal{C}^{(p+1, q)} \oplus \mathcal{C}^{(p, q+1)}$ for $p, q=0, \ldots, m$. Elements of $\mathcal{C}^{(p, q)}$ are called forms of type (p, q).

Let us set $\tilde{n}=\sum_{i=1}^{r} \operatorname{dim} H_{i}, \tilde{\tilde{n}}=\sum_{j=1}^{s} \operatorname{dim} H_{r+j}$. In the case of an integrable structure, there exist local coordinates $\left(x_{1}, \ldots, x_{m}\right)$ in some nbd U of an arbitrary point x such that on U, H_{i} is the span of

$$
\left\{\frac{\partial}{\partial x_{k}} ; \sum_{t<i} \operatorname{dim} H_{t}+1 \leqq k \leqq \sum_{t \leqq i} \operatorname{dim} H_{t}\right\}, \quad i=1, \ldots, r,
$$

and H_{r+j} is the span of

$$
\left\{\frac{\partial}{\partial x_{k}} ; \tilde{n}+\sum_{t<j} \operatorname{dim} H_{r+t}+1 \leqq k \leqq \tilde{n}+\sum_{t \leqq j} \operatorname{dim} H_{r+t}\right\}, \quad j=1, \ldots, s
$$

With respect to the holonomic frame $\left(\frac{\partial}{\partial x_{k}}\right)$, the coordinate expression of the associated almost contact structure is

$$
\begin{equation*}
\Phi\left(\frac{\partial}{\partial x_{i}}\right)=0, \quad \Phi\left(\frac{\partial}{\partial x_{j}}\right)=\frac{\partial}{\partial x_{\tilde{n}+j}}, \quad \Phi\left(\frac{\partial}{\partial x_{\tilde{n}+j}}\right)=\frac{\partial}{\partial x_{j}} \tag{6}
\end{equation*}
$$

ALENA VANŽUROVÁ

where $\tilde{n}+1 \leqq j \leqq \tilde{n}+\tilde{\tilde{n}}$. Let us introduce

$$
\begin{equation*}
\frac{\partial}{\partial z_{q}}=\frac{1}{2} \frac{\partial}{\partial x_{\tilde{n}+q}}-\mathrm{i} \frac{\partial}{\partial x_{\tilde{n}+\tilde{\tilde{n}}+q}} \tag{7}
\end{equation*}
$$

Then $\frac{\partial}{\partial x_{k}}, \frac{\partial}{\partial z_{q}}$ and the complex conjugates $\frac{\partial}{\partial \bar{z}_{q}}$ form a frame field for the complex tangent bundle (suitable parts of which are bases for $\mathcal{H}_{i}, \mathcal{H}_{j+r}$ and \mathcal{H}_{j+r+s}, respectively). Its dual co-basis ($\mathrm{d} x_{k}, \mathrm{~d} z_{q}, \mathrm{~d} \bar{z}_{q}$) consists of

$$
\mathrm{d} z_{q}=\mathrm{d} x_{\tilde{n}+q}+\mathrm{i} \mathrm{~d} x_{\tilde{n}+\tilde{n}+q}, \quad \mathrm{~d} \bar{z}_{q}=\mathrm{d} x_{\tilde{n}+q}-\mathrm{id} x_{\tilde{n}+\tilde{n}+q} .
$$

By the integrability conditions, for any differential form $\omega \in \mathcal{C}^{\alpha}, \alpha=\left(a_{1}, \ldots, a_{n}\right)$, $n=r+2 s$ the differential $\mathrm{d} \omega \in \mathcal{C}^{\left(a_{1}+1, \ldots, a_{n}\right)} \oplus \cdots \oplus \mathcal{C}^{\left(a_{1}, \ldots, a_{n}+1\right)}$. We can introduce the derivation operators

$$
\begin{array}{rlrl}
\partial_{i}: \mathcal{C}^{\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)} \rightarrow \mathcal{C}^{\left(a_{1}, \ldots, a_{i}+1, \ldots, a_{n}\right)}, & & 1 \leqq i \leqq r \\
\Delta_{j}: \mathcal{C}^{\left(a_{1}, \ldots, a_{r+j}, \ldots, a_{n}\right)} \rightarrow \mathcal{C}^{\left(a_{1}, \ldots, a_{r+j}+1, \ldots, a_{n}\right)}, & 1 \leqq j \leqq s \tag{8}\\
\bar{\Delta}_{j}: \mathcal{C}^{\left(a_{1}, \ldots, a_{r+s+j}, \ldots, a_{n}\right)} \rightarrow \mathcal{C}^{\left(a_{1}, \ldots, a_{r+s+j}+1, \ldots, a_{n}\right)}, & & 1 \leqq j \leqq s
\end{array}
$$

uniquely determined by the formula

$$
\mathrm{d} \omega=\partial_{1} \omega+\cdots+\partial_{r} \omega+\Delta_{1} \omega+\cdots+\Delta_{s} \omega+\bar{\Delta}_{1} \omega+\cdots+\bar{\Delta}_{s} \omega
$$

By evaluation in local coordinates $\bar{\Delta}_{j} \bar{\omega}=\overline{\Delta_{j}} \omega$.
Example 2.2. On a complex manifold we obtain the decomposition $\mathrm{d}=\partial_{1}+\partial_{2}$.
Let D stand for the operator ∂_{i}, or Δ_{j}, or $\bar{\Delta}_{j}$, respectively. We say that a differential p-form on a polynomial manifold (M, f) (respectively, on an open subset $\mathcal{V} \subset(M, f))$ is
(i) D -closed if $\mathrm{D} \omega=0$,
(ii) D -exact if $\omega=\mathrm{D} \alpha$ for some $(p-1)$-form α on M (respectively, on \mathcal{V}).

As in the case of the exterior differential d, any D-exact form is D-closed but the converse is not true globally. We will prove that the converse holds locally.
3. We will use the following generalization of the Poincaré Lemma ([8]) for p-forms depending smoothly on real parameters.

Lemma 3.1. Let M be a C^{∞}-manifold, let $U \subset M$ be an open subset, and let $\omega\left(t_{1}, \ldots, t_{k}\right)$ be a p-form on M depending (smoothly) on real parameters t_{1}, \ldots, t_{k}. Let $\mathrm{d} \omega\left(t_{1}, \ldots, t_{k}\right)=0$. Then for any $x \in U$ there exists a nbd \mathcal{V}_{x} and $a(p-1)$-form $\alpha\left(t_{1}, \ldots, t_{k}\right)$ on \mathcal{V}_{x} such that $\mathrm{d} \alpha=\omega$ on \mathcal{V}_{x}.

Proof. The proof is similar to the classical case [8; pp. 98-100].
Similarly, the Grothendieck Lemma (sometimes incorrectly called the Dolbeaut' Lemma) ($[1 ;$ p. 71, 9.4]), which generalizes the Poincaré Lemma in a complex setting, can be re-formulated as follows:

LEMMA 3.2. Let M be a complex manifold, let $U \subset M$ be an open subset, and let $\omega\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{C}^{(p, q)}(U)$ be a C^{∞} complex form on U of type $(p, q), p \geqq 1$, which depends on real parameters. Let $\partial_{1} \omega\left(t_{1}, \ldots, t_{k}\right)=0$. Then for any $x \in U$ there exists a nbd \mathcal{V}_{x} and a form α of type $(p-1, q), \alpha\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{C}^{(p-1, q)}\left(\mathcal{V}_{x}\right)$ such that

$$
\partial_{1} \alpha\left(t_{1}, \ldots, t_{k}\right)=\omega\left(t_{1}, \ldots, t_{k}\right)
$$

For a (real) manifold equipped with a polynomial structure we shall prove a similar result.

THEOREM 3.1. Let (M, f) be a polynomial m-manifold for which the characteristic polynomial $R(\xi)$ admits only simple roots. Let $U \subset M$ be open, and let $\omega \in \mathcal{C}^{\alpha}$ be a p-form where $\alpha=\left(a_{1}, \ldots, a_{n}\right), a_{i} \geqq 1, n=r+2 s$ (respectively, $a_{r+j} \geqq 1$, or $a_{r+s+j} \geqq 1$). Let $\partial_{i} \omega=0$ (respectively, $\Delta_{j} \omega=0$, or $\left.\bar{\Delta}_{i} \omega=0\right)$. Then for any point $x \in U$ there exists a nbd $\mathcal{V}_{x} \subset U$ and a differential $(p-1)$-form $\alpha \in \mathcal{C}^{\beta}(U), \beta=\left(a_{1}, \ldots, a_{i}-1, \ldots, a_{n}\right)$ (respectively, $\beta=\left(a_{1}, \ldots, a_{r+j}-1, \ldots, a_{n}\right)$ or $\left.\beta=\left(a_{1}, \ldots, a_{r+s+j}-1, \ldots, a_{n}\right)\right)$ such that $\partial_{i} \alpha=\omega$ (respectively, $\Delta_{j} \alpha=\omega$, or $\bar{\Delta}_{j} \alpha=\omega$) on \mathcal{V}_{x}.

Proof. Let $\partial_{i} \omega=0,1 \leqq i \leqq r$. Locally, we can write

$$
\begin{align*}
\omega= & \sum f_{i_{1}, \ldots, j_{1}, \ldots, k_{w}}\left(x_{1}, \ldots, x_{m}\right) \mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} z_{j_{1}} \wedge \cdots \wedge \mathrm{~d} \bar{z}_{k_{w}} \\
= & \sum \mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{l}} \wedge\left(\sum f_{i_{1}, \ldots, j_{1}, \ldots, k_{w}}(x) \mathrm{d} x_{i_{l}+1} \wedge \cdots \wedge \mathrm{~d} x_{i_{l}+a_{i}}\right) \tag{9}\\
& \wedge \mathrm{d} x_{i_{l}+a_{i+1}} \wedge \cdots \wedge \mathrm{~d} z_{j_{1}} \wedge \cdots \wedge \mathrm{~d} \bar{z}_{k_{w}}
\end{align*}
$$

where the first sum runs over $1 \leqq i_{1}<\cdots \leqq \tilde{n}, 1 \leqq j_{1}<\cdots \leqq \tilde{\tilde{n}}, 1 \leqq k_{1}<$ $\cdots \leqq \tilde{\tilde{n}}$, the third sum runs over $\left(i_{l}+1, \ldots, i_{l}+a_{i}\right), l=a_{1}+\cdots+a_{i-1}$, and the sccond sum over the remaining indices. Let us introduce $\Omega(x) \in\left(\mathcal{C}_{i}\right)^{a_{i}}(M)=$ $\mathcal{C}^{\left(0, \ldots, a_{2}, \ldots, 0\right)}, \Omega=\sum f_{i_{1}, \ldots, j_{1}, \ldots, k_{w}}(x) \mathrm{d} x_{i_{l}+1} \wedge \cdots \wedge \mathrm{~d} x_{i_{l}+a_{i}}$. Then $\omega=\mathrm{d} x_{i_{1}} \wedge$ $\cdots \wedge \Omega \wedge \cdots \wedge \mathrm{d} \bar{z}_{k_{w}}$ where Ω is regarded as an a_{i}-form on \mathcal{H}_{i} in variables corresponding to the coordinates on \mathcal{H}_{i} while the other coordinates play the role of parameters. Let us consider an integral manifold M_{i} of the distribution \mathcal{H}_{i} (which exists by integrability of f). Denote by d_{i} the exterior derivative with respect to M_{i}. Then

$$
\begin{equation*}
\partial_{i} \omega= \pm \mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{l}} \wedge \mathrm{~d}_{i} \Omega \wedge \mathrm{~d} x_{i_{l+a_{i}+1}} \wedge \cdots \wedge \mathrm{~d} \bar{z}_{k_{w}} \tag{10}
\end{equation*}
$$

Since $\partial_{i} \Omega=0$ we obtain $d_{i} \omega=0$. By Lemma 3.1, there exists locally an $\left(a_{i}-1\right)$-form $\tilde{\Omega} \in\left(\mathcal{C}_{i}\right)^{a_{i}-1}\left(M_{i}\right)$ in the same variables, depending on the same parameters such that $\mathrm{d}_{i} \tilde{\Omega}=\Omega$. Now let us consider $\tilde{\Omega}$ as a form in all the variables $x_{1}, \ldots, x_{m}, \tilde{\Omega} \in\left(\mathcal{C}_{i}\right)^{a_{i}-1}(M)$. Then

$$
\begin{equation*}
\alpha=\sum \mathrm{d} x_{i_{1}} \wedge \cdots \wedge \tilde{\Omega} \wedge \cdots \wedge \mathrm{~d} \bar{z}_{k_{w}} \tag{11}
\end{equation*}
$$

ALENA VANŽUROVÁ

is the required form satisfying $\partial_{i} \alpha=\omega$.
Similarly, in the case $\Delta_{j} \omega=0$, after a suitable replacement of coefficients in the coordinate formula for ω, we obtain a form Ω on \mathcal{H}_{r+j} in variables corresponding to \mathcal{H}_{r+j} which depends on real parameters. By integrability, through each point there passes a unique maximal integral submanifold M_{r+j} of the distribution \mathcal{H}_{r+j}. The restriction $J_{j} P_{r+j}$ of Φ onto M_{r+j} is an integrable almost complex structure on the almost complex manifold M_{r+j}. Therefore M_{r+j} is a complex manifold ([1], [4]), and we can apply Lemma 3.2 considering Ω as a form on M or on M_{i} alternatively. Denote by $\mathcal{P}^{(r+j)}$ the projector onto the dual space \mathcal{H}_{r+j}^{*}. Let us introduce an operator $\tilde{\partial}_{r+j}$ by $\tilde{\partial}_{r+j} \tau=\mathcal{P}^{(r+j)}\left(\mathrm{d}_{r+j} \tau\right)$ for $\tau \in \mathcal{H}_{r+j}^{*}$. Obviously, $\Delta_{j} \omega=0$ if and only if $\tilde{\partial}_{r+j} \Omega=0$. Locally, there exists $\tilde{\Omega} \in\left(\mathcal{C}_{r+j}\right)^{a_{r+j}-1}$ such that $\tilde{\partial}_{r+j}(\tilde{\Omega})=\Omega$. In some nbd of a given point, the form α introduced by

$$
\begin{equation*}
\alpha=\sum \mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} z_{j_{w}} \wedge \tilde{\Omega} \wedge \cdots \wedge \mathrm{~d} \bar{z}_{k_{w}} \tag{12}
\end{equation*}
$$

satisfies $\Delta_{j} \alpha=\omega$.
Let $\bar{\Delta}_{j} \omega=0$. Then $\bar{\Delta}_{j} \bar{\omega}=0$ and locally, there is a form β satisfying $\Delta_{j} \beta=\bar{\omega}$. Consequently, $\alpha=\bar{\beta}$ satisfies $\bar{\Delta}_{j} \alpha=\omega$.

REFERENCES

[1] CHERN, S. S. : Complex Manifolds, Izd. Inostr. Lit., Moskva, 1961.
[2] GOLDBERG, S. I.-PETRIDIS, N. C. : Differentiable solutions of algebraic equations on manifolds, Kôdai Math. Sem. Rep. 25 (1973), 111-128.
[3] GOLDBERG, S. I.-YANO, K. : Polynomial structures on manifolds, Kôdai Math. Sem. Rep. 22 (1970), 199-218.
[4] KOBAYSHI, S. : Foundations of Differential Geometry II, Intersc. Publ., New York-London -Sydney, 1969.
[5] LEHMANN-LEJEUNE, J.: Integrabilité des G-structures definies par une 1 -forme 0 -deformable a valeurs dans le fibre tangentx, Ann. Inst. Fourier (Grenoble) 16 (1966), 329-387.
[6] LEHMANN-LEJEUNE, J.: Sur l'intégrabilité de certaines G-structures, C. R. Acad. Sci. Paris Sér. I Math. 258 (1984), 32-35.
[7] MIZNER, R. I. : Almost CR structures, f-structures, almost product structures and associated connections, Rocky Mountain J. Math. 23 (1993), 1337-1359.
[8] PHAM MAU QUAM: Introduction à la géométrie des variétés différentiables, Dunod, Paris, 1968.
[9] VANŽURA, J. : Integrability conditions for polynomial structures, Kodai Math. Sem. Rep. 27 (1976), 42-50.
[10] VANŽUROVÁ, A. : Polynomial structures with double roots, Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 36 (1997), 187-196.
[11] WALKER, A. G. : Almost-product structures. In: Differential geometry. Proc. Sympos. Pure Math. 3, Amer. Math. Soc., Providence, RI, 1961, pp. 94-100.

DIFFERENTIAL FORMS ON MANIFOLDS WITH A POLYNOMIAL STRUCTURE

[12] YANO, K. : On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}+f=0$, Tensor 14 (1963), 99-109.

Received June 19, 1995
Revised January 28, 1997

Department of Algebra and Geometry Faculty of Science Palacký University Tomkova 40
CZ-779 00 Olomouc
CZECH REPUBLIC

[^0]: AMS Subject Classification (1991): Primary 53C05.
 Key words: manifold, complex differential form, polynomial structure.

