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RANDOM SETS AND THEIR 
ASYMPTOTIC MEASURE 

FRANTIŠEK STRAKA*) — J O S E F Š T Ě P Á N * * ) 1 ) 

(Communicated by Anatolij Dvurečenskij) 

ABSTRACT. The paper continues the investigation begun in [5] and [7] by pre­
senting a probabilistic model for random sets suitable to handle the weak conver­
gence of processes given by 

M e a s [ K „ n / ( t ) ] -tMeas(Xn), t 6 [0, 1] , 

where Xn are random sets and I(t) is a non-random set valued process indexed 
by [0, 1] . Moreover, sufficient conditions are found to ensure the asymptotic nor­
mality of r.v's 

Meas [Xn n Yn] - Meas [Xn] • Meas [Yn] , 

where Xn and Yn are independent random sets. 

1. Introduction 

We shall fix a complete probability space (0, *4, P) and a measure algebra 
E = E(m) associated with a nonatomic count ably generated probability space 
( F , £ , m ) . We shall keep the notation E(A) for the algebra generated by the 
Lebesgue interval ([0,1], Borel[0,l], A) and fix an isomorphism i : E(A) —> E(m) 
([4, p. 173]). The algebra E(m) is assumed to be topologized as a subspace in 
Li(m). To avoid a complicated notation we agree not to distinguish a set F G £ 
from its equivalence class [F] E E. Similarly we shall keep the notation m even 
for the measure [m] defined on E by [m]([F]) = m(F). 

A Borel measurable r.v. X: il —• E will be called a random set (RS), its 
measure m(X) the size of X. 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 60D05. Secondary 60F17. 
K e y w o r d s : Random set, Random automorphism, Inspection process. 
1) Part of the research was performed while the author was visiting the Indian Statistical 

Institute in Calcutta. 
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Fur ther denote by A = A(m) the group of all automorphisms acting on E(m) 
and topologize it by the coarsest topology that makes maps a i—> aF from A 
into E to be continuous for all FEE. Recall ([3, p . 88-89]) tha t , endowed with 
such a topology, A is a complete separable topological group . 

A Borel measurable r .v . ^4: fi —• A(m) will be called a random automorphism, 

(RA), the net {/(*), t G [0,1]} C E(m) defined by I(t) = z[0,r] , inspection of 

E(m). 

Consider, now, a random automorphism A and a r.v. p: fi —• [0,1] to define 
a r andom set X with the size p by 

X = Al(m(X)) everywhere on 11. (1) 

The following theorem states the existence as such a representat ion generally 
(see also [6] and [7]). 

THEOREM 1. For any random set X there exists a X-measurable random 

automorphism A such that (1) holds. 

P r o o f . Define a map F: Ax [0,1] - • E by F(a,r) = al(t) for (a,*) G 
A x [0 ,1] . Such a m a p is obviously continuous and surjective by [3, p . 104]. By 
von Neumann measurable selection theorem ([8, p . 128-9]) there is a universally 
measurable m a p S: E —• A x [0,1] such that FoS is the identi ty on E . Hence, 
S(X) is a Borel measurable r.v. (P is a complete measure!) with values in 
A x [0,1] , A = piA S(X) is then a X-measurable RA satisfying (1 ) . • 

Remark tha t the joint distribution of a pair A, m(X) is far from being 
uniquely determined by the distribution of X in relation (1 ) . Hence, we may 
choose the most suitable one to produce X by (1) . If it happens tha t there is a 
solution A independent of m(X) we shall say that X is an orthogonal random 
set. Let us agree tha t whenever we write (1) for an orthogonal set X we mean 
A and m(X) to be independent. An orthogonal set given by (1) is said to be a 
Haar random set if C(A) is a Haar measure on a compact subgroup of A ( m ) . 

We shall make use of representation (1) in Section 3. Another obvious way 

how to produce a random set X is to consider a measurable 0 — 1 valued sto­

chastic process { F ( x ) , x £ F} and to put X = [{Y = 1}] . Again, any RS 

may be constructed in this way (see also [6], [7]). 
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T H E O R E M 2 . For any random set X there exists a 0 — 1 valued, 

aX x £-measurable process {Y(x), x G E} such that 

{x£E: Y(x) = l} eX a.s. [P]. 

If Z is another process satisfying (2 ) , then 

Y(x) = Z(x) a.s. [P] for xeN, 

where N G £ is a m-zero set. 

P r o o f . The uniqueness par t is obvious as Y = Z a.e. [P x m ] . P u t 

R(D) = I m(X(uj) n Dj) P(du), D G oX x £ 

(2) 

and define a aX x £ -measurable process M = {M(x), x G E} by 

dR = M d (m x P). It follows from the separability of £ tha t 

í M(x) m(d 
.ғ 

x)= m(XПF), FєS = 1, 

and therefore {M = 1} G X a.s. [P]. 

P u t t i n g Y = Indicator| 0,i}(-^- r) we obtain a process with propert ies ( 2 ) . • 

Having a r a n d o m set X and a process Y constructed to X in T h e o r e m 2, 

we denote 

P[X3xu...yxn] = P [ F ( ; r , ) = l , l<j <n], 

(xi,...,xn)eEn, n G N , 

and call it a probability of inclusion of X\,... , xn into X . 

If n is fixed, then all probabilities of inclusion 

(.n , . . . , xtl) h-> P[X 3 xi,..., xn] 

considered as functions defined on En are equivalent w.r.t. the p r o d u c t measure 

mn according to Theorem 2. Obviously 

/ P[X Э ц , . . . , i » ] m n ( d x , , . . . , dxn) = Emn(Xn П F) (3) 
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holds for all F £ £n . Remark that Xn = X x . . . x X is a correctly defined 

random set with values in the measure algebra associated with ( F n , £n, m n ) . 

In addi t ion to random automorphisms and 0—1-measurable processes as tools 
when describing probabili ty distributions of a random set there is one which 
makes it possible to s tudy their asymptotic behaviour by means of continuous 
stochastic processes. If X is a RS, then a continuous stochastic process defined 
by t i—) m(X n I(t)) for t £ [0,1] will be called an inspection process of the 
random, set X. 

As the m a p F i—• {m(F f) I(t)) , t £ [0,1]} is a bicontinuous injection 

of E into C[0,1] no loss would occur when studying R S ' by means of their 

inspection processes as far as the weak convergence of probabil i ty dis t r ibut ions 

is concerned. Most of the results to be presented in Section 2 and 3 relate to 

sequences of r andom sets which have their points dis tr ibuted ualmost uniformly'1 

over E in the sense that max (m(Xn 0 I(t)) — tm(Xn)) —• 0 in probabi l i ty or 

even 

y/n(m(Xn n I(t)) - tm(Xn)) -* <rW0(t) in distr ibution on C[0,1] , (4) 

where TV0 is a Brownian bridge and a a positive constant . Note tha t only 
trivial R S ' with X(Q) C {0,I£} are allowed to have the inspection process with 
trajectories t i—> m(X) • t. We shall say that random sets Xn are asymptotically 
uniformly distributed (AUD) if (4) holds for a a > 0 . 

E x a m p l e . Denote for a fixed n £ N 

• j - i ' • •* - ' (£ ) -7 (^1) . !< ,<„ (5) 

Consider (5) as a finite statistical populat ion and perform a simple r andom 
sampling procedure on it with a fixed size 1 < k < n to get a sample, say, 
{Injl,. • • , Injk } and define an RS by 

Xn = Jn > i l U • • • U 7 n J p f c , ( m(Xn) = A = p ) . 

Such an RS will be referred to as a random permutation (of order n ), tin-
terminology is justified since Xn is in fact Haar RS associated with the finit. 
group Vn C A of all permutat ions of the intervals In,j h- (5 ) . 
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Remark (see [6], [7]) tha t r andom permuta t ions Xn have the AUD proper ty 

with a2 = p • (1 — p) provided tha t m(Xn) —> p G ( 0 , 1 ) . 

2 . A s y m p t o t i c a l l y un i formly d i s t r i b u t e d R S ' 

Consider a sequence of random sets Xn . Searching for reasons tha t make 
r andom permuta t ions obey the AUD property we easily arrive at the following 
conditions: 

(6) m(Xnj), 1 < j < n are exchangeable r .v. 's , when Xnj = Xn C\ Inj , 

(7) esssup |P[ .K„ 3 t , 5 | X „ 3 s] - l | - • 0 , n -> oo , 
(M)€/2,i 

(8) esssup |-P[A"„ 3 t , s | X„ 3 u,v] - P[Xn 3 *,«][ -+ 0 , 
( « , a , u , W ) G / 2 > 1 x / 2 2 

n —> oo , 

where we have used notat ion (5) and the essential suprema in (7) and (8) 

are defined w.r.t . m 2 or m 4 -measure , respectively. Let us agree to call such a 

sequence of RS' a symmetric corrosion. 

THEOREM 3 . Let {Xn} be a symmetric corrosion such that 

m(Xn) - > p E (0,1) in probability. (9) 

Then the random sets Xn are AUD with a2 = p • (1 — p). 

Note tha t (9) may be easily verified under the presence of corrosion propert ies 
(6) and (9 ) , only. 

LEMMA. If (6) and (9) hold, then (9) is equivalent to the convergence 
Em(Xn) —• p. 

To see tha t , use successively (6 ) , (3) and (8) to get 

Em(Xn)2=n2 j P[Xn3x,y}m2(dx,dy) + o(n-1) = (Em(Xn))2+o(l), 

hence E(m(Xn) - pf = (Em(Xn) - p)2 + o(l). 

P r o o f o f T h e o r e m 3. Denote 

Un(t) = ^/n~(m(Xn n /(<)) - tm(X„)), t G [0,1], 

£n,t = y/n(m(Xntk)-n~1m(Xn)) , l<k<n, 

[n(] 

Y»(0 = £&.,*• *e[o,i]. 
J b = l 
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As max \Un(t)-Vn(t)\ - o(n~ll2) , convergence (4) is equivalent to the conver­

gence in distribution on Skorochod space D[0,1] of the processes Vn to aW0 . 
n 

Observing that £nfk , 1 < k < n are exchangeable r.v.'s, J ] 6i * = 0 and 
k=i 

max \(ntk\ = o(n1/2) , the convergence would be verified according to Theorem 

in [2, p. 212] if we could prove that 

n 

Y!,tn,k-J>P'(1-p) in probability. (10) 
k=i 

An easy calculation shows that 

n n 

^2 ^U = n Yl m(Xn,k)2 +Bn, £ n -> -p2 in probability (by (9)). 
*=i k=i 

Hence, we are to prove that 

n 

-4n = n 2_^ m(Xn,k)2 -> p in probability. (11) 
k=i 

It follows from (7) using (3) that 

\n2Em(Xntl)
2 -nEm(Xntl)\ 

= n2\ j P[Xn 3x,y]- P[Xn 3 x) m2(dx,dy) = o(D 

as n —> oo. Therefore, by (6) and (9), we get 

n2Em(XnA)2 - > p . (12) 

Now, denote 

Fn = n4Em(XnA)2m(Xni2)
2 , Dn = n

4(Em(XnA)2)2 . 

Using (3) once more we calculate 

Vn = n4 / P[Xn ^ x, y, u, v) m4(dx, dy, du, dv), 

I2 x / 2 

V n , l * J n , 2 

Dn=n4 í P[Xn Эx,y]P[Xn Эu,v]m4(dx,dy,du,dv). 
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Therefore 
Vn —> p2 in probability (13) 

by (8) and (12). Finally, it follows from (6) and (13) that 

EA\ = n3Em(Xrhl)
4 + n(n - l )n2Km(Kn ,1)2 • Em(Xna)

2 -> p2 . 

Thus, using (12) we get that E(An — p)2 —> 0 which is equivalent to (11). • 

Applying suitable continuous functionals to the processes Un and IVo we 
may get assertions of the following type. 

COROLLARY 1. Let {Xn} be a symmetric corrosion satisfying (9). Then 

y/n max \m(Xn H I(t)) - t • m(Xn)\ -> v/P-( l - p) max |VV0(r)| 
<e[o , i ] ' ' <6[o , i ] ' ' 

and 

\{t e [0,1] : m(Xn fl I(t)) > t • m(Xn)} —• U in distribution, 

where U is a r.v. uniformly distributed on [0,1], (see [2, p. 85]). 

A slightly more sophisticated argument has to be used to prove: 

THEOREM 4. Let Xn be AUD random sets and f G L\(E,£,m) such that 

(14) G(f,t) = J f(x) m(d.c) is a function with the second derivation 
1(0 ' 

continuous on [0,1]. 

Denote 

Un(f,t) = V^l J f(x) dx - m(Xn) J f(x) dx , 

\ x n n / ( 0 1(0 / 
t 

W0(f,t) = [ G'(f,s) Wo(ds) (Itoys integral) 

o 

for t G [0,1] . Then 

Un(f,t) —> <rIVo(/,r) in distribution on C[0,1] . (15) 
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Let a preliminary remark precede the proof of Theorem 4. The isomorphism 
i~l: E(ra) —> E(A) is naturally extended to an isomorphism S: L\(m) —• L\(\) 

by 

Jfdm= J S(f)d\, FEZ, / € l i ( m ) . (16) 

S(f • g) = S(f) • S(g) (17) 

holds for / , g G L2(m). 

P r o o f . First assume that E(ra) = E(A), / has the first derivation contin­
uous, I(t) = [0,*]. 

Let Yn be a process constructed to Xn in Theorem 2 and put 

Zn(x) = y/~(Yn(x) - \(Xn)) for x € [ 0 , l ] . 

Obviously, denoting Un(t) = Un(l,£), 

t t t 

Un(f,t) = J f(x)Zn(x) dx = J f(x) Un(dx) = f{t)-Un(t) - Jun(x)f'(x) dx 
0 0 0 

holds on ft x [0,1]. Putting 

t 

H(u)(t) = f(t)u(t) - f uf dx for u e C[0,1] and t G [0,1], 

we define a continuous functional H: C[0,1] —• C[0,1] such that Un(f) = 
H(Un). Hence Un(f) —• crH(TVo) in distribution, which concludes the proof, as 

t 
H(Wo) is easily seen to be the diffusion t i—• / f(x) Wo(dx). 

o 
Now, we shall handle the general formulation of our theorem. As G'(f) E 

5 ( / ) , where S(f) is defined by (16), we have 

Un(f,t) = sfa J G'(f, u) du - \(i~xXn) • J G'(f, u) du 
i-iXnnҢt) 

* Є [ 0 , 1 ] . 
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According to the first part of the proof, Un(f) —• crWo(f) in distribution because 
i~lXn are AUD random sets in E(A). • 

It is obvious enough that one may use the invariance principle stated by 
Theorem 4 to receive some information about an asymptotic behaviour of the 
statistics In(/) = ra(Kn)

-1 • J f dra, which may be chosen as estimators for 
xn 

I(/) = f f dra , when / is an unknown function observable on Xn , only. Denote 

r2(/) = I(/2)-I(/)2 for feL2(m). 

COROLLARY 2. Let Xn
ys and f be such as in Theorem 4 . Further assume 

that 

m(Xn) > 0 almost surely, y/n. • ra(Xn) —• oo in probability, 

feL2(m), r 2 ( / ) > 0 . 

Then 
/ „ ( / ) -» / ( / ) in probability, (18) 

Jn-m(Xn)(in(f)-I(f)) , x 
\ , ' -v iV(0,1) in distribution, (19) 

V -TnU) 

where Pn(f) = Uf) ~ hif) • 

P r o o f . Convergence (18) follows from Theorem 4 directly. Observe that 
G'(f) G S(f), G and S being defined by (14) and (17), respectively. Hence 

I„(/2)-^ I(/2) in probability. (20) 

Moreover, by Theorem 4 we get 

Vn • ra(Xn) • ( /„( / ) - / ( / ) ) -* N(0,r2(/)) in distribution 

because VarWo(/. 1) = ^2(/)« Hence, (19) is a consequence of (18) and (20). 

• 
3. Asymptotic measure of independent intersections 

A natural question arises in connection with the AUD property of random 
sets. Is this property closed under independent intersections? The answer is 
positive when corrosions are concerned due to Theorem 3. We need of course a 
more strict symmetry property than proposed by (6). We shall say that {Kn} 
is a strongly symmetric corrosion if (7), (8), and 

C(aXn) = C(Xn)1 aeVn, n G N , (21) 

hold. One needs only arguments to show that (21) implies (6). 
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T H E O R E M 5 . Let {Xn} and {Yn} be i.i.d. strongly symmetric corrosion. 
Then Zn = Xn DYn is a strongly symmetric corrosion. If moreover, 

P[Xn 3 x] —• p in m-measure for some p £ ( 0 , 1 ) , (22) 

then Zn 's are AUD sets with a2 = p2(l — p2). 

P r o o f . Symmetry property (21) is fulfilled trivially for Zn . According to 
Theorem 2 and relation (3) we have 

P[zn ^x} = P2[xn B x], P[zn ^x,y} = p2[xn ^ x,y] 

a.e. [m] or a.e. [m 2 ] , respectively. 

Now, it follows from (22) that limiting procedures (7 ) , (8) are satisfied, too. 

Thus , {Zn} is a strongly symmetric corrosion such tha t P[Zn 3 x] —• p 2 in 

m - m e a s u r e by (22) and (23) . Finally, the lemma at tached to Theorem 3 implies 

tha t m(Zn) —• p2 in probability and we arrive to (4) with <r2 = p 2 ( l — p2) by 

Theorem 3. • 

R e m a r k . The following simple observation shows tha t assumpt ion (22) 
cannot be removed when applying Theorem 3 to independent intersections: If 
Xn and Yn are i.i.d. r andom sets enjoying properties (8) and (21) then 

m(Xn) —• p , m(Xn fl Yn) —> p2 in probability if and only if P[Xn 3 x] —• p 
in m -measure. 

The assertion follows readily using Lemma both for the sequences {Xn} and 
{Xn D F n } , observing tha t 

m(Xnf)Yn)-p
2 = I \P[Xn ^x]-Em(Xn)\

2 m(dx) + o( l ) as Em(Xn) -+p. 

Note tha t Theorem 5 is of no value when searching for a limit of a sequence 
y/n(m(Xn fl Yn) — p2) , X n , Yn being i.i.d. random sets such tha t m(Xn) —• p. 
For these purposes we shall employ automorphism "technology" developed by 
Theorem 1. 
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THEOREM 6. Let Xn = Tnl(m(Xn)) and Yn = Anl(m(Yn)) be independent 
orthogonal random sets such that 

£ ( . 4 - , ) * £ ( T B ) = £(T„) . (24) 

If moreover Xn
ys are AUD random sets and m(Yn) —-> q in probability for some 

q G [0,1], then 

y/n(m(Xn n Yn) - m(Xn) • m(Yn)) —> aW0(q) in distribution. (25) 

P r o o f . As An , Tn , m(X n ) , m(y"n) are independent it follows by (24) 
that the left-hand side variable in (25) and 

Un(m(Yn)) = y/H(m(Xn f) l(m(Yn)))- m(Xn) • m(Yn)) 

have an identical probability distribution (having denoted by Un(t) the process 
considered in (4)). The rest follows easily by the AUD property of the sequence 

{xn}. a 

Note that (24) is the condition that imposes the most serious restrictions 
when trying to apply the preceding theorem. It is a known fact ([2], [9], for 
instance) that equation (24) holds if and only if 

C(Tn) = H*P and support C(An) C G , 

where H is the Haar measure on a compact group G c A and P an arbitrary 
probability distribution on A. It follows that if Xn , Yn in Theorem 6 are also 
identically distributed, we are left with Haar random sets, only, to satisfy (24). 
The next statement is thus about the best we may gain via Theorem 6. 

COROLLARY 3 . If Xn and Yn are i.i.d. Haar random sets, such that {Yn} 
is a AUD sequence and m(Yn) —+ p in probability, then 

y/H(m(Xn n Yn) - m(Xn) • m(Yn)) -> N(0, a2p(l - p)) . 

The statement proposes some problems to be solved. To find a property that 
would make a sequence of Haar random sets to be AUD is one of them. The 
main obstacle when trying to prove the statement of Corollary 3 for more than 
two sequences stems from the fact that an intersection of i.i.d. Haar RS' need 
not be a Haar one. The difficulty does not arise in case of random permutations 
(see [5]). 

A somewhat more sophisticated version of Theorem 6 is given below. 
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T H E O R E M 7. Let Xn be AUD random sets such that 

y/n(m(Xn) — p) —> 0 in probability for some p £ [0,1] . (26) 

Then 

Dn = \fn(m(Xn H Yn) — p • q) —» (rWo(q) + p Z in distribution, (27) 

where Z is r.v. independent of WQ and q £ [0,1], for any sequence of orthogonal 

random sets Yn = Anl(m(Yn)) such that 

Xn and Yn are independent, C(A~lXn) = C(Xn), (28) 

and 
Zn = y/n(m(Yn) — q) —> Z in distribution. (29) 

P r o o f . Denoting qn = m(Yn) it follows from (26) and the orthogonality 

of Yn tha t Dn is distr ibuted as Cn = y/n(rn(XnnI(qn)) —p-q) • Obviously, we 

have Cn = Un(qn)+p- Zn , where Un is defined by (4) . As the process Un and 

the variable Zn are independent, as Un —> aWo by (26); (27) is a s t andard 

consequence of (29) . • 

Note tha t (28) , which is a slightly relaxed from of (24) , is equivalent to 

suppor t C(A~l) C G(Xn), where G(Xn) is a closed subgroup in A defined by 

G(Xn) = {a £ A : C(aXn) = C(Xn)} . 

Hence, by Theorem 3 and Theorem 7 we get: 

COROLLARY 4 . If {Xn} is a strongly symmetric corrosion satisfying (26) 
and Yn are random permutations of a fixed size q £ [0,1] . then 

y/n(m(Xn fl Yn) —p-q) —• N(0, p • q(\ — p)(\ — q)) in distribution. 

REFERENCES 

[1] BILLINGSLEY, P . : Convergence of Probability Measures, J. Wiley, New York, 1968. 

[2] DENI, J .—CHOQUET, G.: Sur I'equation de convolution // = f.i * cr , C R. Acad. Sci. 

Paris Ser. I Math. 250 (1960), 799-801. 

[3] HALMOS, P. R. : Lectures on Ergodxc Theory. (Russian Translation), Izd. In. Lit., 

Moscow, 1959. 

[4] HALMOS, P. R. : Measure Theory, Van Nostrand, London, 1968. 
[5] HURT, J—MACHEK, J.—STEPAN, J.—VORLICKOVA, D. : The intersections of ran­

dom finite sets, Math . Slovaca 32 (1982), 229-237. 

218 



RANDOM SETS AND THEIR ASYMPTOTIC MEASURE 

[6] STRAKA, F. : Random Sets and their Intersections. (Czech), PhD-theses, Charles Uni­
versity, Prague, 1986. 

[7] STRAKA, F.—STEPAN, J. : Random sets in [0, 1] . In: Proc. of 10th Prague Conference 

on Information Theory 1986, Academia, Prague, 1988, pp. 349-355. 

[8] SCHWARTZ, L. : Radon Measures, Oxford University Press, Oxford, 1973. 

[9] STEPAN, J . : Some notes on the convolution semigroup of probabilities on a metric group, 
Comment. Math. Univ. Carolin. 10 (1969), 613-623. 

Received February 7, 1991 *) Skoda Central Research Institute 

316 00 Plzen-Bolevec 

Czech Republic 

**) Department of Probability and Math. Statistics 

MFF UK 

Sokolovská 83 

186 00 Praha 8 

Czech Republic 

219 


		webmaster@dml.cz
	2012-08-01T08:19:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




