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THE NON-NORMAL QUARTIC CM-FIELDS 
AND THE DIHEDRAL OCTIC CM-FIELDS W I T H 

IDEAL CLASS GROUPS OF E X P O N E N T < 2 

S T E P H A N E L O U B O U T I N * — H E E - S U N Y A N G * * — S O U N - H I K W O N * * * 

(Communicated by Stanislav Jakubec) 

ABSTRACT. After having proved that there are only finitely many of them, we 
determine all the non-normal quart ic CM-fields whose ideal class groups have 
exponent < 2. There are 678 non isomorphic such quart ic CM-fields and 37 out 
of them have class number 1, 205 out of t h e m have class number 2, 284 out of 
them have class number 4, 140 out of them have class number 8 and 12 out of 
them have class number 16. We then deduce t h a t there are 116 dihedral octic 
CM-fields whose ideal class groups have exponent < 2 and 17 out of t h e m have 
class number 1, 7 out of t h e m have class number 2, 50 out of t h e m have class 
number 4, 31 out of t h e m have class number 8, 3 out of t h e m have class number 
1 6 , 3 out of t h e m have class number 32, and 5 out of t h e m have class number 64. 

1. Introduct ion 

Lately, the class number one and two problems for non-normal quartic 
CM-fields and dihedral octic CM-fields have been solved (see [L01] and [YK]). 
The aim of this paper is more general: we determine all the non-normal quartic 
CM-fields and all the dihedral octic CM-fields whose ideal class groups have ex
ponent < 2. To this end, we first carefully explain in Section 3 how one can use 
class field theory to efficiently construct all the non-normal quartic CM-fields K 
whose discriminants are less than or equal to a prescribed large upper bound. We 
will reduce their construction to the construction of primitive quadratic modular 
characters on the rings of algebraic integers of their real quadratic subfields k 
(but we also explain in Section 3.5 how to compute totally positive algebraic 

integers / 3 K / k £ k such that K = k L / — / 3 K / k ] ) . However, we will contend 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11R29, 11Y40, 11R37. 
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ourselves with this construction in the case that the exponents of the narrow 
ideal class groups of these k are < 2 . Indeed, in that situation the construction 
is easier and we will prove that this restriction is natural when dealing with 
our determination (see Points 7. and 8. of Proposition 1). We then remind the 
reader in Section 4 of the efficient method exposed in [Lou3] for computing rela
tive class numbers of non-normal quartic CM-fields. We are now in a position to 
compute the class numbers of all the non-normal quartic CM-fields and of all the 
dihedral octic CM-fields of discriminants less than or equal to any reasonable 
upper bound. According to such computations, there are a lot of non-normal 
quartic CM-fields and a lot of dihedral octic CM-fields whose ideal class groups 
have exponent < 2. However, our next aim is to prove in Section 5 that there 
are only finitely many such CM-fields and to obtain an explicit bound on their 
discriminants. Finally, using necessary conditions for the exponent of the ideal 
class groups of such CM-fields to be < 2 to drastically alleviate the amount 
of required relative class number computation, we will finally determine all the 
non-normal quartic CM-fields and all the dihedral octic CM-fields whose ideal 
class groups have exponent < 2. There are 678 + 116 = 794 such CM-fields 
and we will provide the reader with the list of these CM-fields at the end of 
the paper. Of course, we spent quite a lot of time checking that wre did not 
make any misprint while filling this list. We are rather confident that we did 
not make any mistake in our determinations for the required computations were 
done separately in Caen (France) by the first author and in Seoul (Korea) by 
the second and third authors and in the end our results dovetailed perfectly. 

2. Non-normal quartic fields and dihedral octic fields 

If E is a number field, we let o?E denote the absolute value of its discriminant. 
If E / F is an extension of degree m > 1 of number fields, we let VF ,F denote 
the different of the extension E / F and set dE,F — N E / Q C ^ E / F ) = dB/dF . If 
E / F is abelian, we let JF0 denote the finite part of the conductor J^E /F °f t n e 

extension E / F . 

PROPOSITION 1. 

1. Let K be a non-normal quartic field. Assume that K contains a qua
dratic subfield k . Then, the normal closure N of K is a dihedral octic 
field. Moreover, K is a CM-field if and only if N is a CM-field. 

2. Let N be a dihedral octic field. We have the following lattice of sub fields 
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N 

Gal(N/Q) = Ds 

Kj K' N+ K' K 2 

G a l ( N / k + ) = C 4 

Ga^N/kJ 

G a l ( N + / Q ) 

C o X Uл 

Oo X L/9 

where K = K x and K'x are isomorphic non-normal quartic fields with 
the same quadratic subfield k = k x (Hfe ivz/Z sau £/m£ K^ is the conjugate 
field of K1). K 2 and K 2 are isomorphic non-normal quartic fields with 
the same quadratic subfield k2 and N + is the maximal abelian subfield 
of N . In this situation, Kx and K 2 are called dual non-normal quartic 
fields, and kx and k2 are called dual quadratic fields. Moreover, if N 
is a CM-field, then the K^ and K^ 's are non-normal quartic CM-fields 
and N + is the maximal totally real subfield of N . 

3. Let K / k be a quadratic extension of number fields. For any algebraic 
integer a of k such that K = k( v t / a) there exists an integral ideal X 
of k such that (4a) = X2T§, where T§ denotes the finite part of the 
conductor TK,k of the quadratic extension K / k . 

4. Let K = k(\/—cY) be a quartic CM-field, where a is a totally posi
tive algebraic integer of the real quadratic subfield k of K . Then K 
is normal if and only if d K / k is a square in k . which is equivalent 
to N J / Q ^ ) being a square in k . Moreover, if K is not normal, then 

k' = Q U / ^ V W Q ^ ) ) = Q ( \ / ^ K / k ) is the duad Quadratic field of k 

and dk, divides dK / k . 

5. Fe£ N &e a dihedral octic field and let the notation be as in Point 2.. We 
have dN + = d k dk d ^ N / K ѓ — dN+/ki 

anddK2/k, =<1

dK1/kJdk,-

*N+ > "k 2 

6. 

.Since k 2 = Qf * / d K / k ) . Hje can easily deduce the values of d^ 

and d K 2 / k 2 /rom d k i and d K i / k i . 

N/K^ is unramified at all the finite places if and only if d N + = d k. . In 
particular, at least one of the two extensions N / K 1 or N / K 2 is ramified 
at some finite place. 

7. Assume that the exponent of the ideal class group of a dihedral octic 
CM-field N is < 2. Then, the exponent of the ideal class group of at least 
one of its four non-normal quartic CM-subfields K is < 2. Moreover, if 
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dN + ^ dk and dN + ^ dk . then the exponents of the ideal class groups 
of Kl and K 2 are both < 2 . 

8. Assume that the exponent of the ideal class group C1K of a non-normal 
quartic CM-field K is < 2. Then, the exponent of the narrow ideal class 
group Clk of its real quadratic subfield k is also < 2. 

P r o o f . 

1. See [Lou2]. 

2. See also [Lou2]. 

3. Let A k and A K be the rings of algebraic integers of k and K , respectively. 
For a G K , let a' be its conjugate in the quadratic extension K / k . Since 
VK,k = gcd{(a — a!) : a G A K and K = k (a )} (see [Lan2; Chap. Ill, 
Proposition 8]), for any a G A K such that K = k(a) there exists an integral 
ideal la of K such that (a —a') = XaVK,k. Since the ideals (a —a') and VK k 

are invariant under the action of Ga l (K/k) , so is la, and la = 1Z Jk for some 
integral ideal Jk of k and some integral ideal 11 of K which is a product of 
prime ideals of K ramified in the quadratic extension K / k . Fix a prime ideal VK 

of K ramified in the quadratic extension K / k . Let vv^ denote the associated 
valuation. Since vv^ ((a — ®')V^},k) = max{/VpK ((a — a')/(f3 — (5')) : (3 G A K 

and K = k(/3)} and since (a — a')/((3 — f3') G k for any such /3, we obtain 
vvJJl) = vvjnjk) = vvJla) = vv^ ((a - a')VK)k) = 0 (mod 2). Hence K 
is the square of some integral ideal of K and la = TZJk is an integral ideal lk 

of k, i.e.: if a G A K is such that K = k ( a ) , then there exists an integral ideal 
J k of k such that (a — a') = XkVK,k. In particular, for any a G A k such that 
K = \n(y/a) there exists an integral ideal lk of k such that (2^/a) = lkVK k. 
Taking relative norms, we do get (4a) = XkNK,k(VK,k) = Z£jT0. 

4. Since K is normal if and only if 7Vk /q(a) is a square in k, Point 3. provides 
us with the first result. The second assertion is easily proved. 

5. Follows from (dK /dk ) = d N / d N + = (dK /dk ) (see [Lou2]). 

6. Now dN + = d\x and dN + = d\2 would imply d^d^d^ = d^+ = d k ld k 2 

and dk = 1, a contradiction. 

7. If the quadratic extension N / K is ramified at some finite place, then, 
according to class field theory, the norm map from the ideal class group of N 
to the ideal class group of K is surjective. Now, use Point 6.. 

8. Let H k
+ denote the narrow Hilbert class field of k and let H K denote 

the Hilbert class field of K . Since the quadratic extension K / k is ramified at 
least one finite place of k (see [L01; p. 51]), then K Pi H k

+ = k . Therefore, the 
extension K H k

+ / K is a subextension of the abelian extension H K / K whose 
Galois group G a l ( K H k

+ / K ) is isomorphic to the Galois group G a l ( H k
+ / k ) , 
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hence isomorphic to Clk . Since Ga l (H K /K) is isomorphic to C 1 K , then it has 
exponent < 2. Hence the exponent of G a l ( K H k

+ / K ) ~ Clk is < 2. • 

From now on, we let K , k, ftK, QK G {1,2} and N denote a non-normal 
quartic CM-field, its real quadratic subfield, its relative class number, its Hasse 
unit index and its normal closure, respectively. In particular, N is a dihedral 
octic CM-field. We then let oo1 , oc 2 , ^ K / k = oo1oo2J

:
Q and Xxjk denote the 

infinite places of k, the conductor of the quadratic extension K / k and the 
quadratic character associated with this quadratic extension. Hence, JF0 is an 
integral ideal of k . Finally, we set d K / k = -WWQC^O)

 a n ^ ^ C1K and C1N 

denote the ideal class groups of K and N , respectively. 

2.1. W h e n is K2 a dual field of Kx ? 

PROPOSITION 2. Let Kx = k 1 ( v /=a 1 ") and K2 — ^2(V~a2) be two non-
normal quartic CM-fields, where ai = (xi + Viy/d^ ) /2 is a totally positive alge
braic integer of the real quadratic field k^ of discriminant d{ = ofk. . kx ^ k2 . Set 
jV- = -Vk . /Q(aJ (hence, k2 = Q(y/N1~), kx = Q(y/N2)) and, in accordance 
with Point 5. of Proposition 1. assume that dk dK / k = <ik dK / k (hence, the 
positive rational integers N1d2 and N2d1 are squares of rational integers). Then 
Kx and K2 are dual non-normal quartic fields if and only if at least one of the 
four rational integers 

R(£,e') = xxx2 + 2eyly/N2dl + 2e'y2^/Nxd2 , e G {±1} and e' G {±1} 

is a square of some rational integer. 

P r o o f . Kx and K 2 are dual quartic fields if and only if S — axa2 is a 
square in N + = k 1 k 2 . We use [Lou7; Proposition 3.1] with E = N + and F = k1 

and notice that ^ N + j k i ( a i a 2 ) = ai^2 1S always a square in k1 (use Points 3. 
and 4. of Proposition 1) and that TrN + /k l(«1cY2) = axx2. Hence, S = axa2 is 

a square in N + if and only if one of the two a£(S) = ax (x2 + 2e^s/N2) G kx is 
a square in k x , where e G {±1}- Now, we use [Lou7; Corollary 3.3] and notice 
that N = Nlci/Q(a£(S)) = Nx(x\ — 4jV2) = Nxd2y\ is a square in the field of 
rational numbers and that T — Trk 1/Q(&£(S)) = x 1x 2 + 2eyly/N2dl. Hence, 
a£(S) is a square in kx if and only if one of the two T + 2e'y/N = R(e, e') is 
the square of some rational number. , • 

E X A M P L E . Kx = Q ( y / - ( 1 0 4 + 2(h/24)/2 ) and K 2 = Q ( ^ - ( 4 0 + 4 v
/ 76) /2 ) 

are dual CM-quartic fields. Indeed, Nx = 304, 7V2 = 96, R(e,e') = 64(65 + 
30e + 19e') and R(—1, —1) = 64-16 is a perfect square. More precisely, ax — 
4( l3 + 5 \ /6 ) , a2 = 4 ( 5 + V l 9 ) , a±(5) = 32(l3 + 5> /6 ) (5±v / 6) and, according 
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to [Lou7; Corollary 3.3], a_(S) = 32(35 + 12\/6) is a square in Q ( \ / 6 ) . More 

precisely, we have a_(5) = (16 + 12\/6) in k t = Q ( \ / 6 ) and 6 = axa9 = 

16(65 -f-25\/6+ 13x/Í9 + 5\/TT4) = 22(4 + 3\/6 + 2\ / l9 + \ / ÍT4) 2 in N+ = 

Q ( v / 6 , \ / l 9 ) . 

3. Construction of the quartic CM-fields 
containing a given real quadratic field 

Let k be a given real quadratic field. The aim of this section is to carefully 
explain how one can efficiently construct all the non-normal quartic CM-fields K 
containing k and of discriminants dK less than or equal to any given reasonable 
large upper bound. This construction is based on the use of class field theory 
and rests on the construction of all primitive quadratic characters on ray class 
groups of k. 

To begin with, we notice that if K is a non-normal quartic CM-field with 
maximal totally real subfield k, a real quadratic field, then there exists some 
integral ideal T0 of k such that TK,k = oo1oo2.f

:
0 is the conductor of the 

quadratic extension K / k , where oo1 and oo2 denote the two infinite places of k . 
We let Clk(JF0) denote the unit ray class group of k modulo T = oc1oc2JF0, 
where oo1 and oo2 denote the two infinite places of the real quadratic field k. 
Let x be a character on the group Clk(JF0). Its associated modular character 
X0 on the group (Ak/T0)* is defined by x{(a)) — v(a)x0(a) where v(a) = ± 1 
is the sign of the norm of a. According to class field theory, there is a bijective 
correspondence between 

(1) the non-normal quartic CM-fields K containing k such that 
^K/k = F ~ oc1oo2JF0 

and 

(2) the quadratic characters on Clk (T0) whose associated quadratic modu
lar characters Xn o n (A k /F 0 )* are primitive. 

Subsection 3.3 will be devoted to constructing such modular primitive qua
dratic characters. For the time being, we explain how to recover \ from Xn • 

3.1. Determinat ion of basis of Clk[2] and Clk[2]. 

Recall that k = Q ( \ / d ) denotes a real quadratic number field wheie d > 1 
is a positive square-free integer. We then let Ak ,clk ,6:k = (xk H- y_y/d\^)/^ 
> 1, v(ek) = ± 1 , Cl k ,Cl+ , / i k , / i+ , t = t k , Clk[2] and Cl+[2] denote its ring 
of algebraic integers, its discriminant, its fundamental unit, the norm of this 
fundamental unit, its ordinary and narrow ideal class groups, its ordinary and 
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narrow class numbers, the number of rational primes which are ramified in the 
quadratic extension k / Q and the subgroups of the classes of order < 2 in its 
ordinary and narrow- ideal class groups, respectively. For any square-free rational 
integer Q > 1 which divides dk we let TZQ denote the only integral ideal of k 

of norm Q > 1 and we let TZQ denote the primitive ideal of k such that 

(y/d)TZQ = (n)TZQ for some rational integer n > 1. This ideal TZQ is called the 

dual ideal of the ideal IZQ . Notice that TZQ — QZ + ( ( P + y/a\.)/2)Z where 

p = 
d if d = 3 (mod 4) and Q is even, 

dk otherwise 

and that TZQ = TZQ where 

Q 
4d/Q if d = 3 (mod 4) and Q is even, 

d/Q otherwise. 

The 2-rank of the narrow ideal class group Clk of k is equal to t — 1 = tk — l. 
More precisely, Clk [2] = {C £ Clk : C2 — l } is generated by the narrow ideal 
classes of the t prime ramified ideals V of k where p runs over the prime 
divisors of dk and where for such a prime p we let V denote the prime ideal 
of k lying above p. Therefore, there is a single relation between these t narrow 
ideal classes. The following Lemma provides us with this relation and enables us 
to determine a set {C- : 1 < j < t — l} of t — 1 narrow ideal classes of prime 
ramified ideals of k which generate Clk[2]: 

LEMMA 3. (See [Loul].) Let k = Q ( \ / d ) be a real quadratic field, d > 1 
square-free. 

1. Assume that ^(^k) = — 1 . Then lZd — (Vd) ~ 1 is the single relation 

in Clk between the t prime ramified ideals of k . 
2. Assume that v(ek) = + 1 . Set (PQ1Q0) = (dk, 1) and define inductively 

ai = the largest integer less than or equal to u{ = (P^ + y/a\.)/2Qi, 
Pi+l = 2aiQi - Pi and Qi+1 = (dk - P?+1)/4Qi. Then, the Q{ are pos
itive rational integers and i0 = min{i > 1 : Q{ \ d] is well defined and 
Q• is a positive square-free divisor of dk . If i0 is even, then TZQ. ~ 1 

is the single relation in Clk between the t prime ramified ideals of k . 
while if i0 is odd, then TZQ. ~ 1 is the single relation in Clk between 
the t prime ramified ideals of k . 

For any prime divisor p of dk, let %[) denote the quadratic character on Clk 

defined by 

i'pV) = ( \ / Q ( I ) , dk)p (Hilbert's symbol). 
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These t quadratic characters on Clk generate the group \I/k of order 2l~l of 
all the quadratic characters on Clk and satisfy the single relation f] ip = 1 

p|<lk 

(see [Mor; Theorem 2]). Notice that C G Clk is a square in Clk if and only if 
ipp(C) = + 1 for all the t prime divisors p of dk . We then fix a set {ip{ : 1 < i 
< t— 1} of £ — 1 generators of this group \!/k. We also construe these characters 
ipi as F2-valued characters. Finally, we fix {C • : 1 < j < t — 1} a set of narrowr 

ideal classes generating Clk [2] and set 

Mk=WCj)]1<itj^t_1eGLt_1(F2), 

where F 2 denotes the finite field with two elements. 

3.1.1. Efficient computat ion of relations in Clk[2]. 
Let now TQ be a given non-zero integral ideal of k and set fQ = Nk,Q(T0). 

Assumpt ion. From now on, to simplify, we assume that the exponent of Clk 

is < 2, i.e., we assume that Clk = Clk [2] (see Point 8. of Proposition 1). It may 
be useful to notice that the exponent of the 2-Sylow subgroup of Clk is < 2 
if and only if for each j G { 1 , . . . , £—1} there exists i G { 1 , . . . , £—1} such that 
^(Ij) = - 1 , where Xj eCy 

In particular, an integral ideal X of k is principal in Clk if and only if its 
ideal class is a square in Clk , i.e. 

X is principal in the narrow sense <̂ => (V^G^-J (^(X) = + l ) , (1) 

f ( V ^ * k ) ( ^ ( I ) = + l ) 

X is principal in the wide sense 4=4> < or (2) 

Therefore, if the Ci 's are the narrow ideal classes of prime ramified ideals V{ 

and if (^) = Q{Q!i are rational primes relatively prime to fQ which split in k 
and such that ^ ( Q J = V^-(^) for 1 < j < t - 1, then {Q. : 1 < i < t - 1} is 
an easy to construct set of integral ideals of norms relatively prime to fQ whose 
narrow ideal classes generate Clk [2]. We fix a set {l- : 1 < i < t-1} of integral 
ideals of norms relatively prime to / 0 == NU/Q(TQ) whose narrow ideal classes 
generate Cl£[2]. 

Now, for any integral ideal X of k let 

*T=[l>i(-]l<i<t-1 

denote the column vector whose zth component is ^ ( 1 ) G F 2 . There exists a 

unique column vector ex = [ex(i)]1<i<t_l with coefficients in F 2 such that 

t - i 
X I I 2 i : r 0 ) = ^aT) ( w i t h ax e A k t o t a l l y Positive) (3) 

.7 = 1 

542 



EXPONENT < 2 CLASS GROUP PROBLEMS 

is principal in the narrow sense. Since this relation holds if and only if ipi(I) = 
- - 1 

^2 ip^l^e^j) for 1 < i < t - 1, hence if and only if ipx = M k e x , we obtain 
j i 

% = MkVx , 

which makes it easy to compute ex, the knowledge of which makes it easy to 
compute ax (see [L02; p. 539] or Subsection 3.4 below). 

3.2. Quadratic characters on ray class groups of k. 
Let x be a quadratic character on the group C I ^ ^ Q ) - Let a{ e A k be 

totally positive and such that 

A = (<*<) • 
Since 1 = X

2(Zi) = x ( ^ ) = x((a
{)) = v(ai)x0(

ai) = X 0 K ) , we obtain 

Necessary 1: Xo(ai) = + 1 for 1 < i < t — 1. (4) 

Moreover, for any unit e e A k we must have Xo(£) = v(£) (^or * = x((£)) = 
ly(£)Xo(£))i which amounts to having 

Necessary 2: X0(
£J = v(£k) a n d X 0 ( - 1 ) = + 1 (5) 

where ek > 1 is the fundamental unit of k . 
Finally, if i/(ek) = + 1 , then the 2-rank of the ordinary ideal class group Clk 

of k is equal to t k = t — 2 and there exists a single relation 

n * i = (<*) (with iVk/Q(a) < 0) (6) 
iei 

(Vd) J J l . = (P) (with iVk/Q(/J) > 0) (7) 
iei 

between the ordinary ideal classes of the t - 1 ideals whose narrow ideal 
classes generate Clk[2]. In particular, x must satisfy x ( 1 1 ^ ) = x((r)) = 

^iei J 

v(a)x0(a) = — Xo(a) which amounts to asking 

Necessary 3 : n £i = ~X0(
a) (where ei = x ( ^ ) e {±1} ). (8) 

iei 

Now, for any non-zero integral ideal X of k relatively prime to TQ, using 3) wo 
get 

X(X) = XoK) n £?{l) " Xl(l) (where e% - x(^) e {±1}). 
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Conversely, let x 0 be a primitive quadratic modular character on (Ak/JF0)* sat
isfying (4) and (5) and let e = (e1,... ,st_1) G { ± l } t _ 1 be given and satisfying 
the relation (8). Then (9) defines a quadratic character \ — Xo o n Clk (^"o) 
whose associated modular quadratic character is Xo an<^ we have proved: 

PROPOSITION 4. Let k and JF0 be given. Assume that the exponent of Clk 

is < 2 and let Xi, 1 < i < t — 1 , be t — 1 integral ideals of k relatively prime 
to TQ and whose narrow ideal classes generate Clk [2] = Clk . 

1. If there exists a quartic CM-field K containing k of conductor JFK k = 
oo1oo2JF0. then (4) ana7 (5) are satisfied for some primitive quadratic 

character Xo on (^k/^o)* • 
2. Conversely, let x 0 fre a primitive quadratic character x 0 on ( A k / f 0 ) 

5H.c/i £/m£ (4) and (5) are satisfied. Then there are 

= f2t~1 . / I / ( e k ) = - l , 
k l2*" 2 i /Ke k ) = + l 

quartic CM-fields K containing k . of conductor T^i^ — oo1oc2Jr7
0 ana7 

whose associated modular characters are equal to Xo • 

3.3. Primitive quadratic modular characters. 

Write JFK/k = O0i0<-)2^r2^rodd w ^ n ^2 OI* 2-power norm and .Jr
odd of odd 

norm / o d d , and let x 0 = X2Xodd be the associated factorization of x 0 • The aim 
of this section is to determine the possible choices for these components of x 0 • 
To begin with, notice that x 0

 iS quadratic and primitive if and only if both \ 2 

and Xodd a r e quadratic and primitive. 

3.3.1. Primitive quadratic characters modulo Ve, p > 3 . 

If p > 3 is an odd prime and n is a rational integer, then ( - ) denotes 
Legendre's symbol. If m > 3 is odd and n is a rational integer, then ( ^ ) 
denotes Jacobi's generalization of Legendre's symbol. 

LEMMA 5. Let k be a real quadratic field, A k be its ring of algebraic integers, 
p>3 be an odd prime and let (-) denote the Legendre symbol. 

1. Assume that (p) = V is inert in the quadratic extension k / Q . If x ^s 

a primitive quadratic character on the multiplicative group (Ak/V
e) , 

then e = 1. Moreover, a i-> (pv(a) = ( k / ^ a ) is the only non trivial 

quadratic character on (Ak/V)* . 
2. Assume that p is not inert in the quadratic extension k / Q and let V 

be any one of the prime ideals of k lying above p. If x is a primitive 
quadratic character on the multiplicative group ( A k / P e ) * ? then e = 1. 
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Moreover, a H+ (j)v(a) = (^-) is the only non trivial quadratic character 
on (A k / / P)* . where aa is any rational integer such that a = aa (mod V). 
Moreover, if (p) = VV1 splits in k , then for any a G A k we have 

COROLLARY 6. Assume that there exists a primitive quadratic character on 
the multiplicative group ( A k / ^ o d d ) * where Todd = noddQoddZ + nodd((Podd + 
y/d^)/2)Z is an integral ideal of k of odd norm fodd = n o d d Q o d d . Then Fodd 

is square-free, i.e., if a prime ideal V of k divides Fodd, then V2 does not 
divide Podd. Hence, Qodd > 1 and nodd > 1 are square-free relatively prime 
positive rational integers. Conversely, if Fodd of odd norm is square free, then 

\ ^odd / \ ^odd / 

is the only primitive quadratic character on (Ak / .? r
o d d) . 

Notice that Xodd(n) = (Q^) whenever n G Z is relatively prime with / o d d . 

3.3.2. Primitive quadratic characters modulo V2. 

LEMMA 7. Assume that (2) = V2V2 splits in k . Hence dk = 1 (mod 8) . Set 
VI = 2eZ + C J C Z with cje = (Pe + V ^ k ) / 2 and dk = Pe ( m o d 2 e + 2 ) - Since 

a = x + yue G A k i-> x G Z induces an isomorphism from A k / P | £o Z/2 e Z, 
emu character on ( A k / ' P | ) raaH be construed as a character on (Z/2 eZ) . 
Therefore, there exists a primitive quadratic character on ( A k / ' P | ) if and only 
if e G {2, 3} and ttere is only one such character for e = 2 whereas there are 
two such characters for e = 3 . 

LEMMA 8. Assume that (2) = V2 is inert in k . Hence dk = 5 (mod 8) . Fe£ 
0 8 + denote the primitive quadratic Dirichlet character of conductor 8 associ
ated with the real quadratic field Q ( \ / 2 ) . If there exists a primitive quadratic 
character 4> on ( A k / ' P | ) , then e G {2, 3 } . Conversely, any non trivial qua
dratic character <fi on ( A k / P | ) is primitive and there are three such primi
tive quadratic characters. Then, there are four primitive quadratic characters on 
( A k / ' P | ) ; the characters a H+ (f>(a)(j)8 + (^^(a)) where <j) G {4>x, (j>2^(j>^ </>4} 
runs over the following four quadratic characters on ( A k / P | ) 
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d _ 5 (mod 8) and ф quadratic modu lo (4) = V$ • 

ф ker ф Remark 

Фl ф^ is trivial 

<Ѓ2 a3 Є {1, y/ď) ф2 is primitive 

Фз a 3 Є {1, 3} ф3 is primitive 

ФA a 3 Є {1, 2+^/d} ф4 is primitive 

a3 = X + V ч--

P r o o f . If e > 4, then cY = 1 + 2e~1(3 = 1 (mod Ve

2~
x) implies a = 

(l + 2e _ 2/3) (mod V%) and </>(a) = + 1 . Hence, 0 is not primitive. More

over, since ker( (A k /Pf)* -• (AJV~)*) = { 1 , 5 , - l + 2 ^ / 3 k , 5 ( - l + 2 v / d k ) } 

and since 5 = (y/d~) (mod'Pf) , a quadratic character 0 on ( A k / P f ) is 

primitive if and only if (f)(—l + 2y/d~) = — 1 , which yields the desired re

sults (since Nu/Q(-1 + 2^/d~) = 1 - 4rik = 5 (mod 8) and <£8|+(5) = - 1 ) . 

Moreover, if a = (xa + yay/d~)/2 e A k , then a 3 = (xa(x
2

a + 3rikH
2) + 

y*(^i + <yl) v 7 ^ ) / 8 " X a + ^ a A G Z[ V ^ ] , 0(a) = 0(cY3) and 

- i Xa~ Ya ( m o d (4)) if YQ is even, 

^ a - ^ a + i + V 7 ^ (mod (4)) if Ya is odd 

is equal to 1, 3, y/d~, or 2 + y ^ modulo (4) = V~ and we obtain the desired 

Table of the four quadratic characters on (A k / (4)) . D 

LEMMA 9. Assume that (2) = V\ is ramified in k . Hence rik = 4d = 0 (mod 4) 
with d = 2, 3 (mod 4) . If there exists a primitive quadratic character <j) on 
( A k / P | ) , then e £ {2 ,4 ,5} . Conversely, 

1. T/ze oHiu non trivial quadratic character on (A-^/Pf) z$ primitive. 
2. For d = 2 (mod 4) . lAere are fa/jo primitive quadratic characters on 

(Ak/F )f) and four primitive quadratic characters on (Ak/F )f) : £be 
characters (f)0(f)i where (j>iJ 1 < i < 4 . nms ot'er the following four 
quadratic characters modulo V\ 

d = 2 (mod 4) and 0 quadratic modulo (4) = V% • 

Ф ker ф Remark 

Фl 

02 

03 

04 

1, 3+2\/d, l+3\/d , 3+3\/d 

1, 1+л/d, 3+л/d, 3+2\/d 

1, 3, l+2л/5, 3+2\/a: 

0 ! is trivial 

< 2̂ is primitive 

ф3 is primitive 

ø 4 is not primitive 
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and (J)0 is the primitive quadratic character modulo V\ satisfying 

ker cj)0 = {1, 7,1+Vd, d+5+\ /d , d+3+2>/d, d + l + 2 \ / d , d - l + 3 \ / d , 7+3>/d } . 

3. For d = 3 (mod 4) . £ftere are too primitive quadratic characters on 
(A^/V^)* and four primitive quadratic characters on ( A k / P | ) : the 
characters (\>0<\>i, 1 < i < 4 . where <f>{ runs over the following four 
quadratic characters modulo P 2 

d = 3 (mod 4) and </> quadra t ic modulo (4) = V% • 

0 ker ø Remark 

<Ѓi 

Ф2 

Фz 

Фi 

1, 3, 2+vЯ 2+3\/d 

1, 3, vd , З v d 

1, 3, l+2\/d , 3+2\/d 

(/>! is trivial 

ф2 is primitive 

(/>3 is primitive 

ф4 is not primitive 

and (j)0 is the primitive quadratic character modulo V\ satisfying 

ker cj)0 = {1, d, >/d, 6+>/d, l+2>/d, 2-d+2\/d, 3-d+3\/d, 5-d+3>/d } . 

P r o o f . Let 0 be a quadratic character cj> on ( A k / P | ) * . If e = 2e' + 1 > 6 

is odd, then a = l + 2e'/3 = 1 (mod P | _ 1 ) implies a = ( l + 2 e ' - 1 /?) 2 (mod P e ) 

and 0(a) = + 1 . If e = 2e' > 6 is even, then a = 1 + 2e'-~1/3 = 1 (mod Ve

2~
x) 

implies 0 <E P 2 and a = (l + 2 e '- 2 /3) 2 (mod P e ) and 0(a) = + 1 . Hence, if </> is 

primitive, then e G {2,3,4,5}. Moreover, since k e r ( ( A k / P | ) * -> ( A k / P 2 ) * ) = 

{ l , - l = ( d - l + v /d) } , if 0 is primitive, then e / 3 . Finally, the other results 
follow from the fact that 

, N ( {l,-(l+Vd)2\ if d = 2 (mod 4) , 

ker (Ak/P2

4)* -> (AJVly) = I X V

 9

 ; ' K J 

{ k 2 k / 2 M \ { l , ( V

/ d ) 2 ( l + 2 v / d ) } if d = 3 (mod 4) , 

and k e r ( ( A k / P 5 ) * -> ( A J P 4 ) * ) = {1, 5} when d = 2, 3 (mod 4). • 

3.4. Computat ion of generators of principal ideals. 

We explain how to compute a totally positive generator of a primitive ideal 
I r= QZ + ((P + yJd~)/2)Z which is known to be principal in the narrow sense. 
Set UJ0 = (P + ^~d~)/2Q. To compute such a generator, we use the modified 
continued fraction expansion of u0, i.e., when we know ui, we let ai denote the 
greatest integer less than ui and set uoi = ai + l— (l/u;i+1). It is easily seen that 
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we can write ui = (Pi + ^/d^) /2Qi where the Pi and Qi are rational integers 
computed inductively thanks to the following relations: 

P0 = P and Q0 = Q, 

Pl+1=2(ai + l)Qi-Pi, 

Qi+1 = (Pl1-dk)/4Qi. 

Set li = Q/L +((Pi + y/~)/2)Z. Then Xt is a primitive integral ideal. Since 
Ii+1 = (Qi+^t+JQ^i and Nk/Q(Qi+1ui+1/Qt) = Qi+1IQt > 0, all the I-
are in the narrow ideal class of X0 —X. Now, we define inductively matrices Vn 

with integral coefficients by 

v -(l °' 
y° \0 1 

V=(Pn ~Pn-l\=V (an + l ~l 

71 U -Qn-J "-'{ 1 0 
Note that Vn is in SL2(Z), that LJ0 = Vnu)n and that un = V~luo0. Since X 
is principal, there exists m > 0 such that Qm = 1 . In particular, cjmZ + Z is 
equal to the ring of algebraic integers of k . Let /3m and j m be defined by 

M _«-! ((P+ V~\)IA = (-Vm-l Pm-A ((P+y/~)/2 
l j ~ ~ \ Q ) \-1m Pm ) \ Q 

which yields pmhm = Vm
lu0 = um. Since Vm is in SL2(Z), then 

( 7 j = 7mu;mZ + 7 m Z = /?mZ + 7 m Z = ((P + v ^ : ) / 2 ) Z + gZ = J . 

Therefore, 

7m = ~Qm((P + V~)/2) +PmQ = ((2PmQ ~ <imP) " L ^ ) l - (10) 

is an explicit generator of the principal ideal X satisfying -Vk/QV7m) > 0. 

3.5. Computation of a generator of a quartic CM-field. 
Let K be a non-normal quartic CM-field which is associated to a primitive 

quadratic character XK/k on the unit ray class group Clk (JF0), where k denotes 

the real quadratic subfield of K. Hence, .^r
K/k = ooloo2J

r
0. The aim of this 

section is to explain how one can compute a totally positive /3 K / k £ Ak such 

that K = k(i/—/?K/k ) • Here again we assume that the exponent of Clk is 
< 2. In that case, the exponent of Clk is < 2 and the 2-rank £k of this class 
group Clk is given by 

r ( t - i i f ^ k ) = - i , 
k U - 2 if i/(ek) = + l . ' 
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We fix A k = {Vi : 1 < i < £ k } , a set of pairwise distinct prime ramified 
c k 

ideals whose ideal classes generate Clk[2], and set o~k = Yl Pi (where empty 
i=i 

products are equal to 1 and where p{, which denotes the norm of Vi, is a prime 
dividing dk). Notice that O~k is square-free and divides dk. Lemma 3 makes it 
easy to compute these data. Using Point 3. of Proposition 1, we obtain: 

PROPOSITION 10. Let ek = [x^Jty^^/a\)/2 > 1 be the fundamental unit of 
a real quadratic field k . Assume that the exponent of the narrow ideal class group 
of k is < 2. Let K range over the non-normal quartic CM-fields containing k . 
Set 

0k^K/k if is(ek) = +l, 

Як/k 
xъyldк./ddk гfv(єk) = -l-

Then, the finite part JF0 of the conductor TKik of the quadratic extension K/k 
is principal in the narrow sense and there exist a unique totally positive generator 
aK/k = (xK/k + 3/K/k V^k")/2 G ^ o s u c h t h a t 

l / e k < aK/J^a\^ <ek <=> - B K / k < yK/k < J?K/k (12) 

and a unique positive divisor 5K,k of £k such that K = kf , / — / ? K / k J where 

/ 3 K / k = ^K/kaK/k Z5 called the canonical generator of K . 

Note that HK/k is never a rational integer, and we let L?K/k denote the 

greatest integer less than or equal to I?K/k- Hence, (12) <^=^ Iz/K/kl — ^K/k-

The condition (12) insures that crK / k is a totally positive generator a — [xa + 

ya\fa
r
k)/2 of TKiV modulo E/k with the least absolute value for its second 

coordinate ya. Now we explain how one can compute this canonical generator 

(5K k when K is described by using a primitive quadratic character % o n the 

unit ray class group Clk(co1cx)2 .7 :
K /k). Let p > 3 be a prime. Assume that p 

does not divide f0 = ^/Q(^0) , that (p) = VV splits in k and that (3 e A k 

is totally positive and such that K = k(v / -7? ) . We must have 

xCP)=[I£]=Xv(-0) (13) 
and deduce the following algorithm for computing /?K/k • 

1. Compute a totally positive generator a of .FK/k (use Subsection 3.4). 
2. Set o\ = 1 and S2 = 6™. 
3. If Sx = 52, then go to step 5. 

4. De termine the least odd prime p > 3 relatively prime to f0 which splits in k and such 

that (-^) ^ (----). Then, (13) cannot be satisfied for both (3 = 6±a and 0 = 52a. If 
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(13) is not satisfied for S±a, then let S denote the least divisor of Sg which is greater 
than S1, set S1 = S and go to step 3, else (13) is not satisfied for S2a and let S denote 
the greatest divisor of S£ which is less than S2, set S2 = S and go to step 3. 

5. Set d = S1 = S2. 

6. If ^ (£ k ) = — 1, then set oK/k = d a n ( l S° to s* eP I2-
7. Set o\ = 1 and S2 = S™. 
8. If S1 = o*2, then go to step 10. 
9. Determine the least odd prime p > 3 relatively prime to f0 which splits in k and 

such tha t ( - 1 ) T-: (--•) , and notice tha t (13) cannot be satisfied for both (3 = S-^e^a 
and (3 = S2e^a. If (13) is not satisfied for S^^a then let S denote the least divisor of 
S£ which is greater than S±, set S1 = S and go to step 8, else (13) is not satisfied for 
S2e^a and let S denote the greatest divisor of Sg which is less than S2, set S2 = S 
and go to step 8. 

10 Set d' = SX=S2. 

11. Let p be the least odd prime relatively prime to / 0 which splits in k and is such tha t 

Xv(-da) 7-- Xv(—^'£ka)' a n ( l s e t 

if x ( ^ ) = X P ( - d a ) , 
if xCP)ŽXv(-da)-

(5K/^*) = \ , , , v 

I (<~Vk*) 
12. While ya > BK/k do a = a/e\. 

13. While ya < - B K / k do a = ae^. 
14. Set / 3 K / k = ( 5 K / k a K / k . 
15. End. 

Remarks 1 1 . Since we do not distinguish isomorphic quartic CM-fields, when 

giving Tables we will assume that 0 < VK/U < ^K/k • Notice also that o"K/k and 

a K / k depend on the choice of A£ and £k . For example, there exists (up to 

isomorphism) only one non-normal quartic CM-field K such that dk = 60 and 

d K / k = 601 (by Proposition 4). Using Proposition 10, we obtain P?K/k = 49 and 

(^K/k^K/k) = (2)56 + 13v/15) for 5 - = 2, but ( * K / k , a K / k ) = ( 3 , 2 9 - 4 ^ 1 5 ) 

for 5% = 3 (since 2(56 + 13>/l5) = 3(29 - 4>/ l5)( (3 + \ / l 5 ) / 3 ) 2 , we have 

k ^ - 2 ( 5 6 + 1 3 \ / l 5 ) ) = k ( - y - 3 ( 2 9 - 4 > / l 5 ) ) ) . 

3.6. Non-isomorphic quartic CM-fields. 
Since the conductor of the extension K ' / k is the conjugate of the conductor 

of the extension K / k , we may and we will assume that T0 = (n0)X0 where 
n0 > 1 is a positive rational integer and where X0 = Q z + ((P0 + y/d7)/2)Z 
is a primitive ideal of norm Q0 > 1 such that 0 < PQ < QQ ( a n d such that 
dk = P0

2 (mod 4Q0)). Note that rfK/k =f 1Vk/Q(^0)
 d=f

 / ( ) = n 2Q Q , t h a t K is 
not normal if and only if ^/QQ" g k (use Point 4. of Proposition 1) and that ^ 
is invariant under the action of the Galois group of the quadratic extension k / Q 
if and only if P0 = 0 or P0 = Q0. 
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LEMMA 12. If the exponent of Clk[2] is < 2 and if v(sk) = — 1, then T^ 
cannot be invariant under the action of the Galois group of the quadratic exten
sion k / Q . 

P r o o f . Write T§ — (n)lZ where n > 1 is a rational integer and 1Z is a 
primitive integral ideal of k . If JF0 were invariant under the action of Gal (k /Q) , 
then 1Z would a product of distinct prime ideals of k ramified in k / Q and 
1\ would be principal in the narrow sense, for so is JF0 (see Proposition 10). 
According to the first point of Lemma 3, we would have 1Z = (Vd) and d K / k = 
A k /q( .F 0 ) = n2d would be a square in k = Q(Vd), a contradiction. • 

LEMMA 13. If ^(sk) = + 1 and T§ is invariant under the action of the Galois 

group of the quadratic extension k / Q . then K ' = k f . / — S K / k £ k # K / k ) is the 

conjugate field of K = k w - ^ K / k a K / k ) • 

14. C o m p u t a t i o n of hK 

We remind the reader with the following technique for computing h~^: 

PROPOSITION 14. (See [Lou3].) Set A K / k = y/d^Jn*d~ and 

K= J2 XK/kW 
i V K / k ( X ) = n 

(where X ranges over the integral ideals of k of a given norm n > 1). Let 
7 = 0.577215664... denote Euler's constant and set 

K(A) = l + nA + 4 ^ ( a „ ( l o g A + 7 - 0 - 0 4 ^ M > 0 ) 
n > 0 

(n!)2 

where an = (2n + l ) " 1 + (2n + 2 ) " 1 . bn = (2n + l ) " 2 + (2n + 2 ) " 2 and sn 
n 

J2 k~l . It holds that 
A 1 

A 

n > l 

and 0 < K(A) < Se~A . Hence, this series (14) is absolutely and rapidly conver
gent and can be used to compute efficiently / i K . 
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PROPOSITION 15. (See [Lou3].) Let n = pk be a prime-power. 

1. Assume that p is inert in k / Q . Set ep = XK/k((P)) = Xo(p) • Then 

0 if p is ramified in K / Q , 

ekJ2(l + (—l)fe)/2 if p is not ramified in K / Q . 

2. Assume that (p) = V2 is ramified in k / Q . Set ep = x K / k ( P ) . Tben 

• { 

V ~~ s • 
3. Assume that (p) = W splits in k / Q . Set ev = XK/k(^>) a n ( l £v 

XK/kCP')- Then 

( (1 + ( - l ) f c ) /2 ./ X K / k ( ^ ' ) = XK/k((P)) = X0(P) = - 1 , 

(fc + 1 ) 4 i/ XK/kCP?") = XK/k((P)) = X0(P) = + i , 

4 + 4 ' tf X K /k(^ ' ) = XK/k((p)) = Xo(P) = o. 
V = < 

5. A finitness result 

The aim of this section is to prove that there are only finitely many non-
normal quartic fields K with ideal class groups of exponent < 2 and to give 
explicit bounds on their discriminants. 

5 .1 . A necessa ry condition for the exponent to be < 2. 

PROPOSITION 16. (See [Ear; Corollary 3.4].) Let K be a CM-field with max
imal totally real subfield k . Let T = tK,k denote the number of prime ideals of 
k which are ramified in the quadratic extension K / k . Set (i = 0 Or 1 according 
as the canonical map j = j K / k from the ideal class group Clk of k to the ideal 
class group C1K of K is infective or not infective. 

If the exponent of the ideal class group of K. is < 2. then 

hK = 2 T " 1 + p - ^ k where [jNK/k(K*) n Uk : U2} = 2? . 

Moreover, if hk = 1, then n = 0 and the exponent of the ideal class group of K 
is < 2 if and only if / i K = 2T~lJrp. 

P r o o f . The norm map N = NK,k: C1K -> Clk is onto, its kernel has 
order / i K and [ker j oN : kerTV] = # k e r j = 2M (remember that ker j has order 
1 or 2 and use the fact that jV is onto). Let Cl^yk denote the subgroup of the 

ambiguous classes. Then, # C 1 ^ = [iVK/k(K*) n C7k : U
2]2T-1hk (see [Lanl; 
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Chap. 13, p. 307, Lemma 4.1]). Assume that the exponent of C1K is < 2. Then 
ker j o N — C l ^ / k and we get the desired result from 

hK = # ker jY = # ker j o N/[kevj o jY : ker TV] = # C l £ ^ / [ k e r j o jY : ker jY]. 

Let us prove the second point. If hk = 1, then the subgroup C1K[2] of the classes 
of order < 2 in C1K is equal to C l ^ k , and the exponent of C1K is < 2 if and 

only if hK = hK/hk = hK = # C 1 ^ = 2 T - 1 + ^ k = 2 T " 1 + ^ . D 

COROLLARY 17. Let K be a non-normal quartic CM-field, let k be its real 
quadratic subfield and let ek > 1 be the fundamental unit of k . Then, 

1. i K / k is injective (see [L01; p. 51]), p G {0,1} and p = 1 ^=> ek G 
jVK/k(K*). In particular, v{ek) = —1 implies p = 0. 

2. 7/ l/ie exponent of the ideal class group of K is < 2. lften £/ie exponent 
of the narrow ideal class group of k is < 2 (Point 8. of Proposition 1). 
the prime ideals Vk of k which are ramified in K / k are principal in k 
(use (2) to check it) and according to (11) and Point 1. above, we have 

fc- = 2 T " 1 + ^ k < 2 T + i " 2 . (15) 

3. If hk = 1. l/ien ^(e:k) = —1 ana7 p = 0. 

5.2. Computat ion of p. 
To use (15) we must be able to compute p. Let a be any totally positive 

algebraic integer of k such that K = k(y/—a). We may assume that v{ek) = +1 
(Point 1. of Corollary 17). Then, ek is totally positive. Hence, ek G NK,k(K*) 
if and only if all the Hilbert norm residue symbols (ek , — a)v are equal to +1 
when V ranges over all but one of the prime ideals of k . Since units are local 
norms in unramified extensions (see [Lan2; Chap . II, Sec. 4, p . 50, Corollary]), 
wre may restrict V to range over all but one of the prime ideals of k which are 
ramified in K / k . In particular, we obtain: 

LEMMA 18. Assume that v{ek) = +1 and that at most one prime ideal of k 
is ramified in K / k . Then p — 1 . 

If V is ramified in K / k and lies above an odd rational prime p > 3, then 
1 = VV(TK,^) = vv{a) (mod 2) (see Proposition 10) and we obtain 

(ek> -<*)v = {^yV " = ( ^ ) = <M k̂) 
(with the notation of Lemma 5 and where (v) denotes the quadratic residue 
symbol). In particular, if V — (p) is inert in k / Q and ramified in K / k , then 
(£k, -a)v = (f>v{£k) = ( - ^ i ) = (=f) = + 1 , whereas if (p) = W splits in k, 

then M * k ) M e k ) = ( ^ ) = (f) = + 1 y i e l d s ( e k , - a ) P = <M^k) = 
^P'( ek) = (£ic — a)v • Therefore, we obtain: 
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LEMMA 19. Assume that l>(ek) = + 1 and that at most one of the prime ideals 
of k lying above 2 is ramified in K / k . Then p = 1 if and only if for each odd 
rational prime p which divides dK /k = 7Vk/Q{T0) and is non inert in k / Q we 
have </><p(£k) = + 1 . Here, V denotes any one of the prime ideals of k above p. 
In particular, p depends on k and dK / k only. 

Now, assume that (2) = V2V2 splits in k and that both V2 and V2 are rami
fied in K / k . It remains to compute the norm residue symbol (£k, — /3K/k)-p2 • Let 
T2 = V%V2

b be the 2-part of T0 = ( a K / k ) . Then T2 e {(4), (4)P2 , (4)P2, (8)} 
(use Lemma 7). Since £ K / k is square-free, we can write / ? K / k = £K/kLYK k 

= 2 n 7 K / k with n > 2 and 7 K / k some algebraic integer of k such that 
7 K / k ^ 0 (mod V2) and 7 K / k ^ 0 (mod V2). We are reduced to compute 
the Hilbert's symbol (ek, —2n7K/k)<p2 • 

LEMMA 20. Assume that (2) = F^F^ sP/zts in k , ivri£e £k = (^k + 2/kiv/d^)/2 
and Pf = 8Z + ( (P + v

/ d ^ ) / 2 ) Z u^/i dk = P 2 (mod 32) and let a = (x a + 
ya\/d^.)/2 be an algebraic integer of k suc/i £tW a ^ 0 ( m o d P 2 ) . T/ien 
( e k , 2 " a ) P 2 = ( ( x k - P H k ) / 2 , 2 - ( x a - P H J / 2 ) 2 . 

P r o o f . £k = (xk - P j / k ) /2 (mod P | ) and a = (x a - Pya)/2 (mod P2
3). 
a 

5.3. Lower bounds on nK and the finitness result. 

THEOREM 21. Fetf K k a non-normal quartic CM-field and k denote its real 
quadratic subfield. Then dK > 3 • 107 implies 

hK > ^ ^ 5 • (16) 
12(log(dK /dk) +0.052) 

7/ £/ie exponent of the ideal class group of K is < 2, then / i K < 215 and 
dK/dlc < 4 -10 1 6 . in particular, there are only finitely many non-normal quartic 
CM-fields K with ideal class groups of exponents < 2. 

P r o o f . For (16), see [Lou5; Corollary 15] (notice that according to its proof, 
there is a misprint in the original statement of [Lou5; Corollary 15]). Let T — 
t K / k > 1 and t = £k/Q > 1 denote the number of prime ideals of k which 
are ramified in the quadratic extension K / k and the number of rational primes 
which are ramified in the quadratic extension k / Q , respectively. Set px = p2 

= 3, p3 — p4 = 4 and let (pi)i>3 denote the increasing sequence of the odd 
primes greater than or equal to 5, each prime been repeated twice. Set Sr = 

r 
Y[ Pi- Then, dK/d^ = dkdK>k > £ t + T . Now, assume that the exponent of the 

i=l 
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ideal class group of K is < 2 . Then, hK = 2 T _ 1 / i k = 2 T _ M - 2 , dK/dk > 6t+T 

and 
-2 ^ v St+T 2T+t-2 > 

\2 * 12(log(tft+T) +0 .052) ' 

The reader can easily check that this implies t + T < 19, hK = 2T+t~2 < 217 

and using (16) we obtain dK/dk < 1019 . To obtain the 250-fold improvement 
dK/dk < 4 • 1016, we use better lower bounds for relative class number of 
CM-fields (see [Lou8]). D 

5.4. Powerful necessa ry cond i t ions . 

PROPOSITION 22. (See [Lou5; Lemma 6].) Let k1 be a given real quadratic 
field and fQ > 1 be a given positive integer. Let dx > 1 and d2 > 1 be square-free 

and such that k1 = Q(\/a\) and k2 = Q(>/7o) • If there exists a non-normal 
quartic CM-field K 1 containing k1 and such that dK /lc = / 0 , then it holds 
that: 

1. (----) = + 1 /Or a// odd primes p2 which divide d2 but do not divide dx, 

2. (----) = + 1 /Or a// odd primes px which divide dx but do not divide d2, 

3. (~ 1 2'p ) = + 1 for all odd primes p which divide both dx and d2 . 

PROPOSITION 23 . 

1. If K is a CM-field of degree 2n with maximal totally real subfield k . 
if V is a prime ideal of K which splits in the quadratic extension K / k 
and if V771 is principal, then NK/Q(Vm) > ^dK/^.. 

2. Let p>2 denote a prime and (-) denote Kronecker's symbol. Let K be 
a non-normal quartic CM-field. Let k denote its real quadratic subfield. 
Assume that the exponent of the ideal class group of K is < 2 and that 
p does not divide dK = d k d K / k . Then, 

-±) = +1 and p2 < j^dK/k imply ( - y ^ J = +1 > 

-f) = - 1 and P4 < i6dK/k ™piy [~YLJ = _ 1 • 

P r o o f . 
1. Let a be an algebraic integer of K such that V771 = (a) and let a denote 

the conjugate of a in the quadratic extension K / k . Since V splits in K / k , 
a e K \ k and a is a root of P(X) = X2 - T r K / k ( a ) X + NK/^(a). Set 0 = 
NK/\c(a + a ) = ( a + a ) 2 a n d 7 = ^ K / k ( a - a ) = -(a-a)2. Since /? and 7 are 
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totally positive elements of k, we have Nk/Q(j) < Nk/Q(j3 + ̂ ) = A k Q ( 4 a a ) = 
4nNK/Q(a) = 4nNK/Q(Vm)- N o w> t h e different F>K/k divides the principal 
ideal P'(a) = 2a - TrK / k(cr) = a - a (see [Lan2; p . 62, Proposition 8]), we 
obtain dK/k = NK/Q(VK/k) < NK/Q(a - a) = jVk/Q(7) < 4nNK/Q(Vm) (see 
also [Lou2; Proof of Theorem D] and [L01; Proof of Theorem 6] and notice 
that the result we have just proved is better than the one quoted in [Lou6; 
Theorem 2.1]). 

2. Using ramification groups, the reader will check that if all the prime ideals 
of k lying above a rational prime p > 2 are inert in K / k , then the inertia 
field of p is either equal to N + , in which case p splits completely in N + / Q , 
or is equal to k + , in which case p is inert in both k / Q and k ' / Q . Hence, if 

( ~ ) ^ ( _ J ^ i i ) ' t n e n a t ^ e a s t o n e °f t n e P r i m e ideals V of k lying above a 
rational prime p > 2 splits in K / k . Since VK is principal, the previous point 
yields NK/Q (V2) > xV^K/k' fr°m which we get the desired results. • 

Let k be a given real quadratic field whose narrow ideal class group has 
exponent < 2. Let f0 > 1 be a given rational integer. Assume that there exists 
at least one non-normal quartic CM-field K with real quadratic subfield k and 
such that dK/k = f0. There must exist n > 0, a > 1 odd and b > 1 odd and 
relatively prime with a such that f0 = 2na2b. Moreover, b must be such that 
if a prime p divides 6, then p is not inert in k / Q , i.e. (--*-•) ^ — 1 . Now, for a 
given k and a given such f0, Propositions 22 and 23 are used to get rid of most 
of the large values of f0 = dK/k, prior to constructing all the K 's of a given k 
and a given f0 = dK/k, computing their relative class numbers and computing 

their ideal class group structures whenever the bound hK < 2TJrt~2 is satisfied 
(see (15)). 

6. Tables 

We finally list in the following Tables all the non isomorphic non-normal 
quartic CM-fields with ideal class groups of exponent < 2 (678 such fields) and 
all the dihedral octic CM-fields with ideal class groups of exponent < 2 (116 
such fields). 
(1) The first column gives the discriminant dk of the real quadratic subfield k 
of K . This discriminant is in bold type numbers if hk = 1, and is in italic type 
numbers if hk = 1 but hk > 1 (hence if hk = 2). 

(2) The second column gives the norm dK/k of the finite part T0 of the con
ductor TK/k of the quadratic extension K / k . It is in bold type numbers if T0 

is invariant under the action of the Galois group Gal(k/Q) (10 such cases). 
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(3) The third column gives the coordinates n(x, y) of the canonical generator 
K/k — đK/kaк/k of K (see Proposition 10), with S] K/k n and a K/k 

(x + yy/d^) /2. Notice that in all the occurrences in these Tables we have £ K / k = 
H = 1. However, see Remark 11. 

(4) The fourth column gives the relative class number hK of K . 

(5) The fifth column gives the value of p £ {0,1} defined in Proposition 16. 
The symbol • in this column means that p = 0 for we are in the case that 
^ k / o ( e k ) = ~~ 1 ( s e e P ° m t 1 of Corollary 17). A value p = 1 written in bold 
type letter means that p = 1 for we are in the case that only one prime ideal ol 
k is ramified in the quadratic extension K / k (see Lemma 18). 

(6) The sixth column gives the structure of the ideal class group C1K of K . 
We did not have to compute it if /ik = 1 (see Proposition 16), or if hK — 1. This 
class group structure is given in bold type letters for the few fields K for which 
we had to compute it (by using Pari). We found 678 non-isomorphic non-normal 
quartic CM-fields K with ideal class groups C1K of exponents < 2, with the 
following related data: 

The non-normal quartic CM-fields K with ideal class groups C1K of exponents < 2. 

Structurе for C l к 

Numbеr of non pairwise isomorphic K 's 

[1] [2] [2,2] [2,2,2] [2,2,2,2] 

37 205 284 140 12 

total 

678 

(7) Now, we use Point 5. of Proposition 5 to fill in the seventh column of the 
pairs of invariants (d^dK^) of the dual fields (k, K ) of the 678 pairs of fields 
(k, K ) , where K ranges over these 678 non-normal quartic CM-fields K with 
ideal class groups of exponents < 2. We also use Points 5. and 6. of Proposition 1 
to check whether at least one of the two quadratic extensions N + / k or N + / k 
is unramified, in which cases these pairs of invariants (d k , dK , k ) are asterisked 
(26 such cases). 

(8) Finally, the eighth column gives the structures of the ideal class groups C1 N 

of the normal closures N of the previous 678 non-normal quartic CM-fields 
K wTith ideal class groups of exponents < 2, which according to Point 7. of 
Proposition 1 will provide us with the list of all the dihedral octic CM-fields N 
with ideal class groups C1 N of exponents < 2. However, two points must be 
emphasized. 

First, whereas no two of these 678 quartic fields K are isomorphic, they can 
nevertheless be dual non-normal quartic fields, in which case they have the same 
normal closure N . Therefore, we first searched in our Tables for the fields K for 
which there exist non-normal quartic CM-fields K 2 ^ K with ideal class groups 
of exponents < 2 such that c?k > d k = d k and dK , k = dK / k . In that case, 
we used Proposition 2 to check whether K is a dual non-normal quatic field of 
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at least one of these K 2 , in which case we put the symbol dual in the eighth 
columns of our Tables (172 such cases). 

Second, we did not have to compute the structure of the ideal class groups 
C1N of all the remaining 506 = 678 — 172 possible normal closures N . For the 
26 asterisked cases of the seventh column, we did compute them (by using Pari). 
However, for the 480 = 506 - 26 remaining fields K , both N + / k and N + / k 
are ramified at some finite place. Hence, according to Point 7. of Proposition 1, 
the exponent of the ideal class group C1N of the normal closure N of a given 
K is greater than two if d^ ^ d^2 or d^ ,^ ^ ^K2/k2 f° r a ^ the 677 non-normal 
quartic CM-fields K 2 7-- K with ideal class groups of exponents < 2. In that 
case, wre put the symbol • in the eighth column (292 such cases). Now, for the 
188 = 480 — 292 remaining non-normal quartic CM-fields K , we used Pari to 
compute the structure of the ideal class groups C1N of their normal closures N . 

We finally give in the eighth columns of our Tables the structure of the 
214 = 188 + 26 ideal class groups C1N we had to compute by using Pari. These 
class group structures are given in bold type letters for the fields N for which 
the exponents of C1N are < 2. We found 116 dihedral octic CM-fields N with 
ideal class groups C1N of exponents < 2, with the following related data: 

The dihedral octic CM-fields N with ideal class groups C 1 N of exponents < 2. 

Structure for C 1 N 

Number of N ' s 

[1] [2] [2,2] [2,2,2] [2,2,2,2] [2,2,2,2,2] [2 ,2 ,2 ,2 ,2 ,2] 

17 7 50 31 3 3 5 

total 

116 
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d k d K / k ØK/k ^ к P C 1 к ( d k ' d Ќ / k ) C 1 N 

5 41 (13,1) 1 • [1] 
5. 61 (17,3) 1 • [1] 
5 109 (21,1) 1 • [1] 
5 145 (25,3) 2 • [2] 
5 149 (26,4) 1 • [1] 
5 176 (28,4) 2 • [2] 
5 209 (29,1) 2 • [2] 
5 261 (33,3) 2 • [2] 
5 269 (34,4) 1 • [1] 
5 304 (36,4) 2 • [2] 
5 341 (37,1) 2 • [2] 
5 389 (41,5) 1 • [1] 
5 445 (45,7) 2 • [2] 
5 464 (44,4) 2 • [2] 
5 589 (49,3) 2 • [2] 
5 704 (56,8) 2 • [2] 
5 869 (61,7) 2 • [2] 
5 880 (60,4) 4 • [2,2] 
5 909 (66,12) 2 • [2] 
5 944 (64,8) 2 • [2] 
5 1045 (65,3) 4 • [2,2] 
5 1189 (69,1) 2 • [2] 
5 1349 (74,4) 2 • [2] 
5 1520 (80,8) 4 • [2,2] 
5 1584 (84,12) 4 • [2,2] 
5 1845 (90,12) 4 • [2,2] 
5 2480 (100,4) 4 • [2,2] 
5 3069 (114,12) 4 • [2,2] 
5 3245 (125,23) 4 • [2,2] 
5 3344 (124,20) 4 • [2,2] 
5 3509 (121,11) 4 • [2,2] 
5 7920 (180,12) 8 • [2,2,2] 
5 9405 (210,36) 8 • [2,2,2] 

(41,5) [1] 
(61,5) [1] 

(109,5) [1] 
(145,5)* [4] 

(149,5) [1] 
(44,20) [2,2] 
(209,5) [2,2] 
(29,45) [4] 
(269,5) [3] 
(76,20) [2,2] 
(341,5) [4,2] 
(389,5) [1] 

(445,5)* [4] 
(29,80) [2,2] 
(589,5) [2,2] 
(44,80) [2,2] 
(869,5) [6,2] 

(220,20)* [2,2,2] 
(101,45) [4] 
(236,20) [2,2] 

(1045,5)* [4,2,2] 
(1189,5) [2,2,2] 
(1349,5) [2,2] 

(380,20)* [2,2,2] 
(44,180) [2,2,2] 

(205,45)* [2,2,2] 
(620,20)* [2,2,2] 

(341,45) [8,2,2] 
(3245,5)* [4,2,2] 

(209,80) [4,2,2] 
(29,605) • 

(220,180)* [4,2,2,2] 
(1045,45)* [4,4,2,2] 

8 17 (10,2) 1 • [1] 
8 73 (18,2) 1 • [1] 
8 89 (22,4) 1 • [1] 
8 112 (24,4) 2 • [2] 
8 164 (28,4) 2 • [2] 
8 217 (34,6) 2 • [2] 
8 224 (32,4) 2 • [2] 
8 233 (38,8) 1 • [1] 
8 281 (34,2) 1 • [1] 
8 329 (38,4) 2 • [2] 
8 368 (40,4) 2 • [2] 
8 425 (50,10) 2 • [2] 
8 548 (52,8) 2 • [2] 
8 553 (50,6) 2 • [2] 
8 612 (60,12) 4 • [2,2] 
8 644 (68,16) 4 • [2,2] 
8 697 (54,4) 2 • [2] 
8 713 (70,16) 2 • [2] 
8 868 (60,4) 4 • [2,2] 
8 1008 (72,12) 4 • [2,2] 

(17,8) [1] 
(73,8) [1] 
(89,8) [1] 

(28,32) [2,2] 
(41,32) [2,2] 
(217,8) [2,2] 
(56,32) [2,2] 
(233,8) [1] 
(281,8) [1] 
(329,8) [2,2] 
(92,32) [2,2] 

(17,200) [2] 
(137,32) [2,2] 

(553,8) [2,2] 
(17,288) [2,2,2] 
(161,32) [4,4,2] 

(697,8) [6,2,2] 
(713,8) [2,2] 

(217,32) [4,2,2] 
(28,288) [2,2,2] 
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<*k 
á K / k ß к / k hк p c l к ( d k > d Ќ / k ) c i N 

8 1017 (66,6) 2 • [2] (113,72) [8] 
8 1316 (92,20) 4 • [2,2] (329,32) • 
8 1337 (86,16) 2 • [2] (1337,8) [2,2] 
8 1449 (102,24) 4 • [2,2] (161,72) [4,2,2] 
8 1904 (88,4) 4 • [2,2] (476,32) [4,2,2,2,2] 
8 1988 (100,16) 4 • [2,2] (497,32) • 
8 2009 (98,14) 4 • [2,2] (41,392) • 
8 3332 (140,28) 8 • [2,2,2] (17,1568) • 
8 3689 (134,20) 4 • [2,2] (3689,8) • 
8 4025 (130,10) 4 • [2,2] (161,200) [4,2,2] 
8 5796 (156,12) 8 • [2,2,2] (161,288) • 
8 7497 (210,42) 8 • [2,2,2] (17,3528) • 
8 7812 (204,36) 8 • [2,2,2] (217,288) [4,2,2,2,2] 

12 33 (18,4) 2 0 [2] (33,12) [2] 
12 52 (16,2) 2 0 [2] (13,48) [2,2] 
12 96 (24,4) 2 0 [2] (24,48) [2] 
12 97 (34,8) 2 1 [2] (97,12) [2,2] 
12 148 (32,6) 2 0 [2] (37,48) [2,2] 
12 177 (30,4) 2 0 [2] (177,12) [2] 
12 208 (32,4) 2 0 [2] (13,192) [2,2] 
12 244 (32,2) 2 0 [2] (61,48) [2,2] 
12 276 (48,10) 4 0 [2,2] (69,48) [4,2] 
12 321 (66,16) 2 0 [2] (321,12) [6] 
12 352 (56,12) 2 0 [2] (88,48) [2,2] 
12 393 (42,4) 2 0 [2] (393,12) [2] 
12 433 (50,8) 2 1 [2] (433,12) [8,2] 
12 528 (48,4) 4 0 [2,2] (33,192) [2,2,2] 
12 537 (54,8) 2 0 [2] (537,12) [2] 
12 564 (48,2) 4 0 [2,2] (141,48) [4,2] 
12 628 (80,18) 2 0 [2] (157,48) [2,2] 
12 673 (98,24) 2 1 [2] (673,12) [4,2] 
12 736 (56,4) 4 1 [2,2] (184,48) [4,2,2] 
12 825 (90,20) 4 0 [2,2] (33,300) [2,2,2] 
12 852 (96,22) 4 0 [2,2] (213,48) [4,2] 
12 897 (66,8) 4 0 [2,2] (897,12) [8,2,2] 
12 913 (62,4) 2 0 [2] (913,12) [4,2] 
12 937 (74,12) 2 1 [2] (937,12) [4,2] 
12 1012 (80,14) 4 0 [2,2] (253,48) [4,2,2] 
12 1081 (86,16) 4 1 [2,2] (1081,12) [4,4,2] 
12 1104 (96,20) 4 0 [2,2] (69,192) [4,2] 
12 1168 (80,12) 4 1 [2,2] (73,192) [2,2,2,2] 
12 1248 (72,4) 4 0 [2,2] (312,48) [4,2,2] 
12 1300 (80,10) 4 0 [2,2] (13,1200) [2,2,2] 
12 1504 (104,2U) 4 1 [2,2] (376,48) [4,2,2] 
12 1552 (80,4) 4 1 [2,2] (97,192) [2,2,2,2] 
12 1617 (126,28) 4 0 [2,2] (33,588) [2,2,2] 
12 1633 (98,16) 4 1 [2,2] (1633,12) • 
12 1716 (96,14) 8 0 [2,2,2] (429,48) • 
12 1716 (144,34) 8 0 [2,2,2] (429,48) • 
12 1825 (110,20) 4 1 [2,2] (73,300; [4,2,2] 
12 1833 (102,16) 4 0 [2,2] (1833,12; • 
12 2409 (102,8) 4 0 [2,2] (2409,12; [4,2,2,2] 
12 2553 (150,32) 4 0 [2,2] (2553,12; • 
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<*k ^ K / k ßк/k h к (• 7 C l к ( ^ k ^ ќ / k ) C 1 N 

12 3289 (122,12) 4 C ) [2,2] (3289,12) • 
12 3337 (170,36) 4 1 L [2,2] (3337,12) • 
12 4884 (144,10) 8 C ) [2,2,2] (1221,48) • 
12 5577 (234,52) 8 C ) [2,2,2] (33,2028) • 
12 6292 (176,22) 8 C ) [2,2,2] (13,5808) • 

13 17 (9,1) 1 <J [1] (17,13) [i] 
13 29 (18,4) 1 « [1] (29,13) [i] 
13 48 (20,4) 2 i [2] (12,52) dual 
13 69 (17,1) 2 І [2] (69,13) [2,2] 
13 157 (41,9) 1 « [1] (157,13) [1] 
13 181 (29,3) 1 І [1] (181,13) [1] 
13 192 (40,8) 2 « [2] (12,208) dual 
13 237 (34,4) 2 І [2] (237,13) [4,2] 
13 381 (61,13) 2 « [2] (381,13) [2,2] 
13 477 (45,3) 4 І > [2,2] (53,117) • 
13 549 (57,9) 4 І 

1 [2,2] (61,117) [4,2,2] 
13 597 (49,1) 2 « [2] (597,13) [2,2] 
13 624 (52,4) 4 І > [2,2] (156,52)* [2,2,2] 
13 688 (68,12) 2 « [2] (172,52) [2,2] 
13 816 (64,8) 4 « > [2,2] (204, 52) [ 2 , 2 , 2 , 2 , 2 ] 
13 901 (74,12) 2 І [2] (901,13) • 
13 909 (81,15) 4 І • [2,2] (101,117) • 
13 1104 (88,16) 4 « > [2,2] (69,208) [4,2,2] 
13 1173 (73,7) 4 « > [2,2] (1173,13) • 
13 1200 (100,20) 4 « > [2,2] (12,1300) dual 
13 1392 (76,4) 4 « • [2,2] (348,52) • 
13 1557 (90,12) 4 « • [2,2] (173,117) • 
13 1677 (130,28) 4 « > [2,2] (1677,13)* [4,2,2] 
13 1725 (85,5) 4 « • [2,2] (69,325) [4,2,2] 
13 1989 (117,21) 8 « > [2,2,2] (221,117)* [4,4,2] 
13 2448 (108,12) 8 « i [2,2,2] (17,1872) [4,2,2,2] 
13 3312 (144,24) 8 « i [2,2,2] (92,468) • 
13 4437 (186,36) 8 « • [2,2,2] (493,117) • 
13 4437 (165,27) 8 « • [2,2,2] (493,117) • 

17 8 (7,1) 1 < [1] (8,17) dual 
17 13 (18,4) 1 < [1] (13,17) dual 
17 136 (51,11) 2 < [2] (136,17)* [2] 
17 137 (70,16) 1 < [1] (137,17) [1] 
17 152 (59,13) 2 < [2] (152,17) [8,2] 
17 172 (39,7) 2 < [2] (172,17) [2,2] 
17 200 (35,5) 2 < [2] (8,425) dual 
17 236 (31,1) 2 < [2] (236,17) [2,2] 
17 257 (46,8) 1 < [1] (257,17) [3] 
17 288 (60,12) 4 < i [2,2] (8,612) dual 
17 332 (79,17) 2 < [2] (332,17) [2,2] 
17 416 (44,4) 4 i > [2,2] (104,68) • 
17 416 (92,20) 4 < » [2,2] (104,68) • 
17 536 (91,19) 2 < [2] (536,17) [2,2] 
17 608 (188,44) 4 < • [2,2] (152,68) [8,2,2,2] 
17 689 (62,8) 2 < [2] (689,17) • 
17 848 (88,16) 4 < > [2,2] (53,272) • 
17 936 (219,51) 4 < i [2,2] (104,153) [4,2,2,2] 
17 988 (63,1) 4 > [2,2] (988,17) [ 2 , 2 , 2 , 2 , 2 , 2 ] 
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^k ^K/k Aк/k hк p C l к ( d k ' d ќ / k ) C 1 N 

17 1292 (119,23) 4 • [2,2] (1292,17)* [4,2,2] 

17 988 (63,1) 4 • [2,2] (988,17) [ 2 , 2 , 2 , 2 , 2 , 2 ] 
17 1292 (119,23) 4 • [2,2] (1292,17)* [4,2,2] 
17 1352 (91,13) 4 • [2,2] (8,2873) • 
17 1368 (75,3) 4 • [2,2] (152,153) [8,2,2] 
17 1548 (87,9) 4 • [2,2] (172,153) [4,2,2] 
17 1692 (159,33) 4 • [2,2] (188,153) [8,2,2] 
17 1872 (216,48) 8 • [2,2,2] (13,2448) dual 

21 37 ( iз , i ) 2 1 [2] (37,21) [2,2] 
21 85 (37,7) 2 0 [2] (85,21) • 
21 85 (26,4) 2 0 [2] (85,21) • 
21 105 (21,1) 4 0 [2,2] (105,21)* [4,2] 
21 141 (33,5) 4 1 [2,2] (141,21) • 
21 177 (57,11) 4 1 [2,2] (177,21) • 
21 205 (29,1) 2 0 [2] (205,21) • 
21 240 (48,8) 4 0 [2,2] (60,84) • 
21 240 (36,4) 4 0 [2,2] (60,84) • 
21 277 (53,9) 2 1 [2] (277,21) [2,2] 
21 357 (42,4) 4 0 [2,2] (357,21)* [4,2] 
21 421 (65,11) 2 1 [2] (421,21) [2,2] 
21 445 (53,7) 2 0 [2] (445,21) • 
21 501 (45,1) 4 1 [2,2] (501,21) • 
21 541 (50,4) 2 1 [2] (541,21) [2,2] 
21 645 (117,23) 4 0 [2,2] (645,21) • 
21 645 (93,17) 4 0 [2,2] (645,21) • 
21 816 (60,4) 4 0 [2,2] (204,81) • 
21 861 (105,19) 4 0 [2,2] (861,21)* [4,2] 
21 925 (65,5) 4 0 [2,2] (37,525) [4,2,2] 
21 960 (72,8) 4 0 [2,2] (60,336) • 
21 1149 (114,20) 4 1 [2,2] (1149,21) • 
21 1360 (92,12) 4 0 [2,2] (85,336) • 
21 1509 (81,5) 4 1 [2,2] (1509,21) • 
21 1645 (98,12) 4 0 [2,2] (1645,21) • 
21 1680 (168,32) 8 0 [2,2,2] (105,336)* [4,2,2,2] 
21 2256 (120,16) 8 1 [2,2,2] (141,336) • 
21 2 8 0 0 (140,20) 8 0 [2,2,2] (28,2100) [4,2,2,2] 
21 3525 (165,25) 8 0 [2,2,2] (141,525) [4,2,2,2] 
21 3885 (273,53) 8 0 [2,2,2] (3885,21)* [4,2,2,2,2,2] 
21 3984 (156,20) 8 1 [2,2,2] (249,336) [4,2,2,2] 
21 6549 (186,20) 8 1 [2,2,2] (6549,21) • 
21 8925 (210,20) 16 0 [2,2,2,2] (357,525)* [4,4,4,2] 

24 4 8 (24,4) 2 0 [2] (12,96) dual 

24 145 (26,2) 2 0 [2] (145,24) • 
24 160 (32,4) 2 0 [2] (40,96) • 
24 193 (74,14) 2 1 [2] (193,24) [2,2] 
24 228 (36,4) 4 0 [2,2] (57,96) [2,2,2] 
24 265 (38,4) 2 0 [2] (265,24) • 
24 292 (68,12) 4 1 [2,2] (73,96) [2 ,2 ,2 ,2] 
24 304 (104,20) 2 0 [2] (76,96) [2,2] 
24 313 (86,16) 2 1 [2] (313,24) [2,2] 
24 345 (54,8) 4 0 [2,2] (345,24) • 
24 480 (48,4) 4 0 [2,2] (120,96)* [4,2] 
24 505 (182,36) 2 0 [2] (505,24) • 
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EXPONENT < 2 CLASS GROUP PROBLEMS 

^k ^ K / k ß к / k hк p C l к ( ^ k ^ ќ / k ) C 1 N 

24 516 (60,8) 4 0 [2,2] (129,96) [2,2,2] 
24 580 (92,16) 4 0 [2,2] (145,96) • 
24 705 (138,26) 4 0 [2,2] (705,24) • 
24 736 (80,12) 4 1 [2,2] (184,96) [4,2] 
24 769 (74,10) 2 1 [2] (769,24) [2,2] 
2^ 804 (204,40) 4 0 [2,2] (201,96) [2,2,2] 
24 964 (116,20) 4 1 [2,2] (241,96) [4,2,2,2] 
2^ 1060 (68,4) 4 0 [2,2] (265,96) • 
2^ 1065 (102,16) 4 0 [2,2] (1065,24) • 
24 1200 (120,20) 8 0 [2,2,2] (12,2400) • 
2^ 1380 (228,44) 8 0 [2,2,2] (345,96) • 
24 1380 (108,16) 8 0 [2,2,2] (345,96) • 
2^ 1425 (90,10) 8 0 [2,2,2] (57,600) [4,2,2,2] 
2^ 1825 (170,30) 4 0 [2,2] (73,600) [4,2,2] 
24 2001 (90,2) 4 0 [2,2] (2001,24) • 
2^ 2185 (422,84) 4 0 [2,2] (2185,24) • 
24 3225 (150,20) 8 0 [2,2,2] (129,600) [4,2,2,2] 
2^ 4324 (236,40) 8 1 [2,2,2] (1081,96) • 
2^ 4324 (164,20) 8 1 [2,2,2] (1081,96) • 
24 5700 (180,20) 16 0 [2,2,2,2] (57, 2400) • 

28 32 (24,4) 2 1 [2] (8,112) dual 
28 57 (86,16) 2 0 [2] (57,28) [4,2] 
28 84 (56,10) 4 0 [2,2] (21,112) • 
28 113 (30,4) 2 1 [2] (113,28) [2,2,2] 
28 177 (34,4) 2 0 [2] (177,28) [4,2] 
28 249 (214,40) 2 0 [2] (249,28) [4,2] 
28 288 (72,12) 4 0 [2,2] (8,1008) dual 
28 336 (112,20) 4 0 [2,2] (21,448) • 
28 337 (194,36) 2 1 [2] (337, 28) [2,2] 
28 372 (40,2) 4 0 [2,2] (93,112) • 
28 372 (184,34) 4 0 [2,2] (93,112) • 
28 393 (58,8) 2 0 [2] (393,28) [4,2] 
28 417 (46,4) 2 0 [2] (417,28) [4,2] 
28 457 (134,24) 2 1 [2] (457, 28) [2,2,2] 
28 532 (56,6) 4 0 [2,2] (133,112) • 
28 564 (88,14) 4 0 [2,2] (141,112) • 
28 609 (238,44) 4 0 [2,2] (609,28) • 
28 672 (280,52) 4 0 [2,2] (168,112) • 
28 777 (70,8) 4 0 [2,2] (777, 28) • 
28 912 (64,4) 4 0 [2,2] (57,448) [4,2,2,2] 
28 1044 (72,6) 8 0 [2,2,2] (29,1008) • 
28 1233 (450,84) 4 0 [2,2] (137,252) [4, 2, 2] 
28 1332 (120,18) 8 0 [2,2,2] (37,1008) [ 2 , 2 , 2 , 2 , 2 ] 
28 1393 (98,12) 4 1 [2,2] (1393,28) • 
28 1425 (130,20) 4 0 [2,2] (57, 700) [4,4,2] 
28 1561 (266,48) 4 1 [2,2] (1561,28) • 
28 1953 (210,36) 8 0 [2,2,2] (217,252) [4,2,2,2] 
28 2100 (280,50) 8 0 [2,2,2] (21,2800) dual 
28 2569 (518,96) 4 1 [2,2] (2569,28) • 
28 2961 (126,12) 8 0 [2,2,2] (329,252) • 
28 3193 (170,24) 4 1 [2,2] (3193,28) • 
28 3472 (224,36) 8 1 [2,2,2] (217,448) • 
28 4788 (168,18) 16 0 [2,2,2,2] (133,1008) • 
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STEPHANE LOUBOUTIN — HEE-SUN YANG — SOUN-HI KWON 

d* ^K/k #K/k hк p C l к ( ^ Ќ / k ) c i N 

28 5425 (350,60) 8 1 [2,2,2] (217,700) • 
29 13 (9,1) 1 • [1] (13,29) dual 
29 45 (21,3) 2 • [2] (5,261) dual 
29 53 (26,4) 1 • [1] (53,29) [1] 
29 65 ( 1 7 Д ) 2 • [2] (65,29) [2,2,2] 
29 80 (28,4) 2 • [2] (5,464) dual 
29 245 (49,7) 4 • [2,2] (5,1421) • 
29 325 (45,5) 4 • [2,2] (13,725) • 
29 560 (52,4) 4 • [2,2] (140,116) • 
29 805 (57,1) 4 • [2,2] (805,29) [4,2,2,2,2] 

33 12 (75,13) 2 0 [2] (12,33) dual 
33 37 (26,4) 2 1 [2] (37,33) [2,2,2] 
33 124 (23,1) 2 0 [2] (124,33) [4,2] 
33 192 (96,16) 4 0 [2,2] (12,528) dual 
33 232 (35,3) 2 0 [2] (232,33) • 
33 264 (627,109) 4 0 [2,2] (264,33)* [4,2] 
33 268 (455,79) 2 0 [2] (268,33) [4,2] 
33 300 (375,65) 4 0 [2,2] (12,825) dual 
33 313 (278,48) 2 1 [2] (313,33) [2,2,2] 
33 328 (83,13) 2 0 [2] (328,33) • 
33 352 (44,4) 4 0 [2,2] (88,132) [2,2,2] 
33 408 (75,11) 4 0 [2,2] (408,33) • 
33 408 (387,67) 4 0 [2,2] (408,33) • 
33 412 (239,41) 2 0 [2] (412,33) [4,2] 
33 433 (62,8) 2 1 [2] (433,33) [2,2] 
33 444 (183,31) 4 0 [2,2] (444,33) • 
33 544 (668,116) 4 0 [2,2] (136,132) • 
33 588 (63,7) 4 0 [2,2] (12,1617) dual 
33 664 (491,85) 4 1 [2,2] (664,33) • 
33 664 (59,5) 4 1 [2,2] (664,33) • 
33 696 (219,37) 4 0 [2,2] (696,33) • 
33 748 (143,23) 4 0 [2,2] (748,33) • 
33 1056 (396,68) 8 0 [2,2,2] (264,132)* [4,2,2,2] 
33 1177 (374,64) 4 1 [2,2] (1177,33) • 
33 1353 (198,32) 4 0 [2,2] (1353,33)* [4,2] 
33 1488 (120,16) 8 0 [2,2,2] (93,528) [4,2,2,2] 
33 1632 (1404,244) 8 0 [2,2,2] (408,132) • 
33 2200 (275,45) 8 1 [2,2,2] (88,825) • 
33 2368 (560,96) 8 1 [2,2,2] (37,2112) • 
33 2425 (470,80) 4 1 [2,2] (97,825) [8,2,2] 
33 2497 (110,8) 4 1 [2,2] (2497,33) • 
33 3256 (1859,323) 8 1 [2,2,2] (3256,33) • 
33 4312 (539,91) 8 1 [2,2,2] (88,1617) [4,2,2,2] 

3 7 21 (26,4) 2 • [2] (21,37) dual 
3 7 33 (13,1) 2 • [2] (33,37) dual 
3 7 48 (28,4) 2 • [2] (12,148) dual 
3 7 77 (81,13) 2 • [2] (77,37) [2,2] 
3 7 141 (34,4) 2 • [2] (141,37) [2,2] 
3 7 213 (73,11) 2 • [2] (213,37) [6,2] 
3 7 525 (130,20) 4 • [2,2] (21,925) dual 
3 7 693 (90,12) 8 • [2,2,2] (77,333) • 
3 7 861 (274,44) 4 • [2,2] (861,37) • 
3 7 1008 (228,36) 8 • [2,2,2] (28,1332) dual 
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EXPONENT < 2 CLASS GROUP PROBLEMS 

á k d K / k /?K/k ҺVL P C 1 к ( ^ k ' ^ Ќ / k ) C 1 N 

3 7 1584 (108,12) 8 • [2,2,2] 
3 7 2352 (196,28) 8 • [2,2,2] 
3 7 2541 (121,11) 8 • [2,2,2] 

(44,1332) • 
(12,7252) • 
(21,4477) • 

40 41 (18,2) 2 • [2,2] 
40 89 (54,8) 2 • [2,2] 
40 409 (86,12) 2 • [2,2] 

(41,40) [2,2,2] 
(89,40) [2,2,2] 

(409,40) [2,2,2] 

4 1 5 (26,4) 1 • [1] 
4 1 32 (28,4) 2 • [2] 
4 1 40 (59,9) 2 • [2] 
4 1 92 (583,91) 2 • [2] 
4 1 124 (39,5) 2 • [2] 
4 1 296 (35,1) 2 • [2] 
4 1 305 (62,8) 2 • [2] 
4 1 320 (208,32) 4 • [2,2] 
4 1 460 (47,3) 4 • [2,2] 
4 1 620 (343,53) 4 • [2,2] 
4 1 720 (312,48) 8 • [2,2,2] 
4 1 800 (140,20) 8 • [2,2,2] 
4 1 860 (1007,157) 4 • [2,2] 
4 1 920 (307,47) 4 • [2,2] 
4 1 1440 (108,12) 8 • [2,2,2] 
4 1 1800 (1635,255) 8 • [2,2,2] 

(5,41) dual 
(8,164) dual 
(40,41) dual 
(92,41) [2,2,2] 

(124,41) [2,2,2] 
(296,41) [2,2,2] 
(305,41) • 
(5,2624) • 
(460,41) • 
(620,41) • 
(5,5904) • 
(8,4100) • 
(860,41) • 
(920,41) • 

(40,1476) • 
(8,9225) • 

44 20 (16,2) 2 0 [2] 
44 80 (32,4) 2 0 [2] 
44 180 (48,6) 4 0 [2,2] 
44 224 (136,20) 4 1 [2,2] 
44 308 (176,26) 4 0 [2,2] 
44 401 (190,28) 2 1 [2] 
44 665 (118,16) 4 0 [2,2] 
44 665 (58,4) 4 0 [2,2] 
44 889 (534,80) 4 1 [2,2] 
44 980 (112,14) 8 0 [2,2,2] 
44 H 6 9 (274,40) 4 1 [2,2] 
44 2016 (120,12) 8 1 [2,2,2] 
44 3465 (198,24) 8 0 [2,2,2] 

(5,176) dual 

(5,704) dual 
(5,1584) dual 
(56,176) • 
(77,176) • 
(401,44) • 
(665,44) • 
(665,44) • 
(889,44) • 
(5,8624) • 

(1169,44) • 
(56,1584) • 
(385,396) • 

5 3 29 (13,1) 1 • [1] 

5 3 77 (34,4) 2 • [2] 

(29,53) dual 
(77,53) [2,2,2] 

56 32 (32,4) 2 1 [2] 
56 65 (106,14) 2 0 [2] 
56 113 (26,2) - 2 1 [2] 
56 217 (182,24) 4 1 [2,2] 
56 260 (212,28) 4 0 [2,2] 
56 385 (42,2) 4 0 [2,2] 
56 585 (102,12) 4 0 [2,2] 
56 1001 (70,4) 4 0 [2,2] 
56 1316 (140,16) 8 1 [2,2,2] 

(8,224) dual 

(65,56) • 
(113,56) [2,2,2] 
(217,56) • 
(65,224) • 
(385,56) • 
(65,504) • 

(1001,56) • 
(329,224) • 

57 24 (39,5) 4 1 [2,2] 
57 28 (823,109) 2 0 [2] 
57 96 (876,116) 4 0 [2,2] 
57 168 (27,1) 4 0 [2,2] 
57 232 (251,33) 2 0 [2] 
57 348 (447,59) 4 0 [2,2] 
57 448 (128,16) 4 0 [2,2] 

(24,57) • 
(28,57) dual 

(24,228) dual 
(168,57) • 
(232,57) • 
(348,57) • 
(28,912) dual 
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STEPHANE LOUBOUTIN — HEE-SUN YANG SOUN-HI KVVON 

566 

<*k ^ K / k ß к / k hк p c l к ( d k > d ќ / k ) c i N 

57 456 (2907,385) 4 0 [2,2] (456,57)* [4,2] 
57 457 (2054,272) 2 1 [2] (457,57) [2,2] 
57 472 (179,23) 4 1 [2,2] (472,57) 
57 492 (2439,323) 4 0 [2,2] (492,57) 
57 537 (246,32) 4 1 [2,2] (537,57) 
57 568 (83,9) 4 1 [2,2] (568,57) 
57 600 (195,25) 8 1 [2,2,2] (24,1425) dual 
57 609 (78,8) 4 0 [2,2] (609,57) 
57 672 (60,4) 8 0 [2,2,2] (168,228) 
57 672 (396,52) 8 0 [2,2,2] (168,228) 
57 681 (486,64) 4 1 [2,2] (681,57) 
57 700 (1775,235) 4 0 [2,2] (28,1425) dual 
57 856 (59,1) 4 1 [2,2] (856,57) 
57 1113 (4470,592) 4 0 [2,2] (1113,57) 
57 1176 (1323,175) 8 0 [2,2,2] (24,2793) 
57 1464 (363,47) 8 1 [2,2,2] (1464,57) 
57 1752 (99,7) 8 1 [2,2,2] (1752,57) 
57 4425 (4230,560) 8 1 [2,2,2] (177,1425) 

60 241 (98,12) 4 1 [2,2,2] (241,60) [4,2,2,2,2] 

60 649 (134,16) 4 0 [2,2,2] (649,60) [4,4,2,2,2] 

6 1 5 (9,1) 1 • [1] (5,61) dual 
6 1 48 (64,8) 2 • [2] (12,244) dual 
6 1 117 (282,36) 4 • [2,2] (13,549) dual 
6 1 141 (25,1) 2 • [2] (141,61) [2,2] 
6 1 205 (98,12) 2 • [2] (205,61) • 
6 1 240 (532,68) 4 • [2,2] (60,244) • 
6 1 285 (229,29) 4 • [2,2] (285,61) [4,2,2,2,2] 
6 1 720 (108,12) 8 • [2,2,2] (5,8784) • 
6 1 741 (970,124) 4 • [2,2] (741,61) • 
6 1 2925 (1410,180) 16 • [2,2,2,2] (13,13725) • 

65 29 (34,4) 2 • [2,2] (29,65) dual 

69 13 (34,4) 2 1 [2] (13,69) dual 
69 85 (77,9) 2 0 [2] (85,69) • 
69 165 (234,28) 4 0 [2,2] (165,69) • 
69 165 (42,4) 4 0 [2,2] (165,69) • 
69 208 (44,4) 4 1 [2,2] (13,1104) dual 
69 253 (161,19) 4 1 [2,2] (253,69) • 
69 325 (170,20) 4 0 [2,2] (13,1725) dual 
69 949 (461,55) 4 1 [2,2] (949,69) [ 2 , 2 , 2 , 2 , 2 , 2 ] 

73 8 (675,79) 1 • [1] (8,73) dual 

73 96 (172,20) 4 • [2,2] (24,292) dual 
73 97 (206,24) 1 • [1] (97,73) [i] 
73 184 (131,15) 2 • [2] (184,73) [2,2] 
73 192 (1504,176) 4 • [2,2] (12,1168) dual 
7 3 288 (108,12) 8 • [2,2,2] (8,2628) • 
73 300 (55,5) 4 • [2,2] (12,1825) dual 
7 3 444 (103,11) 4 • [2,2] (444,73) [ 2 , 2 , 2 , 2 , 2 , 2 ] 
73 492 (1735,203) 4 • [2,2] (492,73) [ 2 , 2 , 2 , 2 , 2 , 2 ] 
7 3 552 (1291,151) 4 • [2,2] (552,73) [8,2,2,2,2,2] 
73 600 (4315,505) 4 • [2,2] (24,1825) dual 
73 684 (11919,1395) 8 • [2,2,2] (76,657) • 
7 3 828 (63,3) 8 • [2,2,2] (92,657) • 
7 3 912 (38824,4544) 8 • [2,2,2] (57,1168) • 



EXPONENT < 2 CLASS GROUP PROBLEMS 

<*k ^ K / k ß к / k lгк p C l к ( ^ k ^ Ќ / k ) C 1 N 

73 1368 (747, 87) 8 • [2,2,2] (152,657) • 
76 20 (192,22) 2 0 [2] (5,304) dual 
76 96 (40,4) 2 0 [2] (24,304) dual 
76 180 (576,66) 8 0 [2,2,2] (5,2736) • 
76 340 (368,42) 4 0 [2,2] (85,304) [ 2 , 2 , 2 , 2 , 2 ] 
76 465 (82,8) 4 0 [2,2] (465,76) • 
76 720 (1152,132) 8 0 [2,2,2] (5,10944) • 
76 969 (874,100) 4 0 [2,2] (969,76) [4,2,2,2] 
76 1425 (190,20) 8 0 [2,2,2] (57,1900) • 
76 3060 (192,18) 16 0 [2,2,2,2] (85,2736) • 
76 3825 (8370,960) 16 0 [2,2,2,2] (17,17100) • 
77 37 (29,3) 2 1 [2] (37,77) dual 
77 53 (17,1) 2 1 [2] (53,77) dual 
77 133 (42,4) 4 1 [2,2] (133,77) • 
85 229 (41,3) 2 • [2,2] (229,85) • 
85 304 (116,12) 4 • [2,2,2] (76,340) dual 

88 48 (40,4) 2 0 [2] (12,352) dual 
88 97 (170,18) 2 1 [2] (97,88) [4,2] 
88 132 (1276,136) 4 0 [2,2] (33,352) dual 
88 273 (2458,262) 4 0 [2,2] (273,88) 
88 553 (230,24) 4 1 [2,2] (553,88) 
88 609 (106,10) 4 0 [2,2] (609,88) 
88 1057 (3434,366) 4 1 [2,2] (1057,88) 
88 1092 (604,64) 8 0 [2,2,2] (273,352) 
88 1617 (154,14) 8 0 [2,2,2] (33,4312) dual 

89 8 (11,1) 1 • [1] (8,89) dual 
89 40 (387,41) 2 • [2] (40,89) dual 
89 80 (152,16) 4 • [2,2] (5,1424) • 
89 425 (1510,160) 4 • [2,2] (17,2225) • 
89 440 (43,1) 4 • [2,2] (440,89) • 
89 1100 (8255,875) 8 • [2,2,2] (44,2225) • 
92 32 (40,4) 2 1 [2] (8,368) dual 
92 41 (154,16) 2 1 [2] (41,92) dual 
92 161 (46,4) 4 1 [2,2] (161,92) • 
93 33 (78,8) 4 1 [2,2] (33,93) • 
93 69 (42,4) 4 1 [2,2] (69,93) • 
93 109 (194,20) 2 1 [2] (109,93) [2,2] 
93 528 (60,4) 8 1 [2,2,2] (33,1488) dual 

9 7 12 (719,73) 2 • [2] (12,97) dual 
9 7 73 (3782,384) 1 • [1] (73,97) dual 
97 88 (35,3) 2 • [2] (88,97) dual 
9 7 192 (160,16) 4 • [2,2] (12,1552) dual 
9 7 264 (523,53) 4 • [2,2] (264,97) • 
9 7 288 (828,84) 8 • [2,2,2] (8,3492) • 
9 7 528 (82888,8416) 8 • [2,2,2] (33,1552) • 
9 7 792 (10371,1053) 8 • [2,2,2] (88,873) • 
9 7 825 (790,80) 4 • [2,2] (33,2425) dual 
9 7 1116 (111,9) 8 • [2,2,2] (124,873) • 
9 7 1452 (175615,17831) 8 • [2,2,2] (12,11737) • 

101 45 (33,3) 2 • [2] (5,909) dual 

104 153 (66,6) 4 • [2,2,2] (17,936) dual 

105 1009 (254,24) 4 1 [2,2,2] (1009,105) • 567 
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^k 
d к / k ßк/k hк p C l к K^ќ/k) c i N 

1 0 9 5 (42,4) 1 • [1] (5,109) dual 
109 5 (42,4) 1 • [1] (5,109) duai 
1 0 9 93 (1681,161) 2 • [2] (93,109) dual 
1 0 9 240 (52,4) 4 • [2,2] (60,436) • 
1 0 9 261 (45,3) 4 • [2,2] (29,981) • 
1 0 9 525 (265,25) 8 • [2,2,2] (21,2725) • 
1 0 9 2205 (882,84) 16 • [2,2,2,2] (5,48069) • 

1 1 3 28 (15,1) 2 • [2] (28,113) dual 
1 1 3 56 (139,13) 2 • [2] (56,113) dual 
113 72 (3795,357) 2 • [2] (8,1017) dual 

124 33 (46,4) 2 0 [2] (33,124) dual 
124 41 (90,8) 2 1 [2] (41,124) dual 
124 180 (72,6) 8 0 [2,2,2] (5,4464) • 
124 276 (40,2) 4 0 [2,2] (69,496) • 
124 660 (1048,94) 8 0 [2,2,2] (165,496) • 
124 825 (36970,3320) 8 0 [2,2,2] (33,3100) • 

129 40 (95099,8373) 2 0 [2] (40,129) • 
129 60 (2919,257) 4 0 [2,2] (60,129) • 
129 96 (14220,1252) 4 0 [2,2] (24,516) dual 
129 160 (1772,156) 4 0 [2,2] (40,516) • 
129 312 (603,53) 8 1 [2,2,2] (312,129) • 
129 465 (1182,104) 4 0 [2,2] (465,129) • 
129 600 (75,5) 8 0 [2,2,2] (24,3225) dual 
129 780 (7167,631) 8 0 [2,2,2] (780,129) • 
129 2769 (476574,41960) 8 1 [2,2,2] (2769,129) • 
129 4056 (195,13) 16 1 [2,2,2,2] (24,21801) • 
133 57 (646,56) 4 1 [2,2] (57,133) • 
133 93 (50,4) 4 1 [2,2] (93,133) • 
133 309 (58,4) 4 1 [2,2] (309,133) • 

137 17 (94,8) 1 • [1] (17,137) dual 
137 32 (796,68) 2 • [2] (8,548) dual 
1 3 7 252 (35079,2997) 4 • [2,2] (28,1233) dual 

Цl 37 (17,1) 2 1 [2] (37,141) dual 

Цl 61 (50,4) 2 1 [2] (61,141) dual 
Цl 253 (146,12) 4 1 [2,2] (253,141) • 
Цl 525 (1485,125) 8 0 [2,2,2] (21,3525) dual 

149 5 (13,1) 1 • [1] (5,149) dual 

152 17 (26,2) 2 1 [2] (17,152) dual 

152 68 (52,4) 4 1 [2,2] (17,608) dual 
152 153 (150,12) 4 1 [2,2] (17,1368) dual 

156 337 (62,4) 4 1 [2,2,2] (337,156) [4 ,2,2,2,2] 

157 13 (113,9) 1 • [1] (13,157) dual 
157 48 (52,4) 2 • [2] (12,628) dual 

161 72 (267,21) 4 1 [2,2] (8,1449) dual 
161 140 (15239,1201) 4 0 [2,2] (140,161) • 
161 200 (10595,835) 4 0 [2,2] (8,4025) dual 
161 1064 (91,5) 8 1 [2,2,2] (1064,161) • 

172 17 (210,16) 2 1 [2] (17,172) dual 
172 52 (80,6) 2 0 [2] (13,688) dual 
172 153 (630,48) 4 0 [2,2] (17,1548) dual 

177 12 (15,1) 2 0 [2] (12,177) dual 
177 28 (13823,1039) 2 0 [2] (28,177) dual 
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d k 
d K / k ßк/k lгк p C l к ( d k » d ќ / k ) C 1 N 

177 184 (241643,18163) 4 1 [2,2] (184,177) • 
177 193 (110,8) 2 1 [2] (193,177) [2,2,2] 

181 13 (41,3) 1 • [1] (13,181) dual 

181 45 (162,12) 4 • [2,2] (5,1629) • 
181 165 (12337,917) 4 • [2,2] (165,181) • 
184 73 (326,24) 2 1 [2] (73,184) dual 

184 105 (23494,1732) 4 0 [2,2] (105,184) • 
184 345 (598,44) 4 0 [2,2] (345,184) • 
184 420 (7108,524) 8 0 [2,2,2] (105,736) • 
184 420 (182092,13424) 8 0 [2,2,2] (105,736) • 
184 721 (28730,2118) 4 1 [2,2] (721,184) • 
188 153 (330,24) 4 1 [2,2] (17,1692) dual 

1 9 3 24 (403,29) 2 • [2] (24,193) dual 

1 9 3 177 (134590,9688) 2 • [2] (177,193) dual 
1 9 3 217 (1334,96) 2 • [2] (217,193) [2,2] 
1 9 3 252 (25892751,1863801) 8 • [2,2,2] (28,1737) 
1 9 3 288 (677340,48756) 8 • [2,2,2] (8,6948) 
1 9 3 504 (111987,8061) 8 • [2,2,2] (56,1737) 
1 9 3 588 (11767,847) 8 • [2,2,2] (12,9457) 

201 24 (1035,73) 4 1 [2,2] (24,201) 
201 60 (3514263,247877) 4 0 [2,2] (60,201) 
201 96 (60,4) 4 0 [2,2] (24,804) dual 
201 220 (105863,7467) 4 0 [2,2] (220,201) 
201 825 (1494870,105440) 8 0 [2,2,2] (33,5025) 
201 2904 (262779,18535) 16 1 [2,2,2,2] (24,24321) 

204 52 (32,2) 4 0 [2,2,2] (13,816) dual 

209 5 (58,4) 2 1 [2] (5,209) dual 
209 80 (32152,2224) 4 0 [2,2] (5,3344) dual 

213 37 (161,11) 2 1 [2] (37,213) dual 

217 8 (18723,1271) 2 1 [2] (8,217) dual 
217 193 (3182,216) 2 1 [2] (193,217) dual 
217 204 (79,5) 4 0 [2,2] (204,217) • 
217 249 (406102,27568) 4 1 [2,2] (249,217) • 
217 252 (399, 27) 8 0 [2,2,2] (28,1953) dual 
217 273 (9310,632) 4 0 [2,2] (273,217) • 
217 288 (12412332,842604) 8 0 [2,2,2] (8,7812) dual 
217 744 (1132027,76847) 8 1 [2,2,2] (744,217) • 
217 1017 (4950,336) 8 1 [2,2,2] (113,1953) • 
217 1800 (49275,3345) 16 1 [2,2,2,2] (8,48825) • 

2 3 3 8 (107,7) 1 • [1] (8,233) dual 

236 17 (62,4) 2 1 [2] (17,236) dual 
236 20 (32,2) 2 0 [2] (5,944) dual 

237 13 ( 1 7 Д ) 2 1 [2] (13,237) dual 

2 4 1 60 (803671,51769) 4 • [2,2] (60,241) dual 
2 4 1 96 (1180,76) 4 • [2,2] (24,964) dual 
2 4 1 145 (1118,72) 2 • [2] (145,241) 
2 4 1 160 (188,12) 4 • [2,2] (40,964) 
2 4 1 300 (4735,305) 8 • [2,2,2] (12,6025) 
2 4 1 360 (16347,1053) 8 • [2,2,2] (40,2169) 
2 4 1 720 (13069368,841872) 16 • [2,2,2,2] (5,34704) 

249 28 (190919,12099) 2 0 [2] (28,249) dual 
249 40 (14206163,900279) 2 0 [2] (40,249) • 
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^ k 
á K / k ßк/k hк p C l к ( d k > d ќ / k ) C l N 

249 
249 
249 
249 

120 
300 
336 
700 

(27,1) 
(1815,115) 

(910680,57712) 
(95,5) 

4 0 
8 0 
8 0 
8 0 

[2,2] 
[2,2,2] 
[2,2,2] 
[2,2,2] 

(120,249) 
(12,6225) 
(21,3984) 
(28,6225) 

• 
• 

dual 
• 

253 133 (53,3) 4 1 [2,2] (133,253) • 
265 649 (7814,480) 4 • [2,2,2] (649,265) [2,2,2,2,2,2] 

268 

268 

33 
84 

(177262,10828) 

(1408,86) 

2 0 
4 0 

[2] 
[2,2] 

(33,268) 

(21,1072) 

dual 

• 
2 6 9 5 (17,1) 1 • [1] (5,269) dual 

273 337 (926,56) 4 1 [2,2,2] (337,273) [8,2,2,2,2,2] 

2 7 7 21 (1681,101) 2 • [2] (21,277) dual 

2 8 1 8 (4811,287) 1 • [1] (8,281) dual 

284 161 (13010,772) 4 1 [2,2] (161,284) • 
285 61 (53,3) 4 1 [2,2,2] (61,285) dual 

296 41 (70,4) 2 • [2,2] (41,296) dual 

301 
301 
301 

21 
165 
336 

(6853,395) 
(2377,137) 

(280,16) 

4 1 
4 0 
8 1 

[2,2] 
[2,2] 

[2,2,2] 

(21,301) 
(165,301) 
(21,4816) 

• 
• 
• 

309 141 (405,23) 4 1 [2,2] (141,309) • 
3 1 3 
3 1 3 

24 
33 

(6258211,353735) 

(142,8) 

2 • 
2 • 

[2] 
[2] 

(24,313) 

(33,313) 
dual 
dual 

329 
329 

8 
65 

(19,1) 
(2122478,117016) 

2 1 
2 0 

[2] 
[2] 

(8,329) 
(65,329) 

dual 

• 
332 17 (146,8) 2 1 [2] (17,332) dual 

3 3 7 
3 3 7 
3 3 7 
3 3 7 

28 
72 

156 
273 

(1487,81) 
(292491,15933) 

( з i , i ) 
(238942,13016) 

2 • 
4 • 
4 • 
4 • 

[2] 
[2,2] 
[2,2] 
[2,2] 

(28,337) 

(8,3033) 
(156,337) 
(273, 337) 

dual 
• 

dual 
dual 

341 
341 

5 
45 

(74,4) 
(57,3) 

2 1 
4 1 

[2] 
[2,2] 

(5,341) 
(5,3069) 

dual 
dual 

381 13 (449,23) 2 1 [2] (13,381) dual 

3 8 9 5 (217,11) 1 • [1] (13,389) dual 

393 

393 

12 

28 
(54599511,2754181) 

(575,29) 

2 0 

2 0 
[2] 
[2] 

(12,393) 

(28,393) 
dual 

dual 

4 0 9 
4 0 9 

40 
60 

(63374476667, 3133666191) 

(223,11) 

2 • 
4 • 

[2] 
[2,2] 

(40,409) 
(60,409) 

dual 

• 
412 33 (82,4) 2 0 [2] (33,412) dual 

417 
417 
417 
417 

24 
28 

312 
897 

(1383147,67733) 

(23,1) 
(242331,11867) 

(174,8) 

4 1 
2 0 
8 1 
8 1 

[2,2] 

[2] 
[2,2,2] 
[2,2,2] 

(24,417) 
(28,417) 

(312,417) 
(897,417) 

• 
dual 

• 
• 

4 2 1 21 (230605,11239) 2 • [2] (21,421) dual 

X X X 
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X X X 

4 3 3 12 
4 3 3 33 

(10930015,525263) 2 • [2] 
(2830,136) 2 • [2] 

(12,433) dual 
(33,433) dual 

444 73 (506,24) 4 1 [2,2,2] (73,444) dual 

4 5 7 28 
4 5 7 57 

(7247,339) 2 • [2] 
(835606,39088) 2 • [2] 

(28,457) dual 
(57,457) dual 

476 32 (88,4) 4 1 [2,2,2] (8,1904) dual 

489 33 (1415948046,64031384) 4 1 [2,2] (33,489) • 

492 73 (710,32) 4 1 [2,2,2] (73,492) dual 

536 17 (602,26) 2 1 [2] (17,536) dual 

dk dк/k £ к / k hк p c i к (dk>áЌ/k) C 1 N 
537 12 (255,11) 2 0 [2] (12,537) dual 

5 4 1 21 (25,1) 2 • [2] 
5 4 1 45 (16677,717) 4 • [2,2] 

(21,541) dual 
(5,4869) • 

552 73 (50,2) 4 1 [2,2,2] (73,552) dual 

553 8 (387416115,16474609) 2 1 [2] 
553 177 (190,8) 4 1 [2,2] 

(8,553) dual 
(177,553) • 

589 5 (81642,3364) 2 1 [2] 

589 45 (801,33) 8 1 [2,2,2] 

(5,589) dual 
(5,5301) • 

597 13 (98,4) 2 1 [2] (13,597) dual 

601 60 (7183,293) 4 0 [2,2] (60,601) • 

604 Ю5 (152230618,6194176) 4 0 [2,2] (105,604) • 

633 24 (27,1) 4 • [2,2] (24,633) • 

6^9 60 (371407,14579) 4 0 [2,2] 
649 88 (4818411299339, 4 1 [2,2] 

189139187991) 
649 265 (4228623302,165987984) 4 1 [2,2] 
649 300 (517244815,20303635) 8 0 [2,2,2] 

(60,649) dual 
(88,649) • 

(265,649) dual 
(12,16225) • 

6 7 3 12 (51142572151, 2 • [2] 

1971401281) 
(12,673) dual 

713 8 (187,7) 2 1 [2] (8,713) dual 

721 60 (8202918288583, 4 0 [2,2] 
305492641063) 4 0 

721 72 (58563,2181) 8 1 [2,2,2] 
721 105 (569212373116198, 4 0 [2,2] 

21198576539648) 

(60,721) • 

(8,6489) • 
(105,721) • 

753 88 (63086147,2298987) 4 1 [2,2] (88,753) • 

769 24 (139,5) 2 • [2] (24,769) dual 

805 29 (114,4) 4 1 [2,2,2] (29,805) dual 

849 60 (344727,11831) 4 0 [2,2] 
849 105 (1350233033401638, 4 0 [2,2] 

46339877741824) 

(60,849) • 
(105,849) • 

X X X 571 
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X X X 

869 5 (2093,71) 2 1 [2] (5,869) dual 

889 

889 

60 

168 

(10407336813043783, 
349050873682621) 
(50726686186939, 

1701318449729) 

4 0 

8 1 

[2,2] 

[2,2,2] 

(60,889) 

(168,889) 

• 

• 

913 12 (31,1) 2 0 [2] (12,913) dual 

921 24 (92766648500739, 
3056764996055) 

4 1 [2,2] (24,921) • 

937 12 (155949895,5094661) 2 • [2] (12,937) dual 

949 69 (10474,340) 4 • [2 ,2 ,2] (69,949) dual 

969 76 (95,3) 4 0 [2 ,2 ,2] (76,969) dual 

988 17 (126,4) 4 1 [2 ,2 ,2] (17,988) dual 

1057 72 (99,3) 8 1 [2,2,2] (8,9513) 

1137 33 (270,8) 4 1 [2,2] (33,1137) 

1189 5 (138,4) 2 • [2,2] (5,1189) dual 

1201 

1201 

60 

105 

(3604859809658740063, 
104020006431274577) 

(300098932051942, 
8659502585488) 

4 • 

4 • 

[2,2] 

[2,2] 

(60,1201) 

(105,1201) 

1265 209 (286,8) 8 1 [2 ,2 ,2 ,2 ] (209,1265) 

1273 153 (14404662,403728) 8 1 [2,2,2] (17,11457) 

<*k 
á K / k Øк/k hк p C l к ( d k > d ќ / k ) C 1 N 

1337 8 (594818275, 16267417) 2 1 [2] (8,1337) dual 

13Ą9 5 (37,1) 2 1 [2] (5,1349) dual 

1Ą77 21 (154,4) 4 1 [2,2] (21,1477) • 

1Ą97 33 (5262,136) 4 1 [2,2] (33,1497) • 

1501 45 (117,3) 8 1 [2,2,2] (5,13509) • 

1969 385 (31928371282766262524462, 
719538285444565135704) 

8 1 [2,2,2] (385,1969) • 

2409 12 (30087,613) 4 0 [2,2,2] (12,2409) dual 

2641 120 (20080027,390733) 8 1 [2,2,2] (120,2641) • 
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