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AN EXAMPLE FOR GELFAND'S THEORY 
OF COMMUTATIVE BANACH ALGEBRAS 

WOLFGANG SCHWARZ — THOMAS MAXSEIN — PAUL SMITH 

ABSTRACT. Beginning with the C -vector-spaces B , resp. T>, spanned by the 
Ramanujan sums c r , resp. the exponential functions n t—• e x p ( 2 7 r i - n ) , and 
using the supremum-norm | | / | |u = s u p | / ( n ) | , the || • \\u -closures Bu and Vu 

can be defined. According to Gelfand's theory of commutative Banach algebras, 
these spaces are isomorphic with the algebra c(A) of continuous functions on 
the "maximal ideal space" A . 

The maximal ideal spaces A g and A p are constructed, and the knowledge 
of these allows to deduce some properties of the function spaces Bu and T>u . 

1. Introduction 

Denote by B (resp. T>) the complex vector space of linear combinations of 
Ramanujan sums 

cr:ny-> \^ ^ ( 5 ) = X ] exp(27ri^n). 
d|gcd(r,n) l < a < r > 

gcd(o,r) = l 

(resp. of exponential functions ea/r : n •—• exp(27r i ^ n ) ) . The Ramanujan sum 
c r is even mod r , that means, the values cr(n) only depend on the greatest 
common divisor of n and r , 

cr(n) = c r(gcd(n,r)) . 

The closure of B (resp. T> ) with respect to the supremum-norm 

H/IU = sup |/(n)| (1.1) 
nGN 

is denoted by Bu (resp. T>u ). These vector-spaces are semi-simple commutative 
Banach algebras with identity 1 (the constant function). Therefore, by Gelfand's 

A M S S u b j e c t C l a s s i f i c a t i o n (1985): Primary 11A25, 11L03. Secondary 11R29, 46J10, 
46J20. 
K e y w o r d s : Ramanujan sums, Banach algebras, Maximal ideal space, Gelfand transform 
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theory (see, for example, R u d i n [7], Chapter 18, or R u d i n [8], Chapter 
10,11), the space Bu of uniformly-almost-even arithmetical functions is alge­
braically and topologically isomorph to the algebra C(AB) of continuous func­
tions on some space Ag , the "maximal ideal space"; the same is true for Vu , 
the space of uniformly-limit-periodic arithmetical functions; its maximal ideal 
space is denoted by AT>. 

In fact, the determination of A# was achieved i n S c h w a r z - S p i l k e r [10] 
by an explicit construction, using the Weierstrafi approximation theorem, but 
not using or mentioning Gelfand's theory 

It is the aim of this note to give another explicit determination of Ag and 
A p , now using some simple facts from Gelfand's theory. Of course, these max­
imal ideal spaces are known (see, for example, [3], [4], [5], [6]) 

A & may be de cribed algebraically as the set of algebra-homomorphisms 

h:Bu -> C 

For any / in Bu we denote by spec(/) the set of complex A, for which the 
function / — A • 1 i not invertible in Bu (similarly for Vu ) . From R u d i n [7], 
18.17, we quote the following simple properties* 

(1) h(f) G spec(/) for any / G Bu and any h G A# , 
(2) \h(f)\<f\\u 

(3) h is continuou on B and the operator-no m is \\h\ < 1 

2. The maximal ideal space of Bu 

a) Construction of some homomorphism . Clearly, for any integer n G N , 
the evaluation n • / •—• f(n) are el m nts o A # . Next, for any prime p , and 
for / eBu , th limit 

/ ( p ~ ) ~ Urn / P
k) 

K—KX> 

exists ] , and so th functi n 

ft ~. / - /(P°° 

are e erne t of A 

Th< argument n b u m e ten lvely Given e p n nt kp for p prm 
0 < kp < oc a ( ompl ) v 1 / K) can b d fin d f r th ecto 

1 Given e , \ o F B I f l | | / F\ u < T^e functi F s even a 
F ph) - ft l con ta t for k _ ko(p £ , and the efore \f(p ) — (3\ < e fo these k , th ref r 
the se I nc i—> f(p ) i a auchy seq nee 
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in the following manner 2 : consider the monotonely increasing sequence nr of 
positive integers 

Ur = .TI ^ r ' " ' r = 1,2,..., 
\<p<r 

with the property n r | n r + i for any r . Then 

f(K) = Km /(n-) (2.2) 
r — • < » 

exists 3 , and 

h,c:f»W) (2.3) 

is an element of A g . All these functions A*; are different, as can be seen by 
evaluating h% on suitable Ramanujan sums cqt . 

Our goal is to show that we got all the elements of A g . Before doing this, 
we calculate the values of hfc at Ramanujan sums cqi for prime powers ql. 
Obviously (giving the greatest common divisor on the right-hand-side a natural 
interpretation) 

Mv) = vWlI^'^))' 
V 

(2.4) 

b) D e t e r m i n a t i o n of A g . We are going to prove 

T h e o r e m 2 .1 . The maximal ideal space A# consists exactly of the functions 
hjCj defined in (2.3), where K, runs through the set of vectors (kp)p p rime, with 
0 < kp < oo. 

Assume h 6 A # ; h being continuous it is sufficient to know the values of h 
on the subalgebra B of Bu . The Ramanujan sums cr, considered as functions 
of the index r , are multiplicative. Therefore it is sufficient to know the values 

and this equals 

= <y («') = ?(«'), if Kq ^ к, , 

< = v(î'-
1) = V-1, if кq ---1 1 , 

= o, if k g < Є - l . 

h(cqt) for prime-powers ql. 

2 We think of the sequence of primes being ordered according to their size. An integer n may 
be described as a special vector K , where at most finitely kp are non-zero and none is infinity. 
3 Given e > 0, choose F £ B satisfying \\f — F||tt < e. The function F is even, and so 
F(nr) = P is constant for r > TQ(S) , and so the sequence r .—• f(nr) is a Cauchy sequence . 
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Since h(f) £ spec( / ) , and spec(cg/) is {ip(ql), — ql~l, 0 } , if £ > 1, and 
{(p(q), —1} , if £ -= 1, and {1} if £ = 0, there are only a few (at most three) 
possibilities for choosing the value h(cqt). 

However, not every choice is admissible. The relations 

Cprn • Cpl = ip(p*) • Cprn, if 771 > £ , (2 -5) 

and 4 

<y • v = ¥>(p') • (ci + c, + • - - + cy-i) + (p' - 2p' - 1) - cpi (2.6) 

imply (using the fact that h is an algebra-homomorphism; q denotes a prime) 

(a) h(cqm) = 0, if h(cqt) = 0 and m> £, 
(b) h(cqm) = <p(qm), if h(cqt) ^ 0 and 0 < m < £, 
(c) h(cqt) < 0 is possible for at most one £ (q fixed), 

(d) if h(cqt+i) = 0, but h(cqt) ^ 0, then h(cqt) = -pl~l < 0. 

Therefore either h(cqm) = (p(qm) for any m > 0 (define ^^ = 00 in that case), 

or there exists an exponent kq such that 

f <p(qЄ), if Є<kя, 

h(cg<)={ - p ' " 1 , if €=-Jb- + l , 

[ 0, if £ > kq + 1. 

Then, for the vector /C = (kq)q p r i m e ,we obtain h = hie, and so A# is com­
pletely determined. 

c) Topology. The Gelfand topology of Ag is the weakest topology the makes 
every Gelfand transform 

/ : A S - > C , f(h) = h(f), 

continuous. 

So, for any prime power ql, the sets 

cqr
1(0) = {h€A; h(cqt)eO) 

are open for any open O in C . Therefore, using (2.4), the sets 

{ /̂c; kp arbitrary for p ^ q, kq > £} 

and 
{h/c] kp arbitrary for p ^ q, kq = £ - 1} 

4 By the way, the second relation implies h(cpt) 6 {0, - p * - 1 , <p(p1)} • 
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are open. Choosing these sets as a subbasis for the topology, we see that every 
/ is continuous. For: 
Given e > 0 and / , choose g = ]T) 7r*c r satisfying | | / — ^||tt < | e . Assume 

l<r<fi 
that h G A g , h = hjc, K, = (&p(/i)) , is given. An open neighbourhood U(h) 
of /i is denned by the condition 

h* e U(h) iff h* = /i/c*, and kp(h*) = fcp(/i) for any p<R. 

Then ft(y) = /i*(<?) for any h* in I7(/i), and so 

\f(h)-f(h*)\ = \h(f)-h(D\< 
\h(f) - h(g)\ + \h*(f) - h*(g)\ < ||/ - ,11. + ||/ - ,||. < e 

(to get from the first to the second line, property (2) from §1 was used). 

Therefore / is continuous, and so the topology of A# is completely deter­
mined. It coincides with the product topology on the space 

n{i,p,p2,...,p°°h 

where each factor is the Alexandroff-one-point-compactification of the discrete 
(and locally compact) space { l , p , p 2 , . . . } . 

d) Main result. For functions / in Bu obviously | | / 2 | | u = \\f\\u > anc^ s o w e 

obtain from 11.12 in [8] 

Theorem 2 .2. The Banach-algebra Bu is semi-simple, and the Gelfand 
transform f *-* f is an isometric algebra-isomorphism from Bu onto C(A&). 

By the way, semi-simplicity immediately also follows from the fact that the 
evaluation homomorphisms hn: f i—• f(n) are in A g , and so the assumption 
/ G radical(Bu) = f| kernel(/i) implies / = 0. 

Next, [8] 11.20 implies5 -

Corollary 2 .1 . If f € Bu is real-valued, and if inf f(n) > 0, then there 
nGN 

exists a (real-valued) square-root g of f in Bu. 

e) Applications. The following result is well known and may be derived from 
the Weierstrafi approximation theorem also; we deduce it from our knowledge of 
A 8 . 

5 The result can be deduced from the Weierstrafi approximation theorem also. 
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Corollary 2.2. Assume f G Bu . Then 1 / / G Bu if and only if there exists 
some positive constant 8, for which \\f\\u > $ -

P r o o f . If 1 / / G Bu then this function is bounded and so | / | is bounded 
from below. 

On the other hand, according to Gelfand's theory (see R u d i n [7], 18.17) 
1 / / G Bu , if for any h G A# the value h(f) is not zero. The values h(f) are 
given as certain limits in section 2, and the condition | / | > 8 obviously implies 
that all these limits are non-zero, and the corollary is proved. 

These corollaries may be considerably extended, using known results on Ba-
nach algebras. 

Theorem 2.3. Let f G Bu be given. If the function F is holomorphic in 
some region of C including the range / ( A g ) of f, then the composed function 
F o / is in C(A&) and thus equal to some g, g G Bu . Therefore F o / is in 
Bu again. 

Except for the last sentence, this is a specialization of L. H. L o o m i s , 
Abstract Harmonic Analysis, Princeton 1953, 24 D. Next, g = F o / implies 
h(g) = F(h(f)) for any h in A# , and so the assertion is true if F is a poly­
nomial ( then F(h(f)) = h(F(f))). The general case follows from this. 

Theorem 2.4. Let f G Bu be given. If 8 > 0 and f is multiplicative, then 
f(pk) = 0 is possible for at most finitely primes p. 

The same argument gives the following stronger version. 

Theorem 2 .5 . Let f G Bu be given. If 8 > 0 and f is multiplicative, then 
there are at most finitely many primes with the property \f(pk) — 1| > 8 for 
some k . 

P r o o f , f(hfc-o) = 1, where /Co = (kp), kp = 0 for any p. Given e = | 6 , 
then there is some neighbourhood UQ of hjc0 with the property \f(h) — 1| < e 
for any h in Uo . But this neighbourhood contains all /i/c with kp arbitrary 
except for finitely many primes; for these exceptional primes kp = 0 may be 
taken. Next, / being multiplicative, 

f(h) = lim TT /(p«"-<-,.--)) , 
L—•oo •*• •*• 

p<L 

and this implies, by a suitable choice of the kp , noticing \f(h) — 1| < e, that 
\f(pk) — 1| > £ is impossible for any "non-exceptional" prime and any k. 
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3 . The maximal ideal space A p of Vu 

a) Embedding of Ap in n Z/rZ. 
rGN 

Define, with the abbreviation ur = exp(27ri/r) , an element fr G V by 
fr(n) = u>r . The set of functions 

{/,., l < ^ < r , gcd(*,r) = l , r = l , 2 , . . . } 

is a basis of X>. A function / in V is r-periodic for a suitable r , and so 1 / / 
is again r-periodic and so in T) C X>u if / does not assume the value zero. 
Therefore 

spec(/ r) = {u;r, 1 <j < r } . 

If ftG A p , t h e n , by (1), §1 

h(fr) = u,*r>h\ (3.1) 

where j ( r , ft) is some uniquely determined integer modulo r depending on h. 
Thus we obtain a map 

<p: Ap-> JJ Z/rZ, 
rGN 

defined by (£>(ft) = (j(r, ft))r-=i,2,... - where ft and j are related by (3.1). Obvi­
ously tp is injective. 

b) The Priifer Ring Z . 

For any n G N consider the residue class ring Z / n Z with the discrete 
topology. If ra|n, then there is a continuous projection 

7Tm,n* Z / n Z —> Z / m Z , (a mod n) H (a mod m) . 

If _Y = JJ Z / rZ with the product topology, then X is a compact Hausdorff 
rGN 

space, and the set 

Z = {(a n ) G -K, a n G Z / n Z and 7rm j n(an) = a m , if m\n) 

is a closed subspace of X and therefore again compact (and Hausdorff). Note 
that N is dense in Z ; the reason is that, given an element (ot r) r in Z and 
positive integers n , . . . ,rjv , there exists an integer m G N satisfying m = a r . 
mod r, for 1 < i < N. 

Since / r . a = fr it follows that j(r - s,h) = j ( r , ft) mod r for any ft G A p . 
Therefore the imago of the map tp is contained in Z . 
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c) Subjectivity of <p: Ax> —• Z . 

Let some element (ar)r in Z be given. Our aim is to construct an algebra-
homomorphism h G A D satisfying p(h) = (ar)r. Define a linear map h: T> —> 
C on the elements of the basis of T> by 

h(rt)=uk
r
a', l<k<r, gcd(*,r) = l, r = l ,2 

and extend h linearly to T>. Then h is multiplicative on T); assume first 
gcd(r, s) = 1; then the relation 

s • k • ar + r • £ • as ~ (s • k + r • £) • ar.s mod r • s 

implies 

Kfr-ft.) = Kfr)-Kft.)-
This is also true if gcd(r, 5) ^ 1; without loss of generality, r and s may be 
assumed to be powers of the same prime, and then the as ertion is easily checked. 
Furthermore h is continuous on T>. Given an element tp G X>, ip = ^ av ' 

l<u<N 

/*" , satisfying \\ip\\ < 1, there exists an m G N , for which m — aTv mod rv , 
for 1 < v < N. Since h(ip) = xp(m), we obtain 

\K1>)\ < \*Krn)\ < HVIU < 1, 
and so h is continuous on T>. This space being dense in T> , h may be contin 
uously extended to an algebra-homomorphism of T>u , and (p(h) = (ar)r=1)2, . 

d) Continuity of p: Ax> —* Z . 

Fix ak G Z / fcZ, 1 < k < N with the property an = a m mod m if m n 
Then 

V(au... , a N ) = {(/5n) G Z, ^ = a* for 1 < k < N} 

is a typical basis element of the (product-) topology of Z . Moreover h G 
(p~l(V(ct\,... ,«Iv)) if a n < 1 o n i y if ^(/fc) — ^ * f° r anY k in 1 < k < N 
This is equivalent with fk(h) = to%k , 1 < k < TV, where /* is the Gelfand 
transform of fk , defined by f(H) = H(f) for any H G Ax>. 

If J/* is a neighbourhood of uj^k , not containing any other k th root of unity 
then it follows that 

Iv 
<p-l(V(au...,aN))={]f^(Uk) 

k=i 

is an open set in the Gelfand topology of A p , and so <p is continuous. Since 
Ax> and Z are compact HausdorfF spaces, <p is a homeomorphism. Thus we got 

Theorem 3.1 . The maximal space Ax> is homeomorphic with Z , defined 
in 3b . 
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4. On the characterization 
of add i t ive and multiplicative functions in Bu 

In [1] N. G. De B r u i j n characterized multiplicative almost-periodic arith­
metical functions. Additive almost-periodic functions were characterized by E. 
R. Van K a m p e n in "On uniformly almost periodic multiplicative and additive 
functions", Amer. J. Math. 62, (1940), 107-114; see also [11] and the paper of 
J. K n o p f m a c h e r quoted there. The results are as follows. 

Theorem 4.1. Assume f to be fibre-constant.6 Then f is in Bu if and 
only if lim f(pk) exists (for any prime). 

i t — • o o 

Theorem 4.2. An additive function is in Bu if and only if 

and 

lim f(p ) exists for any prime (4.1) 
k—+oo 

X>p|/(p*)|<oo . (4.2) 

Theorem 4 .3 . A multiplicative function is in Bu if and only if (4.1) holds 
and if 

£sup|/(p*)-l|<oo (4.3) 
p k 

is true. 

We give proofs for these known theorems, using the isomorphy of Bu with 
C( A ) . However, the ideas used are more or less also well known. 

R e m a r k . If / is in _5U, then the Gelfand transform / is continuous at 
hfc, where tC = (kp)p , and kq = oo, kp = 0, if p ̂  q. All the functions hjc , 
where k'p = kp = 0 for p 7-= q, and k'q = L, L sufficiently large, are near h% , 
and so the limes relation (4.1) is true. 

T h e p r o o f of T h e o r e m 4.1. now follows from the preceding remark 
and the fact, that for fibre-constant functions f(h) may be defined in an obvious 
manner, using the limes relation (4.1) at q. The resulting functions / obviously 
is continuous, and so / is in Bu . 

We now use the following notation: Given any arithmetical function, define, 
with an obvious interpretation of the greatest common divisor, 

f(p)(n) = f(&cd(n,P°°)) > H p is prime (4.4) 

6 / is called fibre-constant if there is a prime q such that f(n) = / ( gcd(n, q°°)) for any n . 
Obviously, lim f(p ) exists for any prime p 7-- q trivially. 

k—*oo 
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and 
FR(n) = /(gcd(n, [ J P°°)) • (4-5) 

P>R 

The functions f(p) are fibre-constant. 

P r o o f of T h e o r e m 4.2. 
(a) Assume that (4.1) and (4.2) hold. / being additive, 

/ = £ / ( P ) + ^> (4-6) 
p<R 

and the functions f(p) are in Bu by Theorem 4.1. Next 

\FR(n)\ = \f(n) - £ f(p)(n)\ < £ sup |/(p*)| < e, 
p<R p>R k 

if R is sufficiently large, and so / G Bu . 

(b) If JC = ( 0 , 0 , . . . ) , /C' = (kp)p, where kp is arbitrary for p > R and kp = 0 
if p < R, then h^ is near b;c • Since / is additive, we obtain /(b/c) = 0; / i s 
continuous, and so \f(hjc)\ < e, if R is sufficiently large. Therefore, evaluating 
f(hK>) , one gets 

I E f(Pkp)\<e 
R<p<R' 

for any system kp of exponents (kp = oo is admissible, f(p°°) = limf(pk)), 
k 

and so every subseries of 

£/(p*') 
is convergent, therefore this series is absolutely convergent (see, for example, 
P 6 1 y a —S z e g 6 , Aufgaben und Lehrsatze aus der Analysis, III, 51) for any 
choice of the exponents. This implies (4.2). 

P r o o f of T h e o r e m 4 . 3 . 

(a) Assume that (4,1) and (4.3) hold. Being multiplicative, 

p<R 

where the fibre-const ant functions f(p) are in Bu . Next, using (4.3), 

| [ ] /(,)(„)! < exp I £ *(|/(p)(n)| - 1) < C, 
P<R [P<R ) 
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uniformly in R, where * means that summation is only over those primes for 
which \f(p)(n)\ > 1. And 

\f(n)-l[fip)(n)\<C\FR(n)\<C-e, 
p<R 

uniformly in n , if R is large, again using (4.3). 

Therefore / is in Bu. 
(b) If / is in Bu and multiplicative, then the proof is similar to the correspond­
ing proof of Theorem 4.2. The details, a little more complicated than before, are 
omitted. One needs that absolute convergence of a product JJ x, is equivalent 
with the absolute convergence of the series 5^{x,- ~" 1} • 

5. Another Application 

Using our knowledge of A# and the Tietze extension theorem (see for ex­
ample H e w i t t —S t r o m b e r g , Real and abstract analysis) we prove 

Theorem 5.1. Given a sequence {nj} of (pairwise distinct) integers greater 
than one with the property 

the minimal prime-divisors pmin(nj) = Pj of rtj tend to co as j —> oo, (5.1) 

and given complex numbers aj converging to a E C , then there exists a function 
f in Bu assuming the values aj at nj . 

P r o o f . Condition (5.1) implies that lim hn. = hi in Ag . The subset K of 
j—+oo 3 

A # , K = {hi}U{hnj} is closed and therefore compact. Define a complex-valued 
function F on K, by 

F(h\) = a, and F(hnj) = aj . 

It is easy to check that F is continuous on fC, and Tietze's extension theorem 
gives the existence of a continuous function F* on A# extending F, which is 
the image of some / in Bu under the Gelfand transform, and 

f(nj) = f(hnj) = F(hnj) = aj. 
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