Mathematic Slovaca

Milan Paštéka

Covering densities

Mathematica Slovaca, Vol. 42 (1992), No. 5, 593--614

Persistent URL: http://dml.cz/dmlcz/133254

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COVERING DENSITIES

MILAN PAŠTÉKA ${ }^{1)}$

Abstract

In this paper a modification of Buck's measure density is investigated. Some properties of this set function are proved.

Introduction

The notion of measure density was introduced in 1946 by R. C. B u ck [3]. The purpose of this paper is to introduce a more general concept of density, the covering density, and to describe some properties of this set function. The measure density of Buck will be a special case of the covering density. In the first two parts we recall the well known notion of a strong submeasure and introduce the notion of covering density. In the third part we shall prove a formula for evaluation of the covering density and show some of its applications. The algebra of measurable sets will be the object of investigation in the next part. Especially, we establish the Darboux property of the covering density on the algebra of measurable sets. The fifth part is devoted to the uniform distribution of sequences, in the sense of $\mathrm{I} . \mathrm{N}$ iven and its connection with covering density. In 1976 T. Estrada and R. Canvall [9] proved that an infinite series with nonnegative elements converges if and only if this series converges on every set of indexes, with asymptotic density 0 . A generalization of this result is in [22]: An infinite series with nonnegative elements converges if and only if this series converges on every set of indexes which belongs to the zero system of a compact submeasure (the system of all sets with submeasure 0). The definition of compact submeasure is also in [22]. The upper asymptotic density and also the Buck's measure density are examples of compact submeasure. It is interesting that the zero system of measure density is much smaller as the system of all sets with asymptotic density 0 . In the last part we exhibit also some examples of covering densities with zero system smaller than the zero system of measure density.

[^0]
MILAN PASTTÉKA

1. Strong submeasure

Let X be an arbitrary set. Denote by $P(X)$ the system of all subsets of the set X.

The set function

$$
m^{*}: P(X) \rightarrow[0,1]
$$

will be called a strong submeasure if it has the following properties:
(i) $A \subset B \Longrightarrow m^{*}(A) \leq m^{*}(B)$,
(ii) $m^{*}(A \cup B)+m^{*}(A \cap B) \leq m^{*}(A)+m^{*}(B)$,
(iii) $m^{*}(\emptyset)=0, m^{*}(X)=1$,
for every $A, B \in P(X)$.
The set $A \in P(X)$ will be called measurable if

$$
\begin{equation*}
m^{*}(A)+m^{*}(X \backslash A)=1 \tag{1}
\end{equation*}
$$

Let us denote the system of all the measurable sets by D_{m}. From the properties (i)-(iii) it follows that D_{m} is an algebra of sets, and the function

$$
m=m^{*} \mid D_{m}
$$

is a finitely additive probability measure on D_{m}. In what follows we give a lot of examples of strong submeasures m^{*} such that D_{m} is not σ-algebra and m is not σ-additive. But a certain modified form of σ-additivity still remains valid:

THEOREM 1. Let $A_{n}, n=1,2, \ldots$ be a disjoint system of sets such that $A_{n} \in D_{m}$. Let

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m^{*}\left(\bigcup_{k=n}^{\infty} A_{k}\right)=0 \tag{2}
\end{equation*}
$$

Then the set $A=\bigcup_{k=1}^{\infty} A_{k}$ belongs to D_{m} and

$$
\begin{equation*}
m(A)=\sum_{n=1}^{\infty} m\left(A_{n}\right) \tag{3}
\end{equation*}
$$

Proof. Clearly

$$
\begin{equation*}
1 \leq m^{*}(A)+m^{*}(X \backslash A) \tag{4}
\end{equation*}
$$

For every $n=1,2, \ldots$ it holds that

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n} \subset A=A_{1} \cup A_{2} \cup \cdots \cup A_{n} \cup \bigcup_{k=n+1}^{\infty} A_{k}
$$

Therefore

$$
\sum_{k=1}^{n} m\left(A_{k}\right) \leq m^{*}(A) \leq \sum_{k=1}^{n} m\left(A_{k}\right)+m^{*}\left(\bigcup_{k=n+1}^{\infty} A_{k}\right)
$$

For $n \rightarrow \infty$ we obtain

$$
\begin{equation*}
\sum_{k=1}^{\infty} m\left(A_{k}\right)=m^{*}(A) \tag{5}
\end{equation*}
$$

In the following for $n=1,2, \ldots$ we have

$$
X \backslash A \subset X \backslash\left(A_{1} \cup A_{2} \cup \ldots A_{n}\right)
$$

thus

$$
m^{*}(X \backslash A) \leq 1-\sum_{j=1}^{n} m\left(A_{j}\right)
$$

For $n \rightarrow \infty$ we have, according to (5)

$$
m^{*}(X \backslash A) \leq 1-m^{*}(A)
$$

From (4) it follows that

$$
m^{*}(A)+m^{*}(X \backslash A)=1
$$

The proof is complete.
Corollary. Let $A_{n}, n=1,2, \ldots$ be a disjoint system of sets from D_{m}. Let $B \in D_{m}$ be a set for which $A_{i} \subset B, i=1,2, \ldots$. If

$$
\sum_{i=1}^{\infty} m\left(A_{i}\right)=m(B)
$$

then the set $A=\bigcup_{i=1}^{\infty} A_{i}$ belongs to D_{m} and

$$
m(A)=m(B)
$$

Proof. For $n=1,2, \ldots$ it holds that

$$
\bigcup_{i=n+1}^{\infty} A_{i} \subset B \backslash\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)
$$

therefore

$$
\lim _{n \rightarrow \infty} m^{*}\left(\bigcup_{i=n+1}^{\infty} A_{i}\right)=0
$$

Thus, according to Theorem 1 we have $A \in D_{m}$ and $m(A)=\sum_{i=1}^{\infty} m\left(A_{i}\right)$ $=m(B)$.

MILAN PASTÉKA

2. Covering densities

Let \mathbb{N} be the set of all positive integers. Let the symbol $a+\langle d\rangle$, for $d \in \mathbb{N}$ and a a nonnegative integer denote the arithmetic progression $\{a+n d$; $n=0,1,2 \ldots\}$. Instead of $0+\langle d\rangle$ we simply write $\langle d\rangle$. The greatest common divisor and the least common multiple of the numbers $a, b \in \mathbb{N}$ will be denoted by (a, b) and $[a, b]$, respectively.

The set $A \subset \mathbb{N}$ will be called closed with respect to divisibility if it satisfies the following conditions:
(iv) For $a \in A, b \in \mathbb{N}$, we have $b \mid a \Longrightarrow b \in A$, and
(v) for $a_{1}, a_{2} \in A$ we have $\left[a_{1}, a_{2}\right] \in A$.

A trivial example of the set closed with respect to divisibility is the set \mathbb{N}. For p prime, also the set $\left\{p^{n} ; n=0,1, \ldots\right\}$ is closed according to divisibility. A lot of examples of such sets will be constructed in the Section 6 .

In what follows we shall assume that A is an infinite set closed with respect to divisibility. Denote by the symbol S_{A} the system of all the arithmetic progressions $a+\langle d\rangle$, where $d \in A$. For an arithmetic progression $H=a+\langle d\rangle \in S_{A}$ put

$$
\Delta(H)=\frac{1}{d} .
$$

Let H denote also the set of elements of H.
Let $S \subset \mathbb{N}$. Then the value

$$
\mu_{A}^{*}(S)=\inf \left\{\sum_{i=1}^{k} \Delta\left(H_{i}\right) ; S \subset \bigcup_{i=1}^{k} H_{i} \wedge H_{i} \in S_{A}\right\}
$$

will be called the covering density of the set S according to A (or, briefly covering density of S).

If we denote by $\mu^{*}(S)$ the measure density of the set S, as introduced in [3], then clearly for every $S \subset \mathbb{N}$ it holds that $\mu^{*}(S)=\mu_{\mathbb{N}}^{*}(S)$. Therefore the notion of the covering density according to A is a generalization of μ^{*}.

It follows trivially from the definition that for every set S it holds

$$
\begin{equation*}
\mu^{*}(S) \leq \mu_{A}^{*}(S) \tag{6}
\end{equation*}
$$

For a set function m let $Z(m)$ be the zere system of m. i.e. the system of all sets $S \subset \mathbb{N}$ for which $m(A)=0$. The relation (6) implies

$$
\begin{equation*}
Z\left(\mu_{A}^{*}\right) \subset Z\left(\mu^{*}\right) \tag{7}
\end{equation*}
$$

In the following we give many examples when the equality in (7) does not hold. These cases are interesting in connection with the Theorem proved in [22] (see Introduction).

COVERING DENSITIES

3. The limit formula

In this part we shall prove one formula for evaluation of the covering density $\mu_{A}^{*}(S)$. This formula is a generalization of Theorem 1 from [23]. Using it we shall establish some properties of μ_{A}^{*}.

The sequence $\left\{B_{n}\right\}$ of positive integers will be called complete in A if
(vi) $B_{n} \in A$, for $n=1,2, \ldots$, and
(vii) for every $d \in A$ there exists an index n_{0} such that for $n \geq n_{0}$ we have $d \mid B_{n}$.
We have assumed that A is an infinite set. Let $A=\left\{A_{1}<A_{2}<\ldots\right\}$. Then according to (v) the sequence

$$
\begin{equation*}
\left\{\left[A_{1}, \ldots, A_{n}\right]\right\} \tag{8}
\end{equation*}
$$

forms an example of a sequence which is complete in A. Let $\left\{m_{n}\right\}$ be an increasing subsequence, of (8). Then $\left\{m_{n}\right\}$ is also a sequence which is complete in A, moreover $m_{i}<m_{i+1}$ and $m_{i} \mid m_{i+1}, i=1,2, \ldots$. From this we immediately obtain the inequality

$$
\begin{equation*}
m_{i} \geq 2^{i-1}, \quad i=1,2, \ldots \tag{9}
\end{equation*}
$$

For $a, b \in \mathbb{N}$ denote by $a \bmod b$ the remainder obtained by dividing a by b. For a set $S \subset \mathbb{N}$ and $b \in \mathbb{N}$ put

$$
S \bmod b=\{s \bmod b ; s \in S\} .
$$

This set will be called the system of representatives of the set S modulo b. Let $R(S, b)$ be the number of elements of the set S mod b. Clearly $R(S, b) \leq b$.

Theorem 2. Let $\left\{B_{n}\right\}$ be a sequence which is complete in. A. Then for every $S \subset \mathbb{N}$ we have

$$
\mu_{A}^{*}(S)=\lim _{n \rightarrow \infty} \frac{R\left(S, B_{n}\right)}{B_{n}}
$$

Proof. Let $\left\{a_{1}, \ldots, a_{k(n)}\right\}$ be the system of representatives of the S modnlo $B_{n}, n=1,2, \ldots$. Then

$$
k(n)=R\left(S, B_{n}\right)
$$

and

$$
S \subset \bigcup_{\jmath=1}^{k(n)} a_{j}+\left\langle B_{n}\right\rangle
$$

According to (vi) $B_{n} \in A, n=1,2, \ldots$, thus from the definition of μ_{A}^{*} it follows that

$$
\begin{equation*}
\mu_{A}^{*}(S) \leq \frac{R\left(S, B_{n}\right)}{B_{n}}, \quad n=1,2, \ldots \tag{10}
\end{equation*}
$$

Let $\varepsilon>0$. Then according to the definition of $\mu_{A}^{*}(S)$ there exists a disjoint system of arithmetic progressions $a_{1}+\left\langle d_{1}\right\rangle, \ldots, a_{k}+\left\langle d_{k}\right\rangle \in S_{A}$ such that

$$
\begin{equation*}
S \subset \bigcup_{i=1}^{k} a_{i}+\left\langle d_{i}\right\rangle \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{d_{1}}+\cdots+\frac{1}{d_{k}} \leq \mu_{A}^{*}(S)+\varepsilon \tag{12}
\end{equation*}
$$

By (v), $\left[d_{1}, \ldots, d_{k}\right] \in A$. Therefore according to (vii) there exists n_{0} such that for $n \geq n_{0}, d_{i} \mid B_{n}, i=1,2, \ldots, k$. This divisibility relation implies that the arithmetic progression $a_{i}+\left\langle d_{i}\right\rangle, i=1,2, \ldots, k$ can be represented as a disjoint union of arithmetic progressions of the form

$$
a_{i}+\left\langle d_{i}\right\rangle=\bigcup_{r=0}^{k_{i}^{(n)}} a_{i}+r d_{i}+\left\langle B_{n}\right\rangle
$$

where $k_{i}^{(n)}=\frac{B_{n}}{d_{i}}-1, \quad i=1,2, \ldots, k, n \geq n_{0}$. Consequently

$$
\bigcup_{i=1}^{k} a_{i}+\left\langle d_{i}\right\rangle=\bigcup_{j=1}^{R_{n}} b_{j}^{n}+\left\langle B_{n}\right\rangle, \quad n \geq n_{0}
$$

where $b_{1}^{n}, \ldots, b_{R_{n}}^{n} \in \mathbb{N}, n \geq n_{0}$. In addition,

$$
\begin{equation*}
\frac{R_{n}}{B_{n}}=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{k}}, \quad n \geq n_{0} \tag{13}
\end{equation*}
$$

The system of representatives of the set S has $R\left(S, B_{n}\right)$ elements. Two integers contained in the same arithmetic progression $b+\left\langle B_{n}\right\rangle$ are congruent modulo B_{n}. Therefore according to (11) we have

$$
R\left(S, B_{n}\right) \leq R_{n}, \quad n \geq n_{0}
$$

Thus, by (10), (12) and (13) we have for $n \geq n_{0}$

$$
\mu_{A}^{*}(S) \leq \frac{R\left(S, B_{n}\right)}{B_{n}} \leq \mu_{A}^{*}(S)+\varepsilon
$$

COVERING DENSITIES

The proof is complete.
Let $\left\{m_{n}\right\}$ be an increasing sequence, selected from the sequence (8). According to Theorem 2 for every $S \subset \mathbb{N}$ we have

$$
\begin{equation*}
\mu_{A}^{*}(S)=\lim _{n \rightarrow \infty} \frac{R\left(S, m_{n}\right)}{m_{n}} \tag{14}
\end{equation*}
$$

For $a \in \mathbb{N}$ and $S \subset \mathbb{N}$ put

$$
a S=\{a s ; s \in S\} .
$$

From (14) we have immediately:
Corollary. If $(a, d)=1$, for every $d \in A$, then for every set $S \subset \mathbb{N}$ it holds that

$$
\mu_{A}^{*}(a S)=\mu_{A}^{*}(S) .
$$

Let $M=\left\{m_{1}, m_{2}, \ldots\right\}$ be the set of elements of the sequence $\left\{m_{n}\right\}$. Then according to (14) and (9) we have

$$
\mu_{A}^{*}(M) \leq \lim _{n \rightarrow \infty} \frac{n+1}{2^{n}}=0 .
$$

Consider the set

$$
G_{M}=\left\{n+m_{n} ; n=1,2, \ldots\right\} .
$$

It is easy to see that for every $j=1,2, \ldots$ the numbers $k+m_{k} ; k=j$, $\ldots, j+m_{j}-1$ are incongruent modulo m_{j}. Therefore it follows from (14) that

$$
\mu_{A}^{*}\left(G_{M}\right)=1 .
$$

But by (9) the asymptotic density of the set G_{M} is equal to zero.
Choose $a \in \mathbb{N}$ such that $(a, d)=1$ for every $d \in A$. Consider the set

$$
G_{M}^{a}=\left\{n a+m_{n}, n=1,2, \ldots\right\} .
$$

In a similar way we can prove

$$
\mu_{A}^{*}\left(G_{M}^{a}\right)=1
$$

MILAN PASTÉKA

All elements from G_{M}^{a} are relatively prime to a. Thus from the definition of Buck's measure density we have

$$
\mu^{*}\left(G_{M}^{a}\right) \leq \frac{\varphi(a)}{a}<1,
$$

where φ is the known Euler function. From (9) it is also easily seen that the asymptotic density of G_{M}^{a} is zero.

It is clear that for $S_{1}, S_{2} \subset \mathbb{N}$ and $n=1,2, \ldots$ it holds that

$$
\begin{gathered}
R\left(S_{1}, m_{n}\right)+R\left(S_{2}, m_{n}\right) \geq R\left(S_{1} \cup S_{2}, m_{n}\right)+R\left(S_{1} \cap S_{2}, m_{n}\right) \\
S_{1} \subset S_{2} \Longrightarrow R\left(S_{1}, m_{n}\right) \leq R\left(S_{2}, m_{n}\right)
\end{gathered}
$$

Therefore according to (14) the set function μ_{A}^{*} is a strong submeasure in the sense of chapter 1 .

4. Measurable sets

The algebra of measurable sets according to μ_{A}^{*} will be denoted by D_{A}, (instead of $D_{\mu_{A}}$). Only in the case $A=\mathbb{N}$ we shall use the symbol D_{μ}, according to Buck 's notation in [3]. On the algebra D_{A} we have the finitely-additive probability measure

$$
\mu_{A}=\mu_{A}^{*} \mid D_{A} .
$$

If $S \in D_{A}$, then from (6) it follows that

$$
\begin{equation*}
1 \leq \mu^{*}(S)+\mu^{*}(\mathbb{N} \backslash S) \leq \mu_{A}^{*}(S)+\mu_{A}^{*}(\mathbb{N} \backslash S)=1 \tag{15}
\end{equation*}
$$

Thus $\mu^{*}(S)+\mu^{*}(\mathbb{N} \backslash S)=1$. Consequently $D_{A} \subset D_{\mu}$. According to (15) it follows that for every $S \in D_{A}$ it holds that

$$
\mu(S)=\mu_{A}(S)
$$

Therefore by virtue of Theorem 2 from [23] cevery set from D_{A} has asymptotic density equal to the covering density of this set according to A. In what follows we shall show that $D_{A}=D_{\mu}$ if and only if $A=\mathbb{N}$.

For an arbitrary $d \in \mathbb{N}$ let

$$
h(d)=\sup \left\{k=0,1, \ldots ; d^{k} \in A\right\} .
$$

For every positive integer m with representation as a product of primes

$$
m=p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{k}^{\alpha_{k}}
$$

we can define a positive integer

$$
g_{A}(m)=p_{1}^{r_{1}} \cdot \ldots \cdot p_{k}^{r_{k}},
$$

where

$$
r_{i}=\min \left\{\alpha_{i}, h\left(p_{i}\right)\right\}, \quad i=1,2, \ldots, k
$$

Clearly $p_{i}^{r_{i}} \in A, i=1,2, \ldots, k$ and so $g_{A}(m) \in A$ according to (v), for every $m \in \mathbb{N}$. From this we see that for every $m \in \mathbb{N}$ there exists j_{0} such that

$$
g_{A}(m) \mid m_{j} ; \quad j \geq j_{0}
$$

Therefore for every m_{j} and $a \in \mathbb{N}, S \subset \mathbb{N}$ there holds

$$
R\left(a+S, m_{j}\right)=R\left(S, m_{j}\right)
$$

Now, (14) and the above imply:
Lemma 1. For $a \in \mathbb{N}$ and $S \subset \mathbb{N}$ it holds

$$
\mu_{A}^{*}(a+S)=\mu_{A}^{*}(S) .
$$

Lemma 2. For every positive integer m and $d \in A$ it holds that

$$
g_{A}(m) \mid d \Longrightarrow(m, d)=g_{A}(m)
$$

Proof. It is trivial that $g_{A}(m) \mid m$. Therefore from the condition

$$
g_{A}(m) \mid d
$$

we have $g_{A}(m) \mid(d, m)$.
Let p be a prime, such that p has in the representation of m as a product of primes the exponent α. Let $p^{3} \mid(m, d)$, then $\} \leq n$ and $a \leq h(p)$. Thus

$$
p^{j} \mid g_{A}(m)
$$

Considering all primes from the representation of ($m . d$) we have ($m . d$) $\mid g . A(m)$. The proof is complete.

MILAN PASTÉKA

Theorem 3. For every $m \in \mathbb{N}$ and a nonnegative integer we have

$$
\mu_{A}^{*}(a+\langle m\rangle)=\frac{1}{g_{A}(m)}
$$

Proof. According to Lemma 1 it is sufficient to prove that

$$
\mu_{A}^{*}(\langle m\rangle)=\frac{1}{g_{A}(m)} .
$$

The value $R\left(\langle m\rangle, m_{k}\right), k=1,2, \ldots$ denotes the number of such $j \in\left\{0, \ldots, m_{k}-1\right\}$, for which the congruence

$$
x m \equiv j \quad\left(\bmod m_{k}\right)
$$

has a solution. There are exactly the j 's which are divisible by (m, m_{k}). The number of such j is exactly

$$
\frac{m_{k}}{\left(m, m_{k}\right)} .
$$

From (14) it follows that

$$
\mu_{A}^{*}(\langle m\rangle)=\lim _{k \rightarrow \infty} \frac{1}{\left(m, m_{k}\right)} .
$$

According to the condition (vii) we see that there exists k_{0}, such that for $k \geq k_{0}$ it holds that $g_{A}(m) \mid m_{k}$. From Lemma 2 we have for $k \geq k_{0}$

$$
\left(m, m_{k}\right)=g_{A}(m) .
$$

The proof is complete.
Corollary 1. If $H=a+\langle d\rangle \in S_{A}$, then

$$
\mu_{A}^{*}(H)=\Delta(H)
$$

COROLLARY 2. If m is a positive integer such that $(m, d)=1$ for every $d \in A$, then for ewery nonnegative integer a we have

$$
\mu_{A}^{*}(a+\langle m\rangle)=1
$$

COVERING DENSITIES

LEMMA 3. Let $S_{1}, S_{2} \subset \mathbb{N}$. If there exists $a+\langle d\rangle \in S_{A}$ such that $S_{1} \subset a+\langle d\rangle$ and $S_{2} \cap a+\langle d\rangle=\emptyset$, then

$$
\mu_{A}^{*}\left(S_{1} \cup S_{2}\right)=\mu_{A}^{*}\left(S_{1}\right)+\mu_{A}^{*}\left(S_{2}\right) .
$$

Proof. There exists k_{0} such that for $k \geq k_{0}$ we have $d \mid m_{k}$. Therefore for $k \geq k_{0}$

$$
R\left(S_{1} \cup S_{2}, m_{k}\right)=R\left(S_{1}, m_{k}\right)+R\left(S_{2}, m_{k}\right)
$$

According to Theorem 2 we have the assertion. The proof is complete.
According to Corollary 1 and Lemma 3 for the disjoint system H_{1}, H_{2}, $\ldots, H_{k} \in S_{A}$ it holds that

$$
\mu_{A}^{*}\left(H_{1} \cup \cdots \cup H_{k}\right)=\Delta\left(H_{1}\right)+\cdots+\Delta\left(H_{k}\right)
$$

Immediately from these facts we have $S_{A} \subset D_{A}$.
Assume that $A \neq \mathbb{N}$. Then there exists a prime p such that $h(p)<\infty$. Let $h(p)=k$. Consider the arithmetic progression $\left\langle p^{k+1}\right\rangle$. According to Theorem 3 we have that

$$
\mu_{A}^{*}\left(\left\langle p^{k+1}\right\rangle\right)=\frac{1}{p^{k}}>\mu^{*}\left(\left\langle p^{k+1}\right\rangle\right) .
$$

Thus $\left\langle p^{k+1}\right\rangle$ does not belong to D_{A}. It is trivial that $\left\langle p^{k+1}\right\rangle \in D_{\mu}$, therefore $D_{A} \neq D_{\mu}$. In this case the algebra D_{A} does not contain all arithmetic progressions.

Corollary 3. Let $S \subset \mathbb{N}$. Then $\mu_{A}^{*}(S)=1$ if and only if for every $H \in S_{A}$ we have $S \cap H \neq \emptyset$.

In Buck's paper [3] it is proved that

$$
\left\{\mu(S) ; S \in D_{\mu}\right\}=\langle 0,1\rangle
$$

Using an analogous method we prove a more general result that the measure μ_{A} has the Darboux property on the algebra D_{A} :

Theorem 4. Let $S \in D_{A}$. Then for every $\alpha \in\left\langle 0, \mu_{A}(S)\right\rangle$ there exists a set $S_{1} \subset S$ such that $S_{1} \in D_{A}$ and $\mu_{A}\left(S_{1}\right)=\alpha$.

Proof. If $\mu_{A}(S)=\alpha$, the assertion is trivial. Let $\alpha<\mu_{A}(S)$. Then there exists $\varepsilon>0$ such that

$$
\alpha \leq \mu_{A}(S)-\varepsilon .
$$

From the condition $S \in D_{A}$ it follows that there exists a disjoint system of arithmetic progressions $a_{1}+\langle d\rangle, \ldots, a_{k}+\langle d\rangle \in S_{A}$ such that

$$
\bigcup_{i=1}^{k} a_{i}+\langle d\rangle \subset S
$$

and

$$
\begin{equation*}
\frac{k}{d}>\mu_{A}(S)-\varepsilon \geq \alpha \tag{16}
\end{equation*}
$$

Put $d_{0}=d$. Let $\left\{d_{i}\right\}_{i=0}^{\infty}$ be such a sequence of positive integers that $d_{0} \ldots d_{i} \in A$, for $i=1,2, \ldots$. (An example of such sequence is $d_{0}=m_{0}, d_{1}=\frac{m_{1}}{m_{0}}$, $\left.d_{2}=\frac{m_{2}}{m_{1}}, \ldots.\right)$ We can express the number α by Cantor's series

$$
\alpha=\sum_{j=0}^{\infty} \frac{c_{j}}{d_{0} \ldots d_{j}}, \quad 0 \leq c_{j}<d_{j}, \quad j=0,1, \ldots
$$

According to (16) we have $c_{0}<k$. Put

$$
H_{0}=\bigcup_{i=1}^{c_{0}} a_{i}+\langle d\rangle
$$

Then $H_{0} \cap a_{k}+\langle d\rangle=\emptyset$ and $\mu_{A}\left(H_{0}\right)=\frac{c_{0}}{d_{0}}$. Let us denote for $n=1,2, \ldots$

$$
H_{n}=\bigcup_{j=1}^{c_{n}} a_{k}+j d_{0} \ldots d_{n-1}+\left\langle d_{0} \ldots d_{n}\right\rangle .
$$

The union on the right-hand side is disjoint and therefore

$$
\mu_{A}\left(H_{n}\right)=\frac{c_{n}}{d_{0} \ldots d_{n}} .
$$

Assume that for $m<n$ it holds

$$
H_{n} \cap H_{m} \neq \emptyset .
$$

Then there exist numbers $j, j_{1}, h, h_{1} \in \mathbb{N}$, such that $0<j \leq c_{m}, 0<j_{1} \leq c_{n}$ and

$$
j_{1} d_{0} \ldots d_{n-1}+h_{1} d_{0} \ldots d_{n}=j d_{0} \ldots d_{m-1}+h d_{0} \ldots d_{m}
$$

COVERING DENSITIES

Therefore $d_{0} \ldots d_{m} \mid j d_{0} \ldots d_{m-1}$ - a contradiction. It is obvious that for $n>m$

$$
\bigcup_{k=n}^{\infty} H_{n} \subset a_{k}+\left\langle d_{0} \ldots d_{n-1}\right\rangle
$$

Therefore

$$
\lim _{n \rightarrow \infty} \mu_{A}^{*}\left(\bigcup_{k=n}^{\infty} H_{k}\right)=0
$$

According to Theorem 1 we now see that the set

$$
S_{1}=\bigcup_{n=0}^{\infty} H_{n}
$$

belongs to D_{A} and $\mu_{A}\left(S_{1}\right)=\alpha$. It is trivial that $S_{1} \subset S$. The proof is complete.
Corollary 1. We have

$$
\left\{\mu_{A}(S) ; S \in D_{A}\right\}=\langle 0,1\rangle
$$

Corollary 2. We have

$$
\left\{\mu_{A}^{*}(S) ; S \subset G_{M}\right\}=\langle 0,1\rangle
$$

Proof. Let $\alpha \in\langle 0,1\rangle$. Then there exists $S \in D_{A}$ such that $\mu_{A}(S)=\alpha$. Let

$$
S=\left\{a_{1}<a_{2}<\ldots\right\}
$$

Put

$$
H=\left\{a_{n}+m_{a_{n}} ; n=1,2, \ldots\right\}
$$

It is trivial that $H \subset G_{M}$. The sequence $\left\{m_{a_{n}}\right\}$ is complete in A. For every k we have

$$
a_{n}+m_{a_{n}} \equiv a_{n} \quad\left(\bmod m_{a_{k}}\right) ; \quad n \geq k
$$

Therefore

$$
R\left(H, m_{a_{k}}\right)=R\left(S, m_{a_{k}}\right)+O(k) .
$$

This equation according to (9) and (14) implies

$$
\mu_{A}^{*}=\sigma .
$$

The proof is complete.
Denote by S^{0} the system of sets $S \subset \mathbb{N}$, having the asymptotic density zero. Then immediately from Corollary 2 we have

$$
\left\{\mu_{A}^{*}(S) ; S \in S^{0}\right\}=\langle 0,1\rangle
$$

MILAN PASTTÉKA

5. Uniform Distribution

In $1961 \mathrm{I} . \mathrm{N}$ iven in [18], introduced the notion of a sequence uniformly distributed modulo m, where $m \in \mathbb{N}$, in the following way: The sequence of positive integers $\left\{x_{n}\right\}$ is uniformly distributed modulo m if and only if for every $j \in \mathbb{N}$ it holds that

$$
\frac{1}{N} \sum_{\substack{n \leq N \\ x_{n} \equiv j(\bmod m)}} 1 \rightarrow \frac{1}{m} \quad \text { for } \quad N \rightarrow \infty
$$

Let $H \subset \mathbb{N}$. We say that the sequence of positive integers $\left\{x_{n}\right\}$ is uniformly distributed in H if it is uniformly distributed modulo m for every $m \in H$.

The following theorem shows a natural connection between the uniform distribution by A and μ_{A}^{*}.

Theorem 5. Let $S \subset \mathbb{N}$. Then $\mu_{A}^{*}(S)=1$ if and only if S can be arranged in form of a sequence $\left\{x_{n}\right\}$ which is uniformly distributed in A.

For the proof we will use the following lemma:
LEMMA 4. Let $\left\{x_{n}\right\}$ be a sequence of positive integers satisfying the condition

$$
x_{k} \equiv k \quad\left(\bmod m_{k}\right), \quad k=1,2, \ldots
$$

Then $\left\{x_{n}\right\}$ is uniformly distributed in A.
Proof. Let $m \in A$. Then there exists n_{0} such that $m \mid m_{n}$ for $n>n_{0}$. Thus for $n>n_{0}$

$$
x_{n} \equiv n \quad(\bmod m) .
$$

Then for $N \geq n_{0}$ and $j \in \mathbb{N}, 0 \leq j<m$ we have

$$
\begin{aligned}
\frac{1}{N} \sum_{\substack{n \leq N \\
x_{n} \equiv,\{(\bmod m)}} 1 & =\frac{1}{N} \sum_{\substack{n \leq n_{0} \\
x_{n} j j(\bmod m)}} 1+\frac{1}{N} \sum_{\substack{n 0<n \leq N \\
x_{n} \equiv j(\bmod m)}} 1 \\
& =\frac{1}{N} \sum_{\substack{n \leq N \\
n \equiv j(\bmod m)}} 1+O\left(\frac{1}{N}\right) \rightarrow \frac{1}{m} \quad \text { as } \quad N \rightarrow \infty,
\end{aligned}
$$

and the lemma follows.
Proof of Theorem 5. If $S=\left\{x_{1}, x_{2}, \ldots\right\}$ is a uniformly distributed sequence in A, then by virtue of Corollary 3 of Theorem 3 we have $\mu_{A}^{*}(S)=1$.

If $\mu_{A}^{*}(S)=1$, then S has a non-empty intersection with every arithmetic sequence from S_{A}. Therefore for every $n \in \mathbb{N}$ there exists $y_{n} \in S$ such that

$$
y_{n} \equiv n \quad\left(\bmod m_{n}\right)
$$

Then the lemma implies that $\left\{y_{n}\right\}$ is uniformly distributed in A. We can assume that the sequence $\left\{y_{n}\right\}$ is increasing. If the set $S \backslash\left\{y_{n} ; n=1,2, \ldots\right\}$ is finite, then the proof is complete.

Suppose therefore that the set

$$
S \backslash\left\{y_{n} ; n=1,2, \ldots\right\}=\left\{y_{k}^{\prime} ; k=1,2, \ldots\right\}
$$

is infinite. Define

$$
x_{n}=\left\{\begin{array}{ll}
y_{n}, & \text { for } n \neq k^{2}, \\
y_{k^{2}}, & \text { for } n=(2 k)^{2}, \\
y_{k}^{\prime}, & \text { for } n=(2 k+1)^{2},
\end{array} \quad \text { for } n=1,2, \ldots\right.
$$

Clearly $\left\{x_{n} ; n=1,2, \ldots\right\}=S$. Let $j \in \mathbb{N}$ and $m \in A$. Then for $N \rightarrow \infty$

$$
\frac{1}{N} \sum_{\substack{n \leq N \\ x_{n} \equiv j(\bmod m)}} 1=\frac{1}{N} \sum_{\substack{n \leq N \\ y_{n} \equiv j(\bmod m)}} 1+O\left(N^{-\frac{1}{2}}\right) \rightarrow \frac{1}{m} .
$$

Thus the sequence $\left\{x_{n}\right\}$ is uniformly distributed in A. The proof of Theorem 5 is complete.

Corollary. Let $S \subset \mathbb{N}$. Then $\mu^{*}(S)=1$ if and only if S can be arranged in form of a sequence $\left\{x_{n}\right\}$ which is uniformly distributed in \mathbb{N}.

Let a be a positive integer such that $(a, m)=1$ for every $m \in A$. Consider the set

$$
G_{M}^{a}=\left\{a n+m_{n} ; n=1,2, \ldots\right\} .
$$

Then according to the results of the third section G_{M}^{a} can be arranged in a sequence uniformly distributed in A, but not in a sequence which is uniformly distributed in \mathbb{N}. The arithmetic progression $\langle a\rangle$ has also a similarly property.

We shall finish this part by pointing out one more analogy between the uniform distribution by A and the uniform distribution $\bmod 1$.

Let $\left\{x_{n}\right\}$ be a sequence of positive integers. Given $S \in P(\mathbb{N})$ and $k \in \mathbb{N}$ let

$$
Q\left(S,\left\{x_{n}\right\}, k\right)=\sum_{\substack{n \leq k \\ x_{n} \in S}} 1
$$

The concept of the uniform distribution by A gives us a further possibility to characterize the algebra D_{A}. Using a simple estimation directly from definitions we can prove:

THEOREM 6. The sequence $\left\{x_{n}\right\}$ of positive integers is uniformly distributed in A if and only if for every set $S \in D_{A}$

$$
\lim _{k \rightarrow \infty} \frac{Q\left(S,\left\{x_{n}\right\}, k\right)}{k}=\mu_{A}(S)
$$

In the proof of the next theorem the following notion will be used: Let $S \in P(\mathbb{N})$ and $n \in \mathbb{N}$. The set $S^{\prime} \subset S$ will be called a remainder system of the set S modulo n if
(viii) for every $a \in S$ there exists an $a^{\prime} \in S^{\prime}$ such that $a \equiv a^{\prime}(\bmod n)$,
(ix) for every $a^{\prime}, a^{\prime \prime} \in S^{\prime} a^{\prime} \equiv a^{\prime \prime}(\bmod n) \Longrightarrow a^{\prime}=a^{\prime \prime}$.

It is obvious that two remainder systems of the set S modulo n have the same number of elements and that this number is equal to the number of elements of the system of representatives of the set S modulo n.

Theorem 7. Let $S \subset \mathbb{N}$. If for every sequence $\left\{x_{n}\right\}$ uniformly distributed in A we have

$$
\lim _{N \rightarrow \infty} \frac{Q\left(S,\left\{x_{n}\right\}, N\right)}{N}=\mu_{A}^{*}(S)
$$

then $S \in D_{A}$.
Proof. Let $S \notin D_{A}$. Then

$$
\begin{equation*}
1-\mu_{A}^{*}(\mathbb{N} \backslash S)<\mu_{A}^{*}(S) \tag{17}
\end{equation*}
$$

Suppose that the sequence $\left\{B_{n}\right\}$ is complete in A. Suppose that this sequence also satisfies the condition

$$
B_{n} \mid B_{n+1}, \quad n=1,2, \ldots
$$

Let S_{n}^{\prime} be a remainder system of the set S modulo B_{n}, for $n=1,2, \ldots$ Put $S_{1}=S_{1}^{\prime}$ and

$$
S_{n}=S_{n-1}^{\prime} \cup\left\{y \in S_{n}^{\prime} ; \forall x \in S_{n-1}, x \not \equiv y\left(\bmod B_{n}\right)\right\} \quad \text { for } \quad n=2,3, \ldots
$$

In this way an increasing sequence of sets S_{n}

$$
S_{1} \subset S_{2} \subset \cdots \subset S_{n} \subset \cdots
$$

of remainder systems of the set S modulo B_{n} can be constructed.
Similarly, there exists a sequence

$$
\bar{S}_{1} \subset \bar{S}_{2} \subset \cdots \subset \bar{S}_{n} \ldots
$$

such that \bar{S}_{n} is a remainder system of the set $\mathbb{N} \backslash S$ modulo B_{n} for $n=1,2 \ldots$.
Construct the sequence $\left\{C\left(B_{n}\right)\right\}$ of sets as follows: The set $C\left(B_{n}\right)$ is the complete remainder system modulo $B_{n}(n=1,2 \ldots)$ which consists of the elements of \bar{S}_{n} and $B_{n}-R\left(\mathbb{N} \backslash S, B_{n}\right)$ elements of S_{n}.

Clearly

$$
C\left(B_{1}\right) \subset C\left(B_{2}\right) \subset \cdots \subset C\left(B_{n}\right) \subset \ldots
$$

Put $D_{1}=B_{1}$. Let us rearrange the set $C\left(D_{1}\right)$ into a (finite) sequence

$$
C^{\prime}\left(D_{1}\right)=\left\{x_{0}, \ldots, x_{D_{1}-1}\right\}
$$

in such a way that $x_{j} \equiv j\left(\bmod D_{1}\right)$, for $j=0, \ldots, D_{1}-1$ Let

$$
D_{2}=\min \left\{B_{n} ; x_{1}<B_{n}, \ldots, x_{D_{1}-1}<B_{n}\right\} .
$$

Rearrange the set $C\left(D_{2}\right)$ into the (finite) sequence

$$
C^{\prime}\left(D_{2}\right)=\left\{x_{0}, \ldots, x_{D_{1}-1}, x_{D_{1}}, \ldots, x_{D_{2}-1}\right\},
$$

where $x \equiv j\left(\bmod D_{2}\right), D_{1} \leq j<D_{2}$. In this way we can construct a sequence $\left\{D_{n}\right\}$, which is complete in A, and the system of finite sequences

$$
C^{\prime}\left(D_{n}\right)=\left\{x_{0}, \ldots, x_{D_{n-1}-1}, x_{D_{n-1}}, \ldots, x_{D_{n}-1}\right\}
$$

in which $x_{j} \equiv j\left(\bmod D_{n}\right), D_{n-1} \leq j<D_{n}$.
Consider the sequence

$$
\left\{x_{n}\right\}=\bigcup_{n=1}^{\infty} C^{\prime}\left(D_{n}\right),
$$

in which the elements are written in such a way that we begin with elements of the sequence $C^{\prime}\left(D_{1}\right)$, then there follow the remaining elements of the sequence $C^{\prime}\left(D_{2}\right)$, etc.. For $d \in A$ there exists n_{0} such that $d \mid D_{n_{0}}$. Therefore for $j>D_{n_{0}}$ we have

$$
x_{j} \equiv j \quad(\bmod d) .
$$

This implies that the sequence $\left\{x_{n}\right\}$ is uniformly distributed in A.
If $n=1,2, \ldots$, then

$$
Q\left(S,\left\{x_{j}\right\}, D_{n}\right)=\dot{D}_{n}-R\left(\mathbb{N} \backslash S, D_{n}\right) .
$$

Because of (17) and Theorem 2 we have

$$
\lim _{n \rightarrow \infty} \frac{Q\left(S,\left\{x_{j}\right\}, D_{n}\right)}{D_{n}}<\mu_{A}^{*}(S) .
$$

The proof is complete.

MILAN PASTÉKA

6. Special cases of system A

Put for $k=1,2, \ldots$

$$
P_{k}=\left\{n^{k} ; n=1,2, \ldots\right\}
$$

In the paper by $\mathrm{Buck}[3]$ it was proved that $\mu^{*}\left(P_{2}\right)=0$.
Let p be an odd prime. In [3] it was proved that for every $n=1,2, \ldots$

$$
\begin{equation*}
R\left(P_{2} ; p^{n}\right)=\frac{p^{n+1}}{2 p+2}+O(1) \tag{20}
\end{equation*}
$$

Consider the set $A=\left\{1, p, p^{2}, \ldots\right\}$ and the sequence $\left\{m_{n}\right\}$ in the form

$$
m_{n}=p^{n}, \quad n=1,2, \ldots
$$

According to (14) a (20) we have in this case

$$
\mu_{A}^{*}\left(P_{2}\right)=\frac{p}{2 p+2}>0
$$

Thus $Z\left(\mu_{A}^{*}\right)$ is a nontrivial subset of $Z\left(\mu^{*}\right)$.
Let $H \subset \mathbb{N}$. Denote by the symbol $A(H)$ the set which is closed according to divisibility generated by H in the following sense: The set A closed according to divisibility is generated by H if and only if
(x) $H \subset A$, and
(xi) if A_{1} is closed according to divisibility and $H \subset A_{1}$ then $A \subset A_{1}$.

It is easy to see that if $p_{1} \neq p_{2}$ are primes and $H_{1}^{r}=\left\{p_{1}, p_{2}\right\}$, then $A(H)=$ $\left\{1, p_{1}, p_{2}, p_{1} p_{2}\right\}$.

Let us remark that for every set A closed according to divisibility we have $A=A(H)$, where

$$
H=\bigcup_{\substack{p \in A \\ h(p)<\infty}}\left\{p^{h(p)}\right\} \cup \bigcup_{\substack{p \in A \\ h(p)=\infty}}\left(\bigcup_{n=1}^{\infty}\left\{p^{n}\right\}\right), \quad p-\text { prime }
$$

It is also easy to see that if $H=\left\{p_{1}, p_{2}, \ldots\right\}$, where $p_{i}, i=1,2, \ldots$ are primes, then $A(H)$ is the set of all numbers in the form

$$
\prod_{i=1}^{\infty} p_{i}^{\alpha_{i}}
$$

where $\alpha_{i} \in\{0,1\}$ and only for a finite number of i we have $\alpha_{i} \neq 0$.
As a sequence $\left\{m_{n}\right\}$ we can in this case consider the sequence

$$
m_{n}=p_{1} \ldots p_{n}, \quad n=1,2, \ldots
$$

In what follows we shall use the following lemma:

COVERING DENSITIES

LEMMA 5. If $(a . b)=1$, then for $k=1,2, \ldots$ we have

$$
R\left(P_{k}, a b\right)=R\left(P_{k}, a\right) \cdot R\left(P_{k}, b\right)
$$

Proof. Clearly if $c \in P_{k} \bmod a b$ then $c \bmod a \in P_{k} \bmod a, c \bmod b \in$ $P_{k} \bmod b$.

Thus we can define a mapping

$$
\begin{gathered}
F: P_{k} \bmod a \dot{b} \rightarrow\left(P_{k} \bmod a\right) \times\left(P_{k} \bmod b\right) \\
F(c)=(c \bmod a, c \bmod b) .
\end{gathered}
$$

It is sufficient to prove that F is a bijection. From the condition $(a, b)=1$ it follows that F is an injection.

Let $c_{1} \in P_{k} \bmod a, c_{2} \in P_{k} \bmod b$. From the Chinese remainder theorem we have that there exists such a $c \in\{0, \ldots, a b-1\}$ that $c \equiv c_{1}(\bmod a)$ and $c \equiv c_{2}(\bmod b)$. Therefore there exists d_{1}, d_{2} such that $c \equiv d_{1}^{k}(\bmod a)$ a $c \equiv d_{2}^{k}(\bmod b)$. Again according to the Chinese Remainder Theorem we obtain that there exists d such that $d \equiv d_{1}(\bmod a)$ and $d \equiv d_{2}(\bmod b)$. Therefore $c \equiv d^{k}(\bmod a)$ and $c \equiv d^{k}(\bmod b)$. Thus $c \equiv d^{k}(\bmod a b)$, and so $c \in P_{k} \bmod a b$. Clearly, $F(c)=\left(c_{1}, c_{2}\right)$, therefore F is a bijection. The proof is complete.

Using the Dirichlet theorem on primes in the arithmetic progression (see [10]) we have immediately

LEMMA 7. If k is an odd positive integer, then there exists an infinite system of primes p satisfying the condition

$$
\begin{equation*}
(k, p-1)=1 \tag{21}
\end{equation*}
$$

LEMMA 8. For every $k=1,2, \ldots$ there exists an infinite system of primes p satisfying the condition

$$
\begin{equation*}
k \mid p-1 . \tag{22}
\end{equation*}
$$

Theorem 8. Let k be odd and $H=\left\{p_{1}, p_{2}, \ldots\right\}$, where $p_{2}, i=1,2, \ldots$ are primes satisfying (21). Let $A=A(H)$. Then

$$
\mu_{A}^{*}\left(P_{k}\right)=1 .
$$

Proof. Put $m_{j}=p_{1} \cdot \ldots \cdot p_{j}, j=1,2, \ldots$ We show that for every j there holds

$$
R\left(P_{k}, m_{j}\right)=m_{j} .
$$

MILAN PASTÉKA

According to Lemma 6 it is sufficient to prove

$$
\begin{equation*}
R\left(P_{k}, p_{i}\right)=p_{i}, \quad i=1,2, \ldots \tag{23}
\end{equation*}
$$

Assume that for $x, y \in \mathbb{N}$

$$
\begin{equation*}
x^{k} \equiv y^{k} \quad\left(\bmod p_{i}\right) \tag{24}
\end{equation*}
$$

If $x \equiv 0\left(\bmod p_{i}\right)$, then $y \equiv 0\left(\bmod p_{2}\right)$. Let $x \not \equiv 0\left(\bmod p_{2}\right)$ and $y \not \equiv 0$ $\left(\bmod p_{i}\right)$. Let g_{i} be a primitive root modulo p_{i}. Then there exist r, l such that

$$
x \equiv g_{i}^{r} \quad\left(\bmod p_{\imath}\right), \quad y \equiv g_{i}^{l} \quad\left(\bmod p_{\imath}\right)
$$

From (24) we have

$$
g_{2}^{r k} \equiv g_{i}^{l k} \quad\left(\bmod p_{i}\right)
$$

Therefore

$$
(l-r) k \equiv 0 \quad\left(\bmod p_{i}-1\right)
$$

thus according to $(21) l \equiv r\left(\bmod p_{i}-1\right)$, which implies $x \equiv y\left(\bmod p_{i}\right)$. We have proved (23) and so according to Lemma 6 and Theorem 2 the proof is complete.

In contrast to Theorem 8 we prove the following assertion:
Theorem 9. Let $k>1$ and $H=\left\{p_{1}, p_{2}, \ldots\right\}$, where $p_{i}, i=1,2, \ldots$ are primes satisfying (22). Put $A=A(H)$. Then

$$
\mu_{A}^{*}\left(P_{k}\right)=0 .
$$

Proof. Put again $m_{j}=p_{1} \cdot \ldots \cdot p_{j}$. Let g_{i} be a primitive root modulo p_{i}. Denote

$$
h_{j}=g_{j}^{\frac{p_{j}-1}{k}} .
$$

Then $h_{j} \not \equiv 1\left(\bmod p_{j}\right)$, thus 1 and h_{j} are two different roots of the congruence $r^{k} \equiv 1\left(\bmod p_{j}\right)$. Then for every $a \in \mathbb{N},\left(a, p_{j}\right)=1$, we have

$$
a \not \equiv a h_{j} \quad\left(\bmod p_{j}\right),
$$

but

$$
a^{k} \equiv\left(a h_{j}\right)^{k} \quad\left(\bmod p_{j}\right), \quad j=1,2, \ldots
$$

COVERING DENSITIES

From this it follows for $j=1,2, \ldots$ that

$$
R\left(P_{k}, p_{j}\right) \leq \frac{p_{\jmath}-1}{2}+1=\frac{p_{\jmath}+1}{2} .
$$

From Lemma 6 we have

$$
\begin{equation*}
\frac{R\left(P_{k}, m_{j}\right)}{m_{j}} \leq \frac{1}{2^{j}}\left(1+\frac{1}{p_{1}}\right) \ldots\left(1+\frac{1}{p_{j}}\right) . \tag{25}
\end{equation*}
$$

But

$$
\left(1+\frac{1}{p_{1}}\right) \ldots\left(1+\frac{1}{p_{j}}\right) \leq\left(\frac{3}{2}\right)^{j} .
$$

From this according to (14) and (25) we obtain

$$
\mu_{A}^{*}\left(P_{k}\right)=0 .
$$

The proof is complete.
According to (6) we obtain
Corollary. For every $k>1$ we have

$$
\mu^{*}\left(P_{k}\right)=0 .
$$

REFERENCES

[1] BHASKARA RAO, K. P. S.-BHASKARA RaO, M.: Theory of Charges. A Study of Finitely Additive Measures, Academic Press, London, 1983.
[2] BOREL, E.: Sur les probabilités dénombrables et leur applications aritmétiques, Rend. Circ. Mat. Palermo 26 (1909), 247-271.
[3] BUCK, R. C.: The measure theoretic approach to density, Amer. J. Math. 68 (1946), 560-580.
[4] CANTELLI, F. P.: La tendenza ad un limite nel senzo del calcolo della probabilità, Rend. Circ. Mat. Palermo 16 (1916), 191-201.
[5] ČECH, E.: Point Sets, Academia, Praha, 1969.
[6] DIJKSMA, A.-MEIJER, H. G: Note on uniformly distributed sequences of integers, Nieuw Arch. Wisk. 17 (1969), 210-213.
[7] ERDÖS, P.-RÉNYI, A.: On Cantor's series with convergent $\sum \frac{1}{q_{n}}$, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959), 93-109.
[8] ERDÖS, P.-RÉNYI, A.: Some further statistical properties of the digits in Cantor's series, Acta Math. Hungar. 10 (1959), 21-29.

MILAN PASTÉKA

[9] ESTRADA, T.-CANVALL, R.: Series that converge on sets of null density, Proc. Amer. Math. Soc. 97 (1986), 682-686.
[10] HARDY, G. H.-WRIGHT, E. M.: An Introduction to Theory of Numbers. Fourth edition, Clarendon Press, Oxford, 1960.
[11] HINTZMANN, W.: Measure and density of sequences, Amer. Math. Monthly 73 (1966), 133-135.
[12] KINGMAN, J. F. C.-TAYLOR, S. J.: Introduction to Measure \& Probability, Cambridge University Press, Cambridge, 1977.
[13] KUIPERS, L.-NIEDEREITER, H.: Uniform Distribution of Sequences, J. Wiley, New York, 1974.
[14] MAHARAM, D.: Finitely additive measures on the integers, Sankhya 38 (1976), 44-59.
[15] MEIJER, H. G.: On uniform distribution of integers and uniform distribution mod 1, Niew Arch. Wisk. 18 (1970), 271-278.
[16] NAGOTA, J.-I.: Modern General Topology, North-Holland Publ., AmsterdamLondon, 1974.
[17] NEUBRUNN, T.-RIEĊAN, B.: Measure and Integral. (Slovak), Veda, Bratislava, 1981.
[18] NIVEN, I.: Uniform distribution of sequences of integers, Trans. Amer. Math. Soc. 98 (1961), 52-61.
[19] NOVOSELOV, E. V.: Topologičeskaja teorija delimosti celych čisel, Uchen. Zap. Elabuž. Ped. Inst. 8 (1960), 3-23.
[20] NOVOSELOV, E. V.: Ob integrirovanii na odnom bikompaktnom kol'ce i ego priloz̆eniach k teorii čisel, Izv. Vyssh. Uchebn. Zaved. Mat. 22 (1961), 66-79.
[21] OLEJČEK, V.: Darboux property of finitely additive measure on σ-ring, Math. Slovaca 27 (1977), 195-201.
[22] PAŠTÉKA, M.: Convergence of series and submeasures of the set of positive integers, Math. Slovaca 40 (1990), 273-278.
[23] PAŠTÉKA, M.: Some properties of Buck's measure density, Math. Slovaca 42 (1992), 15-32.
[24] RÉNYI, A.: Wahrscheinlichkeitrechnung, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962.
[25] UCHIYAMA, S.: On the uniform distribution of sequences of integers, Proc. Jap. Acad. Ser. A Math. Sci. 32 (1961), 605-609.

Received December 12, 1991
Revised August 4, 1992

Mathematical Institute
Slovak Academy of Sciences
Štefánikova 49
81473 Bratislava
Czecho-Slovakia

[^0]: AMS Subject Classification (1991): Primary 11K38.
 Key words: Covering density, Sequences, Arithmetic progression, Uniform distribution.
 ${ }^{1}$) Research supported by Slovak Academy of Sciences Grant 363.

