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ABSTRACT. Properties of distribution functions of block sequences were in-
vestigated in [STRAUCH, O.—TOTH, J. T.: Distribution functions of ratio se-
quences, Publ. Math. Debrecen 58 (2001), 751-778]. The present paper is a con-
tinuation of the study of relations between the density of the block sequence and
so called dispersion of the block sequence.

Preliminaries

In this part we recall some basic definitions. Denote by N and R* the set
of all positive integers and positive real numbers, respectively. For X C N let
X(n) = card{z € X : z < n}. In the whole paper we will assume that X is
infinite. Denote by R(X) = {£: z € X, y € X} the ratio set of X and
say that a set X is (R)-dense if R(X) is (topologically) dense in the set RT .
Let us notice that the concept of (R)-density was defined and first studied in
papers [S1] and [S2].

Now let X = {z,,z,,...} where x, <z, , are positive integers. The fol-
lowing sequence of finite sequences derived from X

it W T s s s EO- . SR (1)
Ty Ty Ty Ty T3 Ty T,y
is called the block sequence of the sequence X . Thus the block sequence is formed
by blocks X, X,,..., X, ,... where

n?’
v oo (FT oz 3, 1
e R R , n=12,...,
n n n
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is called the nth block. This kind of block sequences were studied in the paper
[S-T2]. For every n € N let

T To — T T, — T, T —T
— 1 2 1 i+1 % n n—1
D(Xn)_max{—, ———}

the maximum distance between two consecutive terms in the nth block. In this
paper we will consider the following characteristics, called the dispersion of the
sequence X

D(X) =liminf D(X ),

n— oo
and its relations to the previously mentioned (R)-density. Notice that the
(R)-density of the set X is equivalent to the density of its block sequence
in the interval (0,1).

At the end of this section, let us mention the concept of a dispersion of a
general sequence of numbers in the interval [0,1]. Let (z, )%, be a sequence in
[0,1]. For every N € N let z; <z, <--- <z, be reordering of its first NV
terms into a nondecreasing sequence and denote

dy = %max{max{xiﬁl—xij :j=12,...N-1},z, , l—xiN}
the dispersion of the finite sequence z,z,,z,,... 2, . Properties of this concept
can be found for example in [N], where it is also proven that

limsup Ndy > ——
N—00 N = log4
holds for every one-to-one infinite sequence z,, € [0,1). Notice that the density

of the whole sequence ()% is equivalent to A}im dy = 0. Also notice that
—>00

the analogy of this property for the concept of dispersion of block sequences
defined in the present paper does not hold.

Results

When calculating the value D(X) the following theorem is often useful.

THEOREM 1. Let

X ={z,z,...}= U(cn,dn)ﬂN

n=1

where z,, <z, andlet ¢, <d, <ec, , —1, forn €N, be positive integers.

Then

max{c,,,—d, :

= 1,2,...
D(X) = liminf i=12%...,n}

n—00 d

(2)

n+1
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DISPERSION OF SEQUENCES OF POSITIVE INTEGERS

Proof. Let n be a fixed positive integer and let ¥ € N be such thLat
Cpp1 <z, <dp . Then

Ty T 7T
D(Xn)zmax{—l,uz 7,:1,2,...n—1}
:L.n zn
T, C,—d, cq—d c —d
_ 1 & 1 S 2 k41 k
—max{——, ,

max{xl, Ciyr—d;: 1= 1,2,...,k}

Zy

D(X) = liminf max{z, ¢ —d; 1 i=1,2,...,n} .

n—00 d

n+1
Now notice that the set of all k¥ € N for which z; = max{z,,¢;,,—d; : i =

i -

1,2,..., k} is either empty or finite or equals to N. Thus in the first two cases
the term z; in the nominator of the fraction on the right side in the last equation

can be omitted. In the third case D(X) = 0 and, consequently, in all cases the
relation (2) holds. a

The following corollary is a straightforward consequence of the previous he-
orem.

COROLLARY 1. Let X be of the same form as in Theorem 1. Suppose 'hat
there erists such a positive integer n, that for all integers n > n,
cn—{—l - dn S cn+2 - dn+1 .
Then
2l T dn
D(X) = lim 1nfd7 . (3)

n—oo n+1

THEOREM 2. If D(X) = 0, then the block sequence (1) is dense in the inte ~val
(0,1).

Proof. Let D(X) =0 and let 0 < a < b < 1 be given numbers. Then

there exists a positive integer n such that D(X,) < b — a. Then, by definition
of D(X,), we have

xX. xT. x

Sl _Zicp—qa for i=1,2,...,n—1 and “L<b-a.
Consequently at least one of the numbers £+, 22 Zn=1 22 helongs to the
interval (a,b), i.e. the block sequence (1) is dense in (0,1). a
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THEOREM 3. If the block sequence (1) is dense in the interval (0,1), then
D(X) < 3.

Proof. Suppose the contrary. Then there exists ¢ > 0 and n;, € N such
that for all n > n, there is D(X,,) > § + ¢. By definition of D(X,,), for every
n > n, there exists an interval I, C (0,1) with length |I, | = D(X,) such
that X, NI, = 0. Obviously (3 —¢, £ +¢) C () I, and therefore only finite

n=ngo
number of terms of the block sequence (1) belong to the interval (1 —¢, 3 +¢).
Consequently, the block sequence (1) is not dense in (3 — ¢, § +¢), which is a
contradiction. O

THEOREM 4. For every a € <0,%> there exists a set X C N such that

D(X) = a and the block sequence (1) is dense in the interval (0,1).

Proof. First let us notice that for &« = 0 the set X = N fulfils the state-
ment of the theorem. So, let & € (0,1) be given. Let (rn)°° be a sequence

dense in the interval (1,00). Let us consider the set X = U {c NN defined

n? n>
as follows.

cg,=1,d =2 and

C

n+1

—1
=[rod,], d = [Tna dn}-kl for m=1,2,3,...

where [z] means the integer part of z. For o € (0, %) we have ﬁ < % and,
as r, > é, also r, > ﬁ, which is equivalent to the inequality r, <
Consequently for every positive integer n we have ¢, ., < d,.; < ¢, ., — 1,
which proofs that the set X is defined correctly.
Now we are going to prove that D(X) = a. As a < 3 and Thyl > é, we
)

have 2 < “+1=1 and, consequently, d, (r, — 1) < é%—(rn+1 —1). Thus we
have for all n € N

Th—1

d (r, —1)

c7l+1 - dn = [ ndn] d (rn - 1) S e (Tn+1 - 1) -1
1

(6]

([ d]H)(Wm_l

=dy (rpp - —1=d, v, —1—dpyy <[rpid, ] —d,
—d

= cn+2 n+1 "

Thus the assumptions of Corollary 1 are fulfilled and so

D(X) = hmlnf["did nfi_(l——2
n—d, +1

n— oo [r" 1d] n%oo
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DISPERSION OF SEQUENCES OF POSITIVE INTEGERS

Now we are going to prove that the block sequence (1) is dense in (0, 1). Clearly.
this is equivalent to density of R(X) in (1,00). Density of R(X) in the interval
(%,00) follows easily from the definition of ¢, :

Cn+1 {T‘ } Cn+1 : {T }
nr. - _n¥- 1
Ty — € R(X) s nlm =0

n n n

and the sequence (r,)%2 ; is dense in (1,00). In the above, {r_d_} means the

fractional part of r,d, . Thus to finish the proof it suffices to prove that R(X)
is dense in (1, é) Let 1<a<b< % Then there is n € N such that

1 1
<b-a and o> ——. (4)

Crt1 " alb—a)

The difference of succeeding terms in the finite sequence

A ={Cn+1 Chprt1 Cpyq +2 dn+1} C R(X)
Cnt1 Cnyr Cnt1 Cn+1

is

< b—a. From the definition of numbers ¢, ., d, ; and (4) it follows

Cnt1
that
d razly
ntl 5 o % (1_L)L> (l—a(b—a))iz 1 _b-a)
cn+1 rndn "n «
Thus +1 p
1<C"L<1+b—a and i—(b—a)<"—+1
Cnt1 @ Cnt1
and, consequently, A, N (a,b) # 0 and also R(X) N (a,b) # 0 which completes
the proof. O

THEOREM 5. For every ¢ € (0,1) there exists a set X C N such that
D(X) = ¢ and the block sequence (1) is not dense in the interval (0,1).

Proof. For ¢ = 1 the set X = {22" 1 n € N} fulfils the statement
of the theorem. So let ¢ € (0,1). Let 1 < a < b. Let us consider the set

X = U/{c,,d,) NN where
n—l1
c,=[a""1+1, d, =][a""'b"] for n=1,2,....

n
In the paper [M-T] it is proved that R(X)N(a,b) = 0, so the block sequence (1)
is not dense in (0,1). Notice that for every ¢ € (0,1) there are 1 < a < b such
that ¢ = Z==. Thus to prove the theorem it suffices to show that D(X) = ba“—bl.

e
Let n, € N be such that 2 < a™*'b"(b — 1)(ab — 1) or, equivalently,

a"tr(b—-1)+1< a2 (b - 1) - 1.

457



JANOS T. TOTH — LADISLAV MISIK — FERDINAND FILIP

So for every n > n, we have

Cpa1 — dn — [an+1bn+1] _ {an+lbn] < gt tipntt — (an+lbn _ 1)
= o (b— 1)+ 1< a2 (h—1)— 1
— an+2bn+2 —1= an+2bn+1 < [an+2bn+2] _ [an+2bn+1]

- cn+2 - dn+1 :
This shows that the assumptions of Corollary 1 are fulfilled and we can calculate

D(X) = lim i (L] = [@] b

n—00 [an+2b"+1] T oab
O
In the rest of the paper we will suppose that
oo
X={z;, <z, <...} = U(cn,dn)ﬂN, where ¢, <d, <c,,, for n€N
n=1
(5)

and we denote

M(X)={neN: ¢, ., —d, =max{c,;; —d,: i=1,2,...,n}}.

In the sequel we will consider only sets X C N such that M(X) is infinite.

Notice that otherwise D(X) = 0 and the results in the sequel are trivial in this

case. Also define
2
q(X) = lim inf _Cmi1
m—o0, meEM(X) dmdm+1

Remark 1. Notice that as the sequence (=== 1—dm

) men(x) 1S @ subsequence

of (max{cH_l—di: 1=1,2,...,n}

T ) , an immediate consequence of Theorem 1 is the
n neEN
following

Cmt1 — dm

D(X) < lim inf

m—o00, mEM(X) dm-I—l

The following theorem provides an upper bound of D(X) by means of ¢(X)
and can be useful when ¢(X) is not very large.

THEOREM 6. For every X C N we have

¢(X)

D(x) < &
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DISPERSION OF SEQUENCES OF POSITIVE INTEGERS

2
Proof. Let us denote g,, = ﬁn’t and z,, = % for all m € M(X).
Then we have

d dmt1  dmdmy1 1

— Gm Zmomdl _ 1

Cn41 — dm . 1 Cmt1 _ Sm+1 L T qm
d dmil dmil 2 :L‘2
m+1 Cm41 (cm+1) m

Using methods of elementary analysis one can easily verify that for fixed g, the

last fraction takes its maximal value 94ﬂ when z, = ql and thus we have

Cmt1 — dm < 9
Clm+1 — 4

Now, by Remark 1, we have

c —d
D(X)<  liminf -7l ™ < Jiminf I _ 2X) .
m—o00, me M (X) dm+1 m—o0,meM(X) 4 4

The following theorem is of the similar kind as the previous one.

THEOREM 7. Let X = U (c,,d,) NN. Suppose that there exists an increas-

ing sequence (k ) _, of posztwe integers such that k, € M(X) holds for all
sufficiently large n € N and

d c
a= lim —F=tl > jim fedl —p (6)
n—oo Ckn+1 n—oo kn

Then
b_1<1.

D(X) <
D(X) < ab — 4

Proof. Again, we will use Remark 1 to calculate

c —-d c —d
D(X)<  liminf L™ <ipinf Al ka
m—o0, mEM(X) dm+1 n—00 ko +1
Ckn+l -1
b - 1 b— 1 1
S lilrggf dkn+1 Chp+1 ab — b2 Z

Chn+1 dk,

The next theorem completes Theorem 7.
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THEOREM 8. Let a € (0,%). Then there exists a set X C N fulfilling condi-
tions of Theorem 7 such that D(X) = «.
Proof. First, let us consider the case @« = 0. Then put X =
o0
U (2""1+n—1,2") N N. One can easily see that in this case M(X) =N and
n=1

the sequence k, = n for every n € N fulfils (6). An easy calculation using
Corollary 1 shows that

c —d
D(X) = liminf "L 2" = Jiminf "~ = 0.
n—00 ntl n—oo 2N
Now, let a € (0, i) Denote t = ﬁ& Then t € (1,2) and also a = % - 2%

Set -
X = [ J(2m "), 2M]) NN,

n=1

As t > 1 there exists n, € N such that for all n > n, we have
2<2MM(t—-1)(2t - 1)
and consequently
Cppq — d, = [27"FT] = [27¢7] <2 — (2™t —1)
=" (t—1)+ 1< 2"t (- 1) -1
— ontlgn+2 _ q _ ontlyntl [2n+1tn+2] _ [2n+ltn+1]

cn+2 - dn+1 .
Thus M(X) is a cofinite set and so we can set k, = n for every n € N. For
such a choice the condition (6) is equivalent to 2 > ¢, which holds, and the set
X fulfils the condition of Theorem 7. To finish the proof, it suffices to show that
D(X) =a.

Again, we can use Corollary 1 and (3)
ongntl _gngm 1

P Cn+1 B dn PR
D(X) =liminf “——" =liminf —— = - —

= — = .
n+1lin+1
n—00 dn 1 n—00 2 t 2

1
2t
g
Theorem 3 states the upper bound for dispersions of (R)-dense sets and
Theorem 4 shows that dispersions of (R)-dense sets can take any positive values
less than or equal to this upper bound. The sets constructed in Theorem 4 can
have very irregular structure. A natural question arises whether the upper bound
in Theorem 3 can be improved when knowing that structure of the (R)-dense
set is regular in some sense. The next two theorems give some answers to this
question. In their proofs we will use the following lemma.
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DISPERSION OF SEQUENCES OF POSITIVE INTEGERS

LEMMA 1. Let X C N be (R)-dense set. Then

n—oo C, = N0

Proof. Suppose the contrary, i.e.

a = limsup dn < lim inf Cnt1 _

n—oo C, n—00
First assume that b < oo. Then there exist ¢ > 0 and n, € N such that
at+e<b-eg,andforall n>ng itis £ <a+e and 7% >b—e. For the
proof that X is not (R)-dense it is sufficient to show that there are only finitely
many fractions g: p,q € X in some open subinterval of (1,00). So suppose that

E € (a+€ b—e) for some p,q € X . If both p and g belong to the same interval.

de ¢,,d,) N, then

d, _ P

— >=>a+tc¢

cn q
and so n < n,. Now let p € (c,,d,) (1N and q € {c,,,d,,) N for some n > m.
Then

C, ¢, _ D
<= < b—e¢
d,_, — d

and so m < n < n,. In the case b = oo the idea of proof is similar to the
previous one and we omit it. O

The following theorem is a consequence of Theorem 7.

THEOREM 9. Let X C N be (R)-dense set and let there exist a proper limit
lim C’é =b. Then
n—oo n

b— 1 1
<7
Proof. First, let us consider the case b = 1. Then a simple use of The-
orem 1 yields D(X) = 0 and the statement of Theorem 9 holds in this case. Now
let b > 1. Then it can be easily seen that M (X) contains almost all positive

integers and, by Lemma 1, the (R)-density of X implies that the assumptions
of Theorem 7 are fulfilled. a

D(X) <

THEOREM 10. Let X C N be (R)-dense and let there exist a proper limit
lim 42 =a. Then

n—oo ¢n
. 1 a—1 1
Q(X)gmln{—a+1,max{ = 7—2}},

)

i.€.
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DY L ifae (155 2),

Proof. First we will prove that D(X) < max{ atd

a2
By Lemma 1 there is a sequence (kn):;l of positive integers such that
d c
a= lim -2 > lim =t —p.

m—00 ~ n—oo
cm kn

If there are infinitely many k,,’s in M(X), Theorem 7 can be applied to get

ab aQ 2 7 2

D(x)<t=lca=l SmaX{a_l i}.
a a

Now suppose that there are only finitely many k,’s in M(X). Let ¢ > 0 and
n, € N be such that ‘Ci’“" > a — ¢ and k, does not belong to M (X) for all

n > n,. Then j <k, —1 holds for such a j that ¢, , —d; = max{c; , —d, :
i=1,2,...,k } < Ch, s for all n > ng. Let us calculate using Theorem 1,
maxic, ,—d;: i=1,2...,n
D(X) = lim inf e —d J
n—roo dn—H
maxic, . ,—d. : 1 =1,2,...,k
< liminf {ein—d, )
- n—ooo dkn+1
o A, Cpi1 1
< liminf Y 5
N Gy 4 nooo dp o 1 dy 4y T (a—eg)
which proves D(X) < max{3', L}, as € > 0 was arbitrary.
(e 0]
Now we are going to prove that D(X) < 'a+_1' So, let X = U (c,.d,) N

n=1
be an (R)-dense set. Notice that the statement is trivial in the case a = 1.

Thus, let a > 1. We will prove the statement by contradiction. So, suppose the
contrary, i.e. D(X) > —=. Let us define the set ¥ C N as follows.

Y:XU(U (dk,ckH)ﬂN),

keEK

where k € K if and only if there exists a positive integer [ < k such that
Cryr — Ay 2 Gy — Ay -
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o

Let us write the set ¥ in the form ¥ = |J (¢, d,) N N. Then the following
n=1
statements hold.

(i) D(X) =Q(Y) = lim inf "dl —d,

r—>00 n+1

(ii) lim infds >q.

T—>00 "l
(iii) llmsupé < Q(y)
T—>00
(iv) The set Y is (R)-dense.
The statement (i) implies that D(Y) > Ejlfl- Let 6 > 0 be any number such

that D(Y )>m+(5

Now, choose an arbitrary € > 0. Then there exists n, € N such that for
every n > n, the inequalities

1 . —d d
+6-e< 2" and a-e<2H
a+1 i1 Crt1

hold. This implies

d,
<1—( +5—5)(a—6)
Cn+1 a+1

=1 4 ¢ —ad+e(a—e+0)
a+1 a+1
a1+ (33 )

< oI ad + ¢ a+1+a+5 .

As both § > 0 and £ > 0 were arbitrary small, the above inequalities imply that
d, 1
lim sup — <

z—00 Cpyq a+1"

The last inequality, together with (iii), gives

! I

limsup —* < lim inf lel ,

z—00 Cn T—>00

and an application of Lemma 1 yields that the set Y is not (R)-dense, which is
a contradiction. O

REMARK 2. Notice that the previous theorem implies that if X C N is
(R) -dense set and if there ezists a proper limit lim ‘—ci—’L =a > 2, then
n—oo -m

D(X) <

.;}.[._.
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REMARK 3. Sometimes it is useful to express subsets of N as composed of
blocks in a slightly different form as it is done in (5), for example

o0
X={z, <z, <...} = U(cn,dn>ﬂN, where ¢, <d, 6 <ec, , for n€N,
n=1

or
oo

X={z;<z,<...}= U(cn,dn)ﬂN, where ¢, <d, <c, , for n€N.
n=1

Notice that also using any of this notations all theorems in the paper hold without
any change.
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