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ON SOME PROPERTIES OF DISPERSION 
OF BLOCK SEQUENCES OF POSITIVE INTEGERS 
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(Communicated by Stanislav Jakubec ) 

ABSTRACT. Properties of distribution functions of block sequences were in­
vestigated in [STRAUCH, O .—TOTH, J. T.: Distribution functions of ratio se­
quences, Publ . Math. Debrecen 58 (2001), 751-778]. The present paper is a con­
tinuation of the study of relations between the density of the block sequence and 
so called dispersion of the block sequence. 

Preliminaries 

In this part we recall some basic definitions. Denote by N and M+ the set 
of all positive integers and positive real numbers, respectively. For X C N let 
X(n) = card{x G X : x < n}. In the whole paper we will assume that X is 
infinite. Denote by R(X) = { | : x G X, y G X} the ratio set of X and 
say that a set X is (R) -dense if R(X) is (topologically) dense in the set M+ . 
Let us notice that the concept of (It)-density was defined and first studied in 
papers [SI] and [S2]. 

Now let X = {x1,x2,...} where xn < x n + 1 are positive integers. The fol­
lowing sequence of finite sequences derived from X 

X rp rp rp rp rp rp rp rv* 

(1) 
^1 ^2 ^2 ^3 ^3 ^3 ^n x n x n 

is called the 6lOck sequence of the sequence X. Thus the block sequence is formed 
by blocks Xx, X 2 , . . . , X n , . . . where 

X „ = | ^ , ^ , . . . , § H , „ = 1,2, 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11B05. 
K e y w o r d s : dispersion, block sequence, asymptotic density, (B)-density. 
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is called the nth block. This kind of block sequences were studied in the paper 
[S-T2]. For every n G N let 

£ ( X J = m a x f e ^ ^ 
I Xn Xn Xn Xn ) 

the maximum distance between two consecutive terms in the nth block. In this 
paper we will consider the following characteristics, called the dispersion of the 
sequence X 

D(X)=\immfD(Xn)1 
n—>-oo 

and its relations to the previously mentioned (it)-density. Notice that the 
(R) -density of the set X is equivalent to the density of its block sequence 
in the interval (0,1). 

At the end of this section, let us mention the concept of a dispersion of a 
general sequence of numbers in the interval [0,1]. Let (xn)n

<L0 be a sequence in 
[0,1]. For every N G N let xi < xi < • • • < xi be reordering of its first Ar 

terms into a nondecreasing sequence and denote 

dN = - m a x { m a x { x b + i - ^ . : j = 1, 2 , . . . / V - l } , x^ l-xiN} 

the dispersion of the finite sequence x0 , #-_, x 2 , . . . xN . Properties of this concept 
can be found for example in [N], where it is also proven that 

1 
limsupJVdдг > 

TV-+00 log4 

holds for every one-to-one infinite sequence xn £ [0,1). Notice that the density 
of the whole sequence (x ) ^ = 0 is equivalent to lim dN = 0. Also notice that 

TV—>-oo 

the analogy of this property for the concept of dispersion of block sequences 
defined in the present paper does not hold. 

R e s u l t s 

When calculating the value D(X) the following theorem is often useful. 

T H E O R E M 1. Let 

X = {Xl,x2,...}= \J(cn,dn)ПN 

n=l 

where xn < xn+1 and let cn < dn < cn+1 — 1. for n G N. be positive integers. 
Then 

, , maxjc-,, — d- : i = 1, 2 , . . . , n\ 
D(X) = lim inf - ^ ± i 1- U. '-L . (2) 

n^oo dn+1 
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P r o o f . Let n be a fixed positive integer and let k G N be such that 

cfc+1 < xn < dk+1. Then 

— x 
i = l , 2 , . . . n - l 

= max • 

{xn xn 

f£l_ C2 ~ d l C3 ~d2 Cfe+1 ~ dk \ 

I Xn Xn X n Xn ) 

max{x l 5 ciJrl-di : i = 1, 2 , . . . , k} 

For xn G (cfc+i>d*+i) the minimal value of D(Xn) will be obtained w en 

{-n, c i + 1 - a ,
i : t = l , 2 , . . . , n } 

* n = dfc+l ' T l l U S 

, , maxi 
D{X) = liminf- d r г + l 

Now notice that the set of all k G N for which x1 = maxja^, ci+1 —di : i = 
1, 2 , . . . , k] is either empty or finite or equals to N. Thus in the first two c ases 
the term x 1 in the nominator of the fraction on the right side in the last equation 
can be omitted. In the third case D(X) = 0 and, consequently, in all cases the 
relation (2) holds. • 

The following corollary is a straightforward consequence of the previous he-
orem. 

COROLLARY 1. Let X be of the same form as in Theorem 1. Suppose 'hat 
there exists such a positive integer n0 that for all integers n > n 0 

C n + 1 ~ dn — C n + 2 ~~ ^ n + 1 ' 

Then 

D(X) = \immfCn+1~dn . (3) 
»"•«> dn+1 

THEOREM 2. If D(X) = 0. then the block sequence (1) is dense in the inte ~val 

(o,D. 
P r o o f . Let D(X) = 0 and let 0 < a < b < 1 be given numbers. Then 

there exists a positive integer n such that D(Xn) < b — a. Then, by definition 
of D(Xn), we have 

J-±- -^- <b-a for i = 1, 2 , . . . , n - 1 and ^- < b - a . 
n n n 

Consequently at least one of the numbers ~̂ -, ^--,.. ., ^=—, ~̂- belongs to the 
interval (a, b), i.e. the block sequence (1) is dense in (0,1}. D 
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THEOREM 3. If the block sequence (1) is dense in the interval (0,1), then 

D(X) < \ • 

P r o o f . Suppose the contrary. Then there exists e > 0 and n0 G N such 
that for all n > n0 there is D(Xn) > \ + e. By definition of D(Xn), for every 
n > n0 there exists an interval In C (0,1) with length \In\ = D(Xn) such 

oo 

that Xn fl In = 0. Obviously (\ — £, \ + e) C f) In and therefore only finite 
n=no 

number of terms of the block sequence (1) belong to the interval (\ — ~, \ + e). 
Consequently, the block sequence (1) is not dense in (\ — e, \ + e), which is a 
contradiction. • 

THEOREM 4. For even/ a G (0, \) there exists a set X C N sitc/i that 
D(X) = a and the block sequence (1) is dense in the interval (0,1). 

P r o o f . First let us notice that for a = 0 the set X = N fulfils the state­
ment of the theorem. So, let a G (0, ^) be given. Let (rn)n

<)
=1 be a sequence 

oo 

dense in the interval (^, oo). Let us consider the set X = IJ (cn , dn)flN defined 
71 = 1 

as follows. 

ca = 1, d̂  = 2 and 

c
n+i = M J . <*n+1 = a dn + 1 for n = 1 ,2 ,3 , . . . 

where [x] means the integer part of x. For a € (0, \) we have y^ - < ^ and, 
a s r

n ^ ^ ^ a l s o r
n ^ ~~i~~ ? which is equivalent to the inequality rn < rn~l . 

Consequently for every positive integer n we have c n + 1 < dn+1 < c n + 2 — 1, 
which proofs that the set X is defined correctly. 

Now we are going to prove that D(X) = a. As a < \ and r n + 1 > ^ , we 

have 2 < r r i+
a

1"1 and, consequently, dn(rn - 1) < ^ ^ ^ " ^ ( r n + 1 - 1). Thus we 
have for all n G N 

<Wi - d„ = M J " ^n < <ln(rn - 1) < d " ( r ;~ 1 } (r„ + 1 - 1) - 1 

< ([ ľ ^«] + 1 )( Г «+i- 1 )- 1 

= d n + i ( г n + 1 - 1) - 1 = dn+1rn+1 - 1 - d n + 1 < [rn+1dn+1] - dn+1 

~~ C J Z + 2 ' t n + l 

Thus the assumptions of Corollary 1 are fulfilled and so 

D(X) = lim inf ~"ndr- ~ dn = lim inf ^f" ~ ^ = a . 
»-~ [ ^ d j + l ™ ^ ^ n + l 
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Now we are going to prove that the block sequence (1) is dense in (0,1). Clearly, 
this is equivalent to density of R(X) in (1, oo). Density of R(X) in the interval 
(^, oo) follows easily from the definition of c n + 1 : 

% ± - = r - - % - - - , %±-ei?(X), lim i^M=0 
dn dn dn n^°° dn 

and the sequence (rn)n°=1 is dense in ( ^ , o o ) . In the above, {rndn} means the 
fractional part of rndn. Thus to finish the proof it suffices to prove that R(X) 
is dense in (l, - ) . Let 1 < a < b < - . Then there is n G N such that 

V ' a / a 

<b- a and r > —- . (4) 
c n + 1 a(b-a) 

The difference of succeeding terms in the finite sequence 

A - / _ _ _ + ! Cn+1 + 1 Cn+1 + 2 __±l\ r- r>rv\ 
n~ c ' ~ c ' ~ c ' " * ' c I CH^X) 

K c n + l c n + l c n + l c n + l J 

is —— < b — a. From the definition of numbers n,, , GL_, and (4) it follows 
cn_)_i /i-|-i J n-\-i v / 

that 

— > ̂ 4 - = Ѓ1 - —) Å > (l-a(ò-a))- = - - (ò-a). „_i ~ r„eĽ V r„ / a v у у a a v у 

"n+l 

Thus 

1 < C r a + 1 + 1 < 1 + 6 - a and 1 _ (ft _ a ) < _ _ _ . 
Cn+1 « C„ + 1 

and, consequently, __n fl (a, b) 7- 0 and also i?(X) fl (a, 6) 7- 0 which completes 
the proof. • 

THEOREM 5. For every c G (0,1) there exists a set X C N sncft £tW 
D(X) — c and the block sequence (1) is not dense in the interval (0,1) . 

P r o o f . For c = 1 the set X = {22n : n e N} fulfils the statement 
of the theorem. So let c G (0,1). Let 1 < a < b. Let us consider the set 

OO 

X = U (cn, dn) n N where 

cn = [anbn] + 1, dn = [an + 16n] for n = l , 2 , . . . . 

In the paper [M-T] it is proved that R{X)C\{a,b) — 0, so the block sequence (1) 
is not dense in (0,1). Notice that for every c € (0,1) there are 1 < a < b such 
that c = ^ ^ . Thus to prove the theorem it suffices to show that D{X) = ^r}. 
Let n0 e N be such that 2 < an + 16"(6 — l)(a6 — 1) or, equivalently, 

an+1bn{b - 1) + 1 < a n + 2 6 n + 1 (6 - 1) - 1. 
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So for every n > n0 we have 

c n + 1 -dn= [ a n + 1 b n + 1 ] - [an + 1bn] < a n + 1 b n + 1 - ( a n + 1 b n - l) 

= a n + 1 b n (b - 1) + 1 < a n + 2 b n + 1 (b - 1) - 1 

= a n + 2 b n + 2 - 1 - a n + 2 b n + 1 < [a n + 2 b n + 2 ] - [ a n + 2 b n + 1 ] 

~ Cn+2 ~ ^n+1 * 

This shows that the assumptions of Corollary 1 are fulfilled and we can calculate 

[a n + 1 b n + 1 ] - [an + 1bn] b-1 
D(X) = lim inf -- = — L L = _ ^ . 

~" n-̂ oo [an + 2bn + 1 ] ab 

D 

In the rest of the paper we will suppose that 

oo 

X = {x1 < x2 < ... } = ( J (cn, dn) n N, where cn < dn < cn+1 for n e N 
n=l 

(5) 
and we denote 

M(X) = {n € N : c n + 1 - dn = max{c-+1 - d• : i = 1, 2 , . . . , n}} . 

In the sequel we will consider only sets A C N such that M(X) is infinite. 
Notice that otherwise D(X) = 0 and the results in the sequel are trivial in this 
case. Also define 

c2 

q(X)= lim inf ^ + 1 . 
m->oo,meM(I) ^ m ^ m + l 

Remark 1. Notice that as the sequence (Cmrf"1~1
m)mEM(x) is a subsequence 

of ( max^Ci+1~ j '"
 l~ ' '"',n^ J , an immediate consequence of Theorem 1 is the 

following 

, D ( A ) < lim inf ° m + 1 ~ ^ m . 
m^oo,mGM(I) ^ra+1 

The following theorem provides an upper bound of D(X) by means of g(A") 
and can be useful when q(X) is not very large. 

THEOREM 6. For every X C N we have 

D(X) < & . — - 4 
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2 

P r o o f . Let us denote qm = d
Cm

d
+1 and xm = £=--- for all m € M(X). 

-''*• " m W m - f l " t <-m_|_i 
Then we have 

dm dm + l dm dm +1 I 
Cm+1 ~~ ̂ m Crn + 1 _ C™ + 1 C m + 1 _ XTYl ~~ """" 

am+l (dm + i y x±, 
Cm + 1 V c m + i1 ^ 

easily verify that for fixed qm the 
9 i , i . i 

Using methods of elementary analysis one can easily verify that for fixed qm 

last fraction takes its maximal value -*"• when xm = •£- and thus we have 
^ "l Hm 

Cто+1 "та <• _ _ 

d m + l _ 4 

Now, by Remark 1, we have 

D(X)< liminf C " H - i ~ d ~ < Hminf %^ = ^ 
m-+oo,mEM(X) " m + i m->oo,meM(I) 4 4 

D 

one. The following theorem is of the similar kind as the previous 

oo 
THEOREM 7. Let X = \J (cn,dn) n N. Suppose that there exists an increas-

7 1 = 1 

mg sequence (kn)n=1 of positive integers such that kn G M(X) holds for all 
sufficiently large n G N ana7 

a - i i m _-__! > Hm % ± i - b. (6) 
n->oo c^ + 1 n-)-oo a^ 

TAen 

P r o o f . Again, we will use Remark 1 to calculate 

D(X) < lim inf Cm\x ~ d m < lim inf °k^ ~ ***" 
m-too.meMfX) C?m + 1 n->oo G^ + 1 

< l i m i n f ^ ' 1 = h - ^ < b - ^ < ) . 
~ n->00 Qfcn+l Cfcn+1 ab — b2 ~ 4 

Cfcn + i dkn 

The next theorem completes Theorem 7. 

D 
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THEOREM 8. Let a G ( 0 , | ) . Then there exists a set X C N fulfilling condi­

tions of Theorem 7 such that D(X) = a. 

P r o o f . First, let us consider the case a = 0. Then put X = 
CO 

| J ( 2 n ~ 1 + n - l , 2 n ) n N. One can easily see that in this case M(X) = N and 
n = l 

the sequence kn = n for every n G N fulfils (6). An easy calculation using 
Corollary 1 shows that 

D(X) = lim inf °n+1 ~ d n = lim inf - ^ - = 0 . 
n—>-oo d • i n—>-oo 2n+ 

n + 1 

Now, let a G (0, \). Denote t = 73-^ • Then t G (1, 2) and also a = \ - ±. 
Set 

x = |J([2n-4n],[2nr])nN. 
n = l 

N such that for all n > 

2<2ntn(t-l)(2t-l) 

n = l 

As t > 1 there exists n 0 G N such that for all n > n0 we have 

and consequently 

Cn+1 - dn = [ 2 n t n + 1 ] " [2 n t n ] < 2ntn+1 - (2ntn - 1) 

= 2ntn(t - 1) + 1 < 2n+1tn+1(t - 1) - 1 
r)n+lj .n+2 -j ^ n + l ^ n + l ^ r9n+lj .n+2" | r ^ n + l j - n + l l 

= C n + 2 — ^ n + 1 • 

Thus M(X) is a cofinite set and so we can set kn = n for every n G N. For 
such a choice the condition (6) is equivalent to 2 > t, which holds, and the set 
X fulfils the condition of Theorem 7. To finish the proof, it suffices to show that 
D(X) = a. 

Again, we can use Corollary 1 and (3) 

r — d o n / n + l _ o n / n i i 
D(X) = lim inf " + 1 " = liminf 2 t =\ - \- = a , 

dn+l rг^oo 2n+ltn+l 2 2t 

D 

Theorem 3 states the upper bound for dispersions of (It)-dense sets and 
Theorem 4 shows that dispersions of (it) -dense sets can take any positive values 
less than or equal to this upper bound. The sets constructed in Theorem 4 can 
have very irregular structure. A natural question arises whether the upper bound 
in Theorem 3 can be improved when knowing that structure of the (it) -dense 
set is regular in some sense. The next two theorems give some answers to this 
question. In their proofs we will use the following lemma. 
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L E M M A 1. Let X c N be (R)-dense set. Then 

d c 
lim sup — > lim inf -^±-

n—>-oo C 

P r o o f . Suppose the contrary, i.e. 

a = l i m s u p - ^ < l i m i n f ^ - = b. 
n->oo Cn n^oo dn 

First assume that b < oo. Then there exist e > 0 and n0 G N such that 
a + e < b - e, and for all n > nn it is 71- < a + e and -^- > b - e. For the 
proof that X is not (R) -dense it is sufficient to show that there are only finitely 
many fractions R : p, q G X in some open subinterval of (1, 00). So suppose that 
- G (a+£, 6—e) for some p, q G X . If both p and q belong to the same interval. 
say ( cnA>nN, then 

d„ V 
-*->- > a + £ 
Cn ° 

and so n < n0. Now let p G ( c n , d n ) p | N and q G ( c m , dm) f]N for some n > m. 
Then 

< -^ <- <b-e 
dn-l dm ° 

and so m < n < n0. In the case b = 00 the idea of proof is similar to the 
previous one and we omit it. D 

The following theorem is a consequence of Theorem 7. 

THEOREM 9. Let X C N be (R) -dense set and let there exist a proper limit 
lim --5-t-- =b. Then 

P r o o f . First, let us consider the case 6 = 1 . Then a simple use of The­
orem 1 yields D(X) = 0 and the statement of Theorem 9 holds in this case. Now 
let 6 > 1. Then it can be easily seen that M(X) contains almost all positive 
integers and, by Lemma 1, the (R) -density of X implies that the assumptions 
of Theorem 7 are fulfilled. D 

THEOREM 10. Let X C N be (R) -dense and let there exist a proper limit 
lim -"-«- = a. Then 

n—>oo C n 

£^min{d^'max{V'i}}' 
I.Є. 
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'-±- líae{i^), 
-V i / a e ( ^ , 2 ) , 

k - ^ - i / o G (2, oo). 

=PjД) < < 

P r o o f . First we will prove that D(X) < m a x { ^ , -^ } . 

By Lemma 1 there is a sequence {kn) 1 of positive integers such that 

a= lim -2-. > lim % ± i = b . 
m—>oo C n—>-oo d, 

rn kn 

If there are infinitely many kn's in M(X), Theorem 7 can be applied to get 

T\( v\ ^ b — 1 ^ a — 1 ^ \ a — 1 1 1 
J5(A) < — 7 — < — o — < m a x < — - 5 — ,-^f-
— K J - a b ~ a 2 ~ [ a 2 a2 J 

Now suppose that there are only finitely many fcn's in M(X). Let e > 0 and 

n 0 G N be such that -^- > a - e and kn does not belong to M(X) for all 

n > n0. Then j < fcn — 1 holds for such a j that c + 1 — d • = max{c i + 1 — di : 

2 = 1,2,..., kn} < ck , for all n > n0. Let us calculate, using Theorem 1, 

, , max|c-,-,—d-: i = l , 2 , . . . , n ) 
D(X) = lim inf ±-*±± l- — --------

n^oo d n + 1 

. f max{c- , - d - : i = 1, 2 , . . . , fcn} 
< lim mi 

n->oo d 'fen+l 

< l i m i n f - ^ - = l i m i n f ^ - — Һ L - % + 1 . < l 

»-•«> dkn+1 n->oo dkn ckn+1 dkn+1 (a - e)2 ' 

which proves D(X) < m a x { ^ , -^} , as £ > 0 was arbitrary. 
CO 

Now we are going to prove that D(X) < ^j-j-. So, let X = [j (cn,dn) D N 
n=l 

be an (it)-dense set. Notice that the statement is trivial in the case a = 1. 
Thus, let a > 1. We will prove the statement by contradiction. So, suppose the 
contrary, i.e. D(X) > ^ - - . Let us define the set F c N a s follows. 

Y = Xü([j(dk,ck+1)nN) 
\ ҺCLU ' ^k£K 

where k £ K if and only if there exists a positive integer I < k such that 

c í + l "'I — Cfc+1 "-k • 
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oo 

Let us write the set Y in the form Y = (J ( c n > ° 0 n N. Then the following 
n=l 

statements hold. 

(i) D(X) = D(Y) = liminf ^ t 1 " ^ . 
X—>"O0 d n + l 

(ii) liminf 4- > a. 
.r —>-oo Cn 

(iii) lim sup ^ < ^ y . 
x-+oo n — 

(iv) The set Y is (R) -dense. 

The statement (i) implies that D(Y) > ^j-j-. Let 5 > 0 be any number such 

that D(Y) > -^ + 6. 

Now, choose an arbitrary e > 0. Then there exists n 0 G N such that for 
every n > n0 the inequalities 

1 

o + l 
+ s-- Є < 

< + i - ďn 

d'n+i 
and a - є < 

ďn+1 

Cn+1 

hold. This implies 

ďn 

n 
Cn+1 

< 1- V a + 1 - є) (a ~ e) 

1 + є -
_L 1 ' n _L 1 

- aő + є(a є + ő) 

< —f-r - a5 + £ f — T T + a + ^) . 
a + 1 Va + 1 ) 

As both o7 > 0 and e > 0 were arbitrary small, the above inequalities imply that 

< 1 
hm sup f < . 

x—>-oo Cn+1 a -f- 1 

The last inequality, together with (iii), gives 

d' c' 
lim sup -f < lim inf - ^ - , 

x-+oo Cn .r—)-oo a^ 

and an application of Lemma 1 yields that the set Y is not (it)-dense, which is 
a contradiction. • 

REMARK 2. Notice that the previous theorem implies that if X C N is 
(It) -dense set and if there exists a proper limit lim — = a > 2 . then 

D(X) < 4 

П-+OO 

1 
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REMARK 3. Sometimes it is useful to express subsets of N as composed of 
blocks in a slightly different form as it is done in (5). for example 

oo 

X = {x,<x2 <...}= [j (cn, dn) n N, where cn < dn < c n + 1 / o r n G N , 
ra=l 

or 
oo 

X = {x,< x2 <...}= \J <cn, dn) n N, where cn < dn < c n + 1 for neN. 
n=l 

Notice that also using any of this notations all theorems in the paper hold without 
any change. 
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