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ON ISOMETRIES IN PARTIALLY 

ORDERED GROUPS 

MILAN JASEM 

(Communicated by Tibor Katrindk) 

A B S T R A C T . In this note congruences in partially ordered groups are s tudied. 
A necessary and sufficient condition for any congruence in a Riesz group and a 
distributive multilattice group to be extendable to an isometry is given. Further, 
it is shown that all congruences in an abelian lattice ordered group G can be 
extended to isometries if and only if G is strongly projectable. 

Congruences and isometries in an abelian lattice ordered group (/-group) 
have been introduced and investigated by S w a m y [18], [19]. Isometries in 
non-abelian /-groups were studied by J a k u b i k [7], [8] and H o l l a n d [6]. 
R a c h u n e k [17] generalized the notion of the isometry for any partially or
dered group (po-group). Isometries in Riesz groups and multilattice groups were 
investigated in [10], [11], [12], [13], [14], [17]. In [16] P o w e l l studied conditions 
under which congruences in abelian /-groups can be extended to isometries. 

In this note we study congruences in partially ordered groups. We give a 
necessary and sufficient condition for any congruence in a Riesz group and a 
distributive multilattice group to be extended to an isometry. Further, it is 
proved that if each congruence in an abelian weak polar group G can be extended 
to an isometry in G, then G is strongly projectable (for definitions see below). 
It is also shown that all congruences in an abelian /-group G can be extended 
to isometries if and only if G is strongly projectable. These results correct some 
of P o w e 1 's results on congruences in abelian /-groups from [16]. 

First we recall some notions and notations used in the paper. 

Let G be a po-group. The group operation will be written additively (though 
it is not assumed that the group is abelian). If 5 C G, we denote 
S+ = {x e 5 , x ;> 0 } , 5 " = {x e 5 , x ^ 0 } . For a l 7 . . . , a n G G, we 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06F15. 
K e y w o r d s : Congruence, Isometry, Polar, Riesz group, Strongly projectable Riesz group, 

Strongly projectable lattice ordered group. 
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denote by U(ai,..., an) and _ ( a i , . . . , an) the set of all upper bounds and the 
set of all lower bounds of the set { a i , . . . , a n } in G, respectively. If for a, b G G 
there exists the least upper bound (greatest lower bound) of the set {a, 6} in 
G, then it will be denoted by a V b ( a A 6). For x G G, |x| = U(x, —x). In 
the case, when the considered po-group is an /-group, |x| = x V (—x) for each 
element x of the considered /-group. If G = P x Q is a direct decomposition 
of G, then for x G G we denote by xp and XQ the components of x in the 
direct factors P and Q, respectively. 

A Riesz group is any po -group H which is directed and satisfies the Riesz 
interpolation property, i.e., for each a», bj G H ( i , j = 1,2) such that a; _ 6j 
( i , j = 1,2) there exists c e H such that a; _ c ^ 6j ( i , j = 1,2). See [3] or 
[5]. 

A partially ordered set P is a multilattice if for each pair of elements a, 6 G P, 
every upper bound of the set {a, 6} in P is over a minimal upper bound of the 
set {a, 6} , and dually. A directed po-group H is said to be a multilattice group 
if it is a multilattice under _ . If x and y are elements of a multilattice group 
H, then we denote by x Vm V the set of all minimal elements of the set U(x, y) 
in H. The meaning of x / \ m y will be analogous. A multilattice group H is 
said to be distributive if for o, 6, c G ff the relations (a \ / m 6) fl (a Vm c) ^ 0, 
( a Am 6 ) n ( a A m

c ) ^ ^ together imply 6 = c. See [1], [15]. 

Note that every /-group is a Riesz group and a distributive multilattice group. 
But a Riesz group need not be a multilattice group and conversely, a multilattice 
group need not be a Riesz group. 

If S is a subset of a po -group G, then a mapping / : S —> G is called a 
congruence on S if |x — y\ = | / (x ) — / ( y ) | for each x, y G 5 . If 0 G S and 
/ (0) = 0, then a congruence / on S is said to be a 0-congruence. A congruence 
(0-congruence) / on S is called an isometry (0-isometry) if S = G and / is 
a bijection. 

R e m a r k . S w a m y [18] defined an isometry in an abelian /-group C as 
a surjection f:C^>C such that 

k - 2/1 = 1/0*0 - /(y)l for each *> y e c • (!) 

It is obvious that in a po-group C any mapping f:C-+C which satisfies (1) is 
an injection. The fact that in a representable /-group C (and so in any abelian 
/-group) any mapping f:C—*C satisfying (1) is a surjection is not obvious and 
was proved by J a k u b f k [9]. This Jakubik's result was extended to isolated 
Riesz groups and distributive multilattice groups (and hence to /-groups) in [13], 
[14], It is clear that in a po-group C any mapping f': C —> C which satisfies 
(1) need not be a surjection. 
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Let G be an abelian /-group and L a sublattice of G containing 0 . For a 
congruence f:L-+G let Tf: L-> G be defined by Tf(x) = f(x) - / ( 0 ) . Let 
A = {Tf(x) V 0, x G L+} , B = {-Tf(x) V 0, x G L+} . Under this notation 
P o w e l l proves the following proposition in [16]. 

PROPOSITION 5. A congruence f:L—>G can be extended to an isometry 
f:G-*G if and only if G = A x B, where AC. A and B C B . 

The following example shows that Proposition 5 of P o w e l l [16] on con
gruences in abelian /-groups is not correct. 

E x a m p l e . It is well known that the set C of all continuous functions 
on the closed interval [0,1] is an abelian /-group under pointwise addition and 
order. As was shown in [7] (see also [16]), for every 0-isometry / in an /-group 
G there exists a uniquely determined direct decomposition G = P x Q such 
that f(x) = xP — xQ for each x G G . Since C has no nontrivial direct factors, 
there exist only two 0-isometries f\ and /2 in C and these are of the form 
fi(x) = x or f2(x) = —x for all x G C. Let a(x) = sin27nr, b(x) = — \a(x)\ 
for each x G [0,1]. Let L = {0, 6} (0 is the neutral element of C). So L is a 
sublattice of C containing 0 . Let g(b) = a, g(0) = 0. Then g is a 0-congruence 
on L. By Proposition 5 [16], g can be extended to an isometry g on C. But 
9 7̂  / i > ^ 7 - / 2 , a contradiction. 

Proposition 5 will not be correct even in the case that we take the set L 
instead of the set L+ in the definitions of the sets A and B. Namely, if we 
take L = {0, a, a V 0, a A 0} and define h(z) = —z for each z G L, then h is 
a 0-congruence on L and clearly can be extended to an isometry on C. But by 
Proposition 5 [16], h cannot be extended to an isometry on C . 

The following three theorems correct Proposition 5 [16]. Moreover, instead 
of the assumption of 5 [16] that G is a lattice ordered group we apply more 
general assumptions. 

1. THEOREM. Let G be a po-group, S C G and let f be a congruence on 
S. Let there exist a direct decomposition G = P x Q of G with Q abelian such 
that A = {x + f(x) + aQ, x G 5} C P, B = {x - aP - f(x), x G 5} C Q 
for some a G G. Then the mapping f defined by f(z) = zP — zQ — a for each 
z G G is an isometry on G and an extension of f. 

P r o o f . Let g(z) = f(z) +a for each z G S. Then g is a congruence 
on S. Let g(z) = zP — zQ for each z G G. By Theorem 1.22 [13], g is a 
0-isometry on G. Then / is an isometry on G, too. Let x G S. Since x + f(x) + 
aQ = xP +xQ + f(x)P + f(x)Q +aQ = xP + f(x)P + xQ + f(x)Q + aQ G P, 
x-aP-f(x) = xP+xQ-aP—f(x)Q-f(x)P = xP-aP-f(x)P+xQ-f(x)Q G Q , 
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we obtain xQ + f(x)Q + aQ = 0, xP-aP- f(x)P = 0. Thus f(x)P =xP-aP, 

f(x)Q = ~xQ~aQ • Therefore f(x) = f(x)P+f(x)Q = (xP-aP) + (-xQ-aQ) = 
xP — xQ — (aP + aQ) = f(x). Hence / is an extension of / . 

2. THEOREM. Let G be a Riesz group, S C G and let f be a congruence 
on S. Let f be extendable to an isometry f on G. Then there exists a direct 
decomposition G = P x Q of G with Q abelian such that 

A = {x + f(x) + aQ, x£S}CP, B = {x-aP-f(x), x G S} C Q 

for some a G G. 

P r o o f . Define g(x) = f(x) — f(0) for each x G G. Then g is a 0-isometry 
on G. By Theorem 3.20 [13], there exists a direct decomposition G = P x Q 

with Q abelian such that g(x) = xP — xQ for each x G G. Let x G S\ 
a = - / ( 0 ) . Then x + f(x) + aQ = x + J(x) - J(0)Q =x + g(x) + / (0) - J(0)Q = 
xP+xQ+xP-xQ + f(0)P + f(0)Q-f(0)Q = 2xP + f(0)P G P , x-aP-f(x) = 

x-aP-f(x) = x-aP-f(0)-g(x) = xP+xQ+f(0)P-f(0)Q-f(0)P+xQ-xP = 

2xQ-J(0)Q G Q. Thus ACP, BCQ. 

3 . THEOREM. Let G be a distributive multilattice group, S C G and let f be 
a congruence on S. Let f be extendable to an isometry f on G. Then there 
exists a direct decomposition G = P x Q of G with Q abelian such that 

A= {x + f(x) + aQ, xeS}CP, B= {x-aP-f(x), x G S} C Q 

for some a G G . 

The proof of this theorem is the same as the proof of Theorem 2, only in
stead of Theorem 3.20 [13] it is needed to use Theorem 17 [12], under which to 
every 0-isometry g in a distributive multilattice group G there exists a direct 
decomposition G = P x Q of G with Q abelian such that g(x) = xP — xQ for 
each x G G. 

Let G be a po -group, S C G , O E S and let / be a congruence on S. If 
we put g(x) = f(x) — f(0) for each x E - S , then g is a 0-congruence on S. 
It is clear that if g can be extended to an isometry, then / can be extended 
to an isometry, too. Thus it suffices to examine only 0-congruences on subsets 
containing 0. 

From the proof of Theorem 2 it follows that if 0 G S and / is a 0-congruence 
on S, then a = 0 in this theorem. Thus from 1 and 2 we obtain: 
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4. THEOREM. Let G be a Riesz group, S C G, 0 G S. Let f be a 0-con-
gruence on S and let A = {x + f(x), x G S} , B = {x — f(x), x G S} . 

Then 0-congruence f can be extended to an isometry f on G if and only if 
there exists a direct decomposition G = P x Q of G with Q abelian such that 
ACP, BCQ. 

Analogously we obtain: 

5. THEOREM. Let G be a distributive multilattice group, S C G, 0 G S. Let 
f be a O-congruence on S, A = {x + f(x), x G S} , B = {x — f(x), x G 5 } . 

Then O-congruence f can be extended to an isometry f on G if and only if 
there exists a direct decomposition G = PxQ with Q abelian such that ACP, 
BCQ. 

6. THEOREM. Let G be a Riesz group, S C G, 0 G S and let f be a 
O-congruence on S. Let x G 5 + . Then there exist x\, x2 G G + such that 
x = x\ + x2, f(x) = x\ — X2, x\ + X2 = X2 + X\. Moreover, x\ V x2 = x, 
x\ Ax 2 = 0, x\ = / ( x ) V 0 , x2 = (~f(x)) VO. 

P r o o f . Since x _ 0, from the relation U(x) = \x\ = \f(x)\ = U(f(x), — f(x)) 

we get x = (—f(x)) V f(x). Since G is a Riesz group, from the relations 
x G U(0, —f(x)) , —f(x) + x e. U(0, —f(x)) we obtain that there exists x2 G G 

such that 0 _ x2 _ x, —f(x) _ x2 _ ~f(x) + x • Let X\ = x — X2. Then 
x\ G U(0, f(x)) . Thus x = x\+x2, where x\ G U(0, f(x)) , x2 G U(0, -f(x)) . 

Let z G U(0, f(x)) , t G U(0, -f(x)) . Then z + x2) X\+t G U(f(x), -f(x)) = 

\f(x)\ = \x\ = U(x\+x2). This implies z = x\jt = X2. Therefore x\ = f(x)VO, 
X2 = (~f(x)) VO. Clearly x\ Vx2 = x and hence x\ Ax2 = 0. Then it is easy to 
verify that x2 = x\ — f(x) = —f(x) + x\ . From this we obtain f(x) = x\ — X2 , 
X\+ X2 = X2 + X\ . 

Polars in Riesz group were introduced and investigated by G 1 a s s in [4] 
and we shall make use of the theory developed there. 

Let H be a Riesz group. If X C H, then (X) will denote the subgroup of 
H generated by X. 

For h G H+, let h± = {x e H+ , xAh = 0}, p0(h) = (h^). 

For h G H, the set p(h) = \J po(g) is called the polar of h in H. 
geU(h,0,-h) 

Thus p(h) is a directed convex subgroup of H for each h G H. If H is an 
/-group, then the definition given for /-groups coincides with the one given here. 

For S C / f , the polar of S is defined to be the set p (S) = ( ( f] p (s) j ) . 
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Thus, polars are directed convex subgroups of H and p(h) = p({h}) for 
each h G H. A definition of higher polars is given using induction on the positive 
integer n. 

F o r S C B , let p^S) =p(S) and pn+1(S) = p (pn(S)) . 

A subset S of H is said to be weakly positive if for all 5 G S there exist 
s i , «2 £ S"1' U 5 ~ such that s\ _ s _ 52 . 

A Riesz group H is said to be a iveaA; po/ar group if p3(S) = p(S) for all 
subsets S of G. 

Note that every Z-group is a weak polar group. 

A Riesz group H is said to be strongly protectable if to every polar A in H 
there exists a directed convex subgroup B of H such that H = Ax B. 

We shall need the following properties of polars in a Riesz group H 
( G l a s s [4]). 

(A) If S and T are subsets of H and S C T, then p(T)Cp (S). 
(B) For every subset S of H, S+ U S~ C p2(5). If 5 is a weakly positive 

set, then S Cp2(S). 
(C) For each subset S o f f f , p(S) Hp2(S) = {0} . 
(D) If H = P x Q is a direct decomposition of H, then p(P) = Q , 

7. THEOREM. Let G be an abelian weak polar group. Let any 0-congruence 
on a subset S of G be extendable to an isometry on G. Then G is strongly 
projectable. 

P r o o f . Let H = p(S) +p2(S). By (C), p(S) nP
2(S) = {0} . Then from 

Proposition 5.8 [2] it follows that H = p(S) x p2(5) is a direct decomposition 
of H. Let f(x + y) = x - y for each x E p(S), y e p2(S). By 1.22 [13], 
/ is a 0-isometry on H. Since / can be extended to an 0-isometry / on G, 
from 3.20 [13] we have that there exists a direct decomposition G = P x Q 
of G such that f(x) = xp — XQ for each x G G. Let y , z e G+ , f(y) = y, 
f(z) = -z. Then we get yP + yQ = yp - yQ, -zQ - zP = zP - zQ . Thus 
2yQ = 0, 2zP = 0. Therefore yQ = 0, zP = 0. Hence y G P + , z G Q + . 
Let t G p ( 5 )+ , v G p2(S)+. Then J(t) = t, J(v) = -v. Thus p (S)+ C P + , 
p2(S0+ C Q+ and hence p(S) C P , p2(5) C <?. Then from (A) and (D) 
it follows that p2(5) D p(P) = Q , p(S) D p3(S) D p(Q) = P . Therefore 

P = P(S), Q = P2(S). 

8. THEOREM. Ze£ G 6e an abelian Riesz group, S a weakly positive subset 
of G. Let every congruence on S be extendable to an isometry on G. Then 
G = p(S)xp2(S). 
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The proof is the same as the proof of Theorem 7, only instead of assumption 
that G is a weak polar group, it is needed to make use of (B). 

9. THEOREM. Let G be a representable I-group, L a subset of G containing 
0 and let f be a O-congruence on L . Then \x + f(x)\ A \y — f(y)\ = 0 for each 
x,y G L. 

P r o o f . Without loss of generality we may suppose that G is a subgroup 
of the Z-group fj Gi, where 

(a) all Gi are linearly ordered, 
(b) for each i G I, the natural projection of G into Gi is a surjection. 

Let i E I. For z G G we denote by Zi the i -th component of z and by 0* 
the neutral element of Gi. From Lemma 1 [18] it follows that either f(t)i = U 
for each t G L or f(t)i = —ti for each t G L. Let x, y G L. Then we have that 
either x{ + f(x){ = 0{, y{ + f(y){ = 0i or x{ - f(x)i = 0{, y{ - f(y){ = 0{. Thus 
(\x + f(x)\ A\y- f(y)\). = \x{ + f(x){\ A \Vi - f(y){\ = 0^. 

Therefore \x + f(x)\ A \y - f(y)\ = 0. 

The proof of Theorem 6 of P o w e l l [16], which is the main result of [16], is 
based on the Proposition 5 [16.]. We now show not only that Theorem 6 is valid 
for abelian /-groups as it was established in [16] but also that in this theorem 
L can be any subset containing 0. 

10. THEOREM. Let G be an abelian l-group. Then the following conditions 
are equivalent: 

(1) Every congruence f on a subset L of G containing 0 can be extended 
to an isometry. 

(2) G is strongly protectable. 

P r o o f . (1) => (2). Since every Z-group is a weak polar group, it is a 
consequence of Theorem 7. 

(2) => (1). Let G be strongly protectable, L C G, 0 G L and let / 
be a congruence on L. Let g(x) = f(x) — f(0) for each x G L. Then g is a 
O-congruence on L. Let A = {x + g(x), x G L} , B = {x — g(x), x G L} . Then 
G = p2(A) x p(A), AC p2(A). By 9, B Cp(A). From Theorem 4 it follows 
that g can be extended to an isometry g. Let f(x) = g(x) + f(0) for each 
x G G. Then / is an isometry and an extension of / . 

1 1 . THEOREM. Let H be an l-group, a, 6 G H. If \a\ = \b\, then 
\a + b\/\\a-b\ = 0. 

P r o o f . By the distributivity of H, [(a + 6 )v ( -6 -a ) ] A [(a-b)V(6-a)] = 
[(a + 6 ) A ( a - 6 ) ] v [ ( - 6 - a ) A ( a - 6 ) ] v [ ( a + 6 ) A ( 6 - a ) ] v [ ( - 6 - a ) A ( 6 - a ) ] = 
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[a + (-bAb)] V [(-6 A 6 ) - a ] V { [(-b - a) A (a - b)] V [(a + b) A (b - a)]} = 
[a + ( -a A a)] V [(-a A a) - a] V {[(-b -a)V (a + b)] A [(a - 6) V (a + 6)] A 
[ ( -6 -a )V(6-a ) ]A[ (a -b )V(b - a ) ]} = [(2a A 0) V(-2aA0)] v{ [a + (-bVb)] A 
[(-6 V b) - a] A [(-6 - a) V (a + 6)] A [(a - b) V (6 - a)]} = [(-2a V 2a) A 
(2a V 0) A (~2a V 0) A0] v{[a + (-aVa)] A [ ( - o V a ) - a ] A |a + 6| A \a - b\} = 
0 V [(0 V 2a) A (-2a V 0) A \a + b\ A \a - b\] = 0 V [0 A \a + b\ A \a - b\] = 0. 

12. THEOREM. Let H be an l-group, S C H, 0 e S and let f be a 
O-congruence on S. Then \x + f(x)\ A \x — f(x)\ = 0 for each x G 5 . 

P r o o f . This is an immediate consequence of 11. 

13. THEOREM. Let G be a Riesz group, S C G, 0 e S and let f be a 
0-congruence on S. If x G S+ , then (x + f(x)) A (x — f(x)) = 0 . 

P r o o f . By 6, x + f(x) = 2#i, x — f(x) = 2x2 , x\ A x2 = 0, where 
#i, X2 G G+ . From the proposition (b) [2, p. 10] we obtain 2x\ l\2x<i = 0. Thus 
( z + /(*)) A ( s - / ( . r ) ) = 0 . 

The question whether any 0-congruence in an abelian weak polar group which 
is strongly projectable can be extended to an isometry (see Theorem 7 above) 
remains open. 

REFERENCES 

[1] BENADO, M. : Sur la theorie de la divisibility Acad. R. P. Romine. Bui. Sti. Sect. Mat . 

Fyz. 6 (1954), 263-270. 

[2] FUCHS, L. : Riesz groups, Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 19 (1965), 1-34. 

[3] FUCHS, L. : Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. 

[4] GLASS, A. M. W . : Polars and their applications in directed interpolation groups, Trans. 

Amer. Math. Soc. 166 (1972), 1-25. 

[5] GOODEARL, K. R. : Partially Ordered Abelian Groups with Interpolation, Amer. Math . 

S o c , Providence, 1986. 

[6] HOLLAND, C H . : Intrinsic metrics for lattice ordered groups, Algebra Universalis 19 
(1984), 142-150. 

[7] JAKUBIK, J . : Isometries of lattice ordered groups, Czechoslovak Math. J. 30 (1980), 

142-152. 

[8] JAKUBIK, J . : On isometries of non-abelian lattice ordered groups, Math . Slovaca 3 1 
(1981), 171-175. 

[9] JAKUBIK, J . : Weak isometries of lattice ordered groups, Math . Slovaca 38 (1988), 

133-138. 

[10] JAKUBIK, J .—KOLIBIAR, M. : Isometries of multilattice groups, Czechoslovak Math . J. 

33 (1983), 602-612. 

[11] JASEM, M. : Isometries in Riesz groups, Czechoslovak Math. J. 36 (1986), 35-43. 

28 



ON ISOMETRIES IN PARTIALLY ORDERED GROUPS 

[12] JASEM, M. : Isometries in non-abelian multilattice groups, Czechoslovak Math . J., (Sub
mit ted) . 

[13] JASEM, M . : Weak isometries and isometries in partially ordered groups, Algebra Uni
versalis, (Submitted) . 

[14] JASEM, M . : On weak isometries in multilattice groups, Math . Slovaca 40 (1990), 337-340. 

[15] McALISTER, D. B . : On multilattice groups, Proc. Cambridge Philos. Soc. 6 1 (1965), 
621-638. 

[16] POWELL, W. B . : On isometries in abelian lattice ordered groups, J. Indian Math . Soc. 
(N.S.) 46 (1982), 189-194. 

[17] RACHUNEK, J . : Isometries in ordered groups, Czechoslovak Math . J. 34 (1984), 334-341. 

[18] SWAMY, K. L. N . : Isometries in autometrized lattice ordered groups, Algebra Universalis 

8 (1978), 59-64. 

[19] SWAMY, K. L. N . : Isometries in autometrized lattice ordered groups II, Seminar Notes 
Kobe Univ. 5 (1977), 211-214. 

Received September 14, 1989 

Revised July 13, 1992 

Department of Mathematics 

Faculty of Chemical Technology 

Slovák Technical University 

Radlinského 9 

812 31 Bratislava 

Slovakia 

29 


		webmaster@dml.cz
	2012-08-01T08:06:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




