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NOTE ON LINEAR ARBORICITY 

MARTIN KNOR 

(Communicated by Martin Skoviera) 

ABSTRACT. The conjecture of linear arboricity requires to decompose any 

n -regular graph into |"^J--] linear forests. Here, a new approach to this con

jecture is developed. We bound the degrees in forests by [^^^J . 

Introduction 

In this note, a graph will always mean a finite undirected graph without loops 
and multiple edges. A graph F is n-regular if the degree of each vertex in T is 
n. We emphasize that the letter n will always be used only in this meaning. 

A letter T will indicate a forest. A linear forest is a forest with all vertex 
degrees less than or equal to 2. For any graph T the arboricity Y( r ) of Y (the 
linear arboricity S ( r ) of T) is the minimum number of edge disjoint forests 
(linear forests) whose union is F . 

Symbols V(T) and E{T) denote the vertex set and the edge set of a graph 
r , respectively. An edge joining two vertices x and y we denote by xy. 

The degree of vertex x in a graph F (a forest T ) is denoted as deg r(x) 
(deg T (x) ) . The greatest degree in a graph T is denoted as A ( r ) . 

For a real number U, [i?j denotes the lower integer part of v and 
\v]=-[-v\. 

In 1961, C. St. J. A. N a s h -W i 11 i a m s [9] and W. T. T u t t e [12] have 
determined the arboricity of arbitrary graph. In particular, 

Y(Г) 
7 1 + 1 

for an n -regular graph F . 

The following conjecture on linear arboricity is due to J . A k i y a m a , 
(i . E x o o and F . H a r r a r y [3]. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 65C70. 
K e y w o r d s : Graph, Decomposition, Linear arboricity. 
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CONJECTURE 1. For an arbitrary n-regular graph T 

S(Г) 
n + 1 

~~2~ 

The inequality S(T) > j " 1 ^ 1 ] follows from 2(T) > Y(T). The converse is 
not known. However, the conjecture has been proved in some special cases. 

For n = 3,4 it was proved by J . A k i y a m a , G . E x o o and 
F . H a r r a r y in [3] and [4]. For n = 5, 6, 8 it was proved by H . E n o m o t o 
and B. P e r o c h e in [6], for n = 6 by P. T o m a s t a in [11], and for n = 10 
by F. G u 1 d a n in [7], 

In general, as we mentioned above, the linear arboricity is at least [-̂ -̂ 1 . 

Already in 1981 it was shown in [4] that H(T) < |~| ["§]] for any n -regular graph 

T. In 1987 N. A 1 o n [5] proved by probabilistic methods that for arbitrary 

e > 0 and n sufficiently large the linear arboricity of an n-regular graph is less 

than (^ + e) -n . 

The problem of linear arboricity in multigraphs was studied by 

H. A i t - D j a f e r [1], [2]. 

In this note, we attempt to look at the problem from another point of view. As 

we mentioned above, we have Y(T) = l"11^-] for an arbitrary n-regular graph 

T. Let An[R] denote the maximum degree of vertices over all components in 

decomposition 1Z of an n-regular graph to \n^r-~\ forests. Hence, An[JZ] < n 

is the best possible inequality which can be derived from [9] and [12] because 

the authors admit vertices of arbitrary degree. However, Conjecture 1 requires 

to find a decomposition 1Z satisfying An[7?] = 2. 

Up to date, no better bounds are known in general. In this note, we show 

that An[lZ] < [^^J • A short proof of Conjecture 1 for n = 3 using techniques 

similar to those used in the proof of Theorem 1 can be found in [8]. 

Main result 

The proof of Theorem 1 is constructive. We decompose a graph F into 
forests Ti, i = 1, 2, . . . , h . 

We use elementary operation of inserting i -admissible edge xy into forest 
Ti, i = 1, 2,. .. , h . Let k be a constant to which we decrease the value of An [7v . 
An edge xy ^ E(Ti) is i -admissible if and only if: 

(i) Ti U xy is a forest, 

(ii) deg{TiUxy)(x) < k, 

(iii) deg{TiUxy)(y) < k. 
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We no te that inser t ion of an i -admissible edge in to a forest T{ c a n n o t increase 

the n u m b e r of vertices of degree grea ter than k in forests T3; , j = 1, 2 , . . . , h . 

We set h = l11^] • T h e following iden t i ty will often be used: 

li + 1 = n + 1 
71+ 1 

= П + 1 + n 

T H E O R E M 1. Let V be an n-regular graph, n > 3 . Then there are 

h = f 1 1 ^ ] edge disjoint forests T i , T 2 , . . . , T ^ covering F such that 

A ( T ) < l*p\, i = i,2,...,h. 

P r o o f . Assume that there is a g raph F which c a n n o t be decomposed in to 

forests, where A ( T ) < [=p-\ , i = 1, 2, . . . , h . 

By C. St. J . A. N a s h -W i 11 i a in s [9] a n d [10], there is a decomposi t ion 

of F in to h forests. We can assume that the decomposi t ion is chosen so that 

t h e n u m b e r of vertices z G V(F) with deg T . (z) > l11^] for any i is m i n i m u m . 

Let x be a ver tex wi th d e g T . (x) > [ ^ ^ J = n — h + 1. W i t h o u t loss of 

generality, let i = 1. In the following, we modify our decomposi t ion of F to a 

new one wi th d e g T (x) = n — h + 2 , a n d then we d e t e r m i n e the degrees of some 

vertices in Ti . 

Since 2(n - h + 2) > n + 2, the only forest T{ wi th d e g T x ( x ) > |_--^J is 

l\ . Let deg T ? (x) = | _ - ^ J + j • Since n - (n - h + 1 + j) = h - j - 1, there are 

j forests, say, T 2 , T 3 , . . . , T J + i wi th deg T z (x) = 0 for all i e {2, 3 , . . . , j + 1} . 

Since n — h + 2 > 2 if n > 3 , there are a t least two ver tices y wi th xH G 

I-XFi). Let y be such that xy G £ ( T i ) . Since 1 + 2(n - h + 1) > n + 1, we 

have degT / (y) < n - h + 1 for some z G {2, 3 , . . . , j + 1} if j > 2 . Assume 

d e g T (y) < n — h + 1. T h e n xH is ( j + 1)-admissible , and we can insert xy 

into Ty + i . We decreased degT l( .c) by one. 

Now we have j — 1 forests T 2 , J 3 , . . . , T, wi th degT . (x) = 0 for all i G 

{2, 3 , j} . Le t y be such thfit £?/ G F^(Ti). If j - 1 > 2 , xH is i -admissible 

for some i G {2, 3 , . . . , j} , and we can insert xy into T . 

Thus , j - 1 neighbours of x in Tx we can insert into T% , 

/ G {2, 3 , . . . , j + 1} . T h e n deg T l (x) = n - h + 2 , and there is a forest, say, 

T>2 with deg T 2 (x ) = 0 . Bu t degT2(H) > n - h + 1 for all H wi th xH G F(Ti) 

since otherwise we get a contradic t ion wi th the original choice of T1? T 2 , . . . , 7A. 

in F . 
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Figure 1. 

T h e edge xy is i -admissible if x and y are in dist inct componen t s of Tt , 

i > 2 , because of (n — h + 2) + (n — h + 1) > n + 1 (see Fig. 1). T h u s , 

d e g T i (x) = n — h + 2 and deg T . (x ) = 1 , i = 3 , 4 , . . . , h , 

degT2(/V) = n ~ ^ + 1 a n d deg T i (y ) = !> i = 1,3,4, . . . , / i 

for all y wi th xy G E(T\) because T is n - regula r (see Fig. 1). 

Let y be a fixed vertex of V with xy £ E(T\). T h e n x and y are joined 

by a p a t h in T3 . Let us denote y = ao, « i , • . . , am = x the vertices of this p a t h 

(see Fig. 2). 

We claim d e g T (Oi) > n — h + 1 . Otherwise we can insert Oi Oo into Ti and 

xy in to T3 . We get again forests because xy is 3-admissible if OiOo ^ E(T$) , 

and OiOo is 1-admissible if xy £ E(T\). But then d e g T i ( z ) = n — h + 1 , that 

is a cont radic t ion wi th the original choice of Ti , T2,... , Tk in T . 

Vertices Oo a n d «i must be in the same component of Ti , 
i — 4 , 5 , . . . , b . Otherwise, we can insert a\a0 into Tz , and xy in to T3 be
cause OiOo is i -admissible . Thus , degT . (G i ) > 1 , i > 3 . 

We have the following identities: 

d e g T i ( O i ) = 2 , deg T l ( a , ) = n - b + 1 , degT . (Oi) = 1 , / > 3 

because n = deg r (O i ) > 2 + (n — h + 1) + h — 3 = n . 

Analogously, we have d e g T (02) > n — h. + 1 because otherwise we can insert 
OiO2 into T2 , and xy into T3 . Similarly, a2 and ci\ must be in the same 
component of T% for each i > 3 because, otherwise, we can insert <i\(v> into T, . 
and .ry into T3 (see Fig. 2). It means tha t : 

dvgn(a,2 ) = 2 , deg'p2(«-2) = n - H V dcg 7 ; (O2) = 1 , l > 3 . 
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We can repeat this construction till am is reached. Finally, we obtain: 

degT3(:r) = 1 , degT. (x) = n - h + 2 , degT.(x) = 1, i > 3 . 

Figure 2. 

Hence degTs(x) = degTa(y) = 1 and degT3(a,) = 2, i = 1, 2, . .. , m - 1. 
But as we mentioned above, there exists y ^ y with yx £ E(T\). We obtain 
existence of a path in T3 with vertices y = 60, bi,. . ., bm = x by an analogous 
process. Here degTa(y) = degTs(x) = 1 and degT-3(bl) = 2, z = 1, 2, . . . , ra — 1. 
It means that x , y and y are three distinct vertices of degree 1 in linear tree, 
that is a contradiction. 

This concludes the proof of Theorem 1. • 

We have proved that every n -regular graph for which n > 3 can be decom
posed into [-^Y^] forests with maximum degree [^^"J • Assumption n > 3 was 
used to establish three forests which yield the path Go, Oi,. . . , am in the proof. 
Since [2i2^-1 = 2 if n = 4 , we proved the Conjecture 1 for n = 4 . 

Every graph of degree not greater than k can be completed to 
k -regular graph by adding new vertices and edges. Thus, Theorem 1 implies 
that each graph T with A(T) = k can be decomposed into [ 2~1 f ° r e s ^ s °f 
degree not greater than [—^J - The decreasing of degrees in forests to some 
function asymptotically equal even to o(n) is still open. 
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