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Abstract

The paper deals with tensor fields which are semiconjugated with
torse-forming vector fields. The existence results for semitorse-forming
vector fields and for convergent vector fields are proved.
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1 Introduction

Torse-forming vector fields were introduced by K. Yano [8] in 1944 and their
properties in Riemannian spaces have been studied by various mathematicians.
For example some properties in Ricci semisymmetric Riemannian spaces have
been proved by J. Kowolik in [1]. In T -semisymmetric Riemannian spaces they
are studied by the authors in [4] and [5].
This paper is devoted to the study of tensor fields which are semiconjugated

with torse-forming vector fields. We are motivated by the work of J. Kowolik [1].
First we give some definitions and notations. Vn denotes an n-dimensional

Riemannian space with a metric g and an affine connection ∇. The metric g
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need not be positive definite. TVn is a space of all tangent vector fields on Vn.
In the whole paper we will assume that n > 2 and that all functions, vectors
and tensor fields are sufficiently smooth. Further ξ will be a non-zero vector
field, i.e. ξ(x) �= o for each x ∈ Vn.
We denote the Riemannian tensor in Vn by R. This tensor is called harmonic,

if Rα
ijk,α = 0, where “,” denotes the covariant derivative. This condition can be

written in the form Rij,k = Rik,j where Rij ≡ Rα
ijα is the Ricci tensor of Vn.

Definition 1 Vector field ξ is called torse-forming, if ∇Xξ = � ·X + a(X) · ξ
for all X ∈ TVn, where � is some function on Vn, a is a linear form on Vn. In
the local transcription this formula has the form ξh

,i = �δh
i + aiξ

h, where ξh

are components of the torse-forming field ξ, δh
i is the Kronecker delta, ai are

components of the form a, which is a covector on Vn.

Definition 2 A torse-forming vector field ξ is called:

• recurrent, if � = 0,
• concircular, if the form a is gradient (or locally gradient), i.e. there exists
(locally) a function ϕ(x) such that a = ∂iϕ(x)dxi,

• convergent, if ξ is concircular and � = const · exp
(
ϕ(x)

)
,

• semitorse-forming, if R(X, ξ)ξ = 0 for each X ∈ TVn.

Properties of torse-forming vector fields in the Einsteinian spaces are proved
by the authors in [5]. In [2] and [3] J. Mikeš proved that in non-Einsteinian Ricci-
symmetric and Ricci-two-symmetric (Rij,kl = 0) spaces there are no concircular
vector fields which are not recurrent.
In what follows we will need a definition of an operator R(X,Y ) ◦ T for

tensors of the type (0, q) or (1, q).
Let T be a tensor of the type (0, q), which is defined as a q-linear form

T (X1,X2, . . . , Xq), where X1,X2, . . . , Xq ∈ TVn.
In the space Vn we introduce an operator R(X,Y ) ◦ T in the following way:

R(X,Y ) ◦ T (X1,X2, . . . , Xq)
def=

q∑

s=1

T (X1, . . . , Xs−1, R(X,Y )Xs,Xs+1, . . . , Xq).

In the local transcription the tensor R(X,Y ) ◦ T has a form

q∑

s=1

Ti1...is−1αis+1...iq
Rα

isjk.

By the Ricci identity we have

Ti1...iq,[jk] =
q∑

s=1

Ti1...is−1αis+1...iq
Rα

isjk,

where [jk] denotes the alternation of the tensor with respect to j and k.
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If T is a tensor of the type (0, 0) (i.e. an invariant, which is a function or a
scalar on Vn), then we put R(X,Y ) ◦ T = 0, or locally T,[jk] = 0.
Similarly we can define an operator R(X,Y ) ◦ T for a tensor T of the

type (1, q):

R(X,Y ) ◦ T (X1,X2, . . . , Xq)
def=

q∑

s=1

T (X1, . . . , Xs−1, R(X,Y )Xs,Xs+1, . . . , Xq)−R(X,Y )
(
T (X1, . . . , Xq)

)
.

The tensor R(X,Y ) ◦ T has a local expression

q∑

s=1

Th
i1...is−1αis+1...iq

Rα
isjk − Tα

i1...iq
·Rh

αjk.

By the Ricci identity we have

Th
i1...iq,[jk] =

q∑

s=1

Th
i1...is−1αis+1...iq

Rα
isjk − Tα

i1...iq
·Rh

αjk.

Now we present Kowolik’s theorems of [1] in a modified form which is more
convenient for us. These theorems will be generalized in the next parts of our
paper. First, recall notions used in the theorems.

Definition 3 A Riemannian space Vn is called semisymmetric, if

R(X,Y ) ◦R = 0 ∀X,Y ∈ TVn. (1)

We write (1) locally in the form Rh
ijk,[lm] = 0 or

Rh
αjkRα

ilm + Rh
iαkRα

jlm + Rh
ijαRα

klm −Rα
ijkRh

αlm = 0.

Definition 4 A Riemannian space Vn is called Ricci semisymmetric, if

R(X,Y ) ◦Ric = 0 ∀X,Y ∈ TVn. (2)

We write (2) locally

RαjR
α
ikl + RiαRα

jkl = 0 or Rij,[kl] = 0.

Simply conformaly recurrent spaces (s.c.r. spaces) were defined byW. Roter [7].
These spaces are characterized by the following conditions:
The Riemannian space Vn is a s.c.r. space, if and only if:

1. Chijk �= 0, where Chijk is a Weyl tensor of conformal curvature,

2. Chijk,l = ϕlChijk ,

3. a vector ϕk is locally gradient,

4. the Ricci tensor is a Codazzi tensor.
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Remark 1 It holds that each s.c.r. space is semisymmetric.

Theorem 1 ([1]) Let Vn (n ≥ 4) be a Ricci semisymmetric space with a har-
monic Riemannian tensor. If there is a torse-forming vector field ξ in Vn, then
ξ is either concircular or recurrent.

Theorem 2 ([1]) If there is a torse-forming vector field ξ in a s.c.r. space Vn

(n �= 4), then ξ is recurrent.

Let T be a tensor field of the type (0, q) or (1, q) and ξ be a vector field on
Vn. By means of the operator R(X, ξ) ◦ T let us define the basic notion of our
paper:

Definition 5 The tensor field T is semiconjugated with the vector field ξ, if

R(X, ξ) ◦ T = 0 for each X ∈ TVn. (3)

In the local transcription (3) has the form

T .
...,[lm]ξ

m = 0, (4)

where ξm are local components of ξ.

2 Vector fields semiconjugated with torse-forming vector
fields

In this section we will consider 1-covariant vector fields semiconjugated with a
torse-forming vector field ξ. Denote by ξ(X) a linear form generated by ξ, i.e.
ξ(X) ≡ g(X, ξ).

Theorem 3 Let T ( �= 0) be a 1-covariant vector field semiconjugated with a
non-isotropic torse-forming vector field ξ, which is not convergent. Then ξ is
semitorse-forming and T is colinear with a form ξ(X).

Proof Assume that there is a non-zero vector field T and a non-isotropic
non-convergent torse-forming vector field ξ, which satisfy (4), i.e.

TαRα
ijβξβ = 0, (5)

where Ti are local components of T and Rh
ijk are components of the Riemannian

tensor R. According to [5] we can assume that ξ is normalized, i.e. g(ξ, ξ) =
e = ±1, and the condition

ξαRα
ijk = gijck − gikcj + ξiajk (6)

holds, where ajk ≡ −eξ[j�,k] and

ck ≡ �,k + e�2ξk. (7)
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Since ξ is not convergent, we have ci �= 0.
Contracting (6) with T k def= Tαgαk and using (5) and properties of the Rie-

mannian tensor we get

gijckT k − Ticj + ξiajkT k = 0. (8)

If ckT k �= 0, then (8) gives rank ‖gij‖ ≤ 2. Since n > 2, we have ckT k = 0
and (8) leads to

−Ticj + ξiajkT k = 0. (9)

Since cj �= 0, the condition (9) implies

Ti = aξi,

where a if a non-zero function.
Substituting Ti = aξi in (6) we see, that either ξ is semitorse-forming vector

field or Ti = 0. This completes the proof of Theorem 3. �

3 Symmetric 2-covariant tensors semiconjugated with
a torse-forming vector field

We will prove the following theorem:

Theorem 4 Let n > 2 and let T (�= γg) be a 2-covariant symmetric tensor
field semiconjugated with a non-isotropic torse-forming vector field ξ, which is
not convergent. Then it holds that ξ is semitorse-forming in Vn and

T (X,Y ) = γ · g(X,Y ) + ψ · ξ(X) · ξ(Y ) ∀X,Y ∈ TVn, (10)

where γ, ψ are functions on Vn.

Proof Assume that there is a 2-covariant symmetric tensor field T on Vn,
which is semiconjugated with a normalised torse-forming vector field ξ, which
is not convergent. It means that ξ satisfies (6) and ci �= 0.
Further we have:

R(X, ξ) ◦ T = 0 ∀X ∈ TVn,

i.e. locally
TαjR

α
ilβξβ + TiαRα

jlβξβ = 0. (11)

If we substitute (6) in (11) and use properties of the Riemannian tensor we get
after computation

gliTαjc
α − Tljci + gljTiαcα − Tilcj + ξlωij = 0, (12)

where ω is some tensor of the type (0, 2) and ci ≡ cαgαi.
We will prove that

Tαic
α = γci. (13)
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Assume, that (13) does not hold. Then there exists a vector εi such that

cαεα = 0 and Tαβεαcβ = 1. (14)

Contract (12) with εiεj . Since Tij = Tji and (14) holds, we get

εl = hξl, (15)

where h
def= − 1

2ωαβεαεβ .
If we contract (12) with εj , we obtain by means of (14) and (15)

gli − Tlαεαci + ξl(hTiαcα + ωiβεβ) = 0.

This implies that rank ‖gij‖ ≤ 2, which contradicts the assumption that (13)
does not hold.
By (13) we extract the member Tαic

α in (12). After computation we obtain

Fljci + Filcj + ξlωij = 0, (16)

where
Fij

def= Tij − γgij . (17)

Since ci �= 0, then there exists ϕi such, that cαϕα = 1.
Contracting (16) with ϕiϕj we get Flαϕα = f · ξl, where f

def= − 1
2ωαβεαεβ .

Similarly, if we contract (16) with ϕj , we get

Fil = ξlχi , (18)

where χi
def= −fci − ωiαϕα.

Since Fij is a symmetric tensor, the equality (18) implies

Fij = ψ · ξiξj . (19)

By the assumption Fij �= 0, we have ψ �= 0. Substituting (17) to (19) we see,
that (10) is true. It remains to prove that the vector field ξ is semitorse-forming.
Therefore we covariantly derive the equality (19) by indices l and m, then

we alternate it with respect to l and m and finally we contract it with ξm. Since

Fij,[lm]ξ
m = 0 and ψ �= 0,

we reach the formula

ξi,[lm]ξ
m · ξj + ξi · ξj,[lm]ξ

m = 0,

wherefrom it follows
ξi,[lm]ξ

m = 0.

This means that the vector field ξ is semitorse-forming. �
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4 Antisymmetric 2-covariant tensors semiconjugated with
a torse-forming vector field

The following theorem deals with antisymmetric tensor fields.

Theorem 5 In a Riemannian space Vn (n > 3) there is no non-zero 2-covariant
antisymmetric tensor field T semiconjugated with a non-isotropic torse-forming
vector field ξ, which is not convergent.

Proof Assume that there is a 2-covariant anti-symmetric tensor field T on Vn,
which is semiconjugated with a non-isotropic torse-forming vector field ξ, which
is not convergent. It means, that ξ satisfies (6) and ci �= 0. Similarly as in the
proof of Theorem 4 we get, that (11), (12) and (13) are true. Substituting (13)
in (12) and using the antisymmetric property of T (i.e. Tij = −Tji), we get
after computation

(Tli − μgli)cj − (Tlj − μglj)ci − ξlωij = 0. (20)

Since cj �= 0, then there exists ϕi, for which ϕαcα = 1. Contracting (20)
with ϕj we find

Tli − μgli = ξlηi + χlci , (21)

where ηi and χl are some covectors.
Symmetrising (21) we obtain

−2μgli = ξlηi + ξiηl + χlci + χicl. (22)

If n > 4, we deduce that μ = 0.
Assume that n = 4 and μ �= 0. Then covectors ξi, ci, ηi, χi must be linearly

independent. Hence their coordinates in a given point x can be chosen in the
following way:

ξi = δ1
i , ηi = δ2

i , ci = δ3
i , χi = δ4

i .

Then

gij = − 1
2μ

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

The inverse matrix gij has the form

gij = −2μ

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

We can check that
gijξiξj = 0

holds, i.e. ξ is isotropic, a contradiction.
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Thus for n > 3 the formula (22) implies, that μ = 0. Therefore we can
simplify (21) and (22) as follows:

Tij = ξiηj + χicj

and
ξlηi + ξiηl + χlci + χicl = 0. (23)

Vectors ξi and χi are not colinear. Otherwise it should be Tij = 0. Therefore
there is ϕi such that

ξαϕα = 1 and χαϕα = 0.

Contracting (23) with ϕiϕl we find ηαϕα = 0 and contracting (23) with ϕl we
get ηi = −cαϕα · χi. Then (23) has a form

(ci − cαϕαξi)χl + (cl − cαϕαξl)χi = 0.

Since χl �= 0, we obtain
ci = cαϕαξi. (24)

Using (7) and (24) we derive

�,k = (cαϕα − e�2)ξk.

Hence we have � = �(ξ), where ξ is a scalar field satisfying ξk = ∂kξ. It means
that ξ is concircular and, by [3], is convergent. �

5 Main results

By means of Theorem 4 (for symmetric tensors) and Theorem 5 (for antisym-
metric tensors) we will prove the following assertion for arbitrary 2-covariant
tensors.

Theorem 6 Let n > 3 and let T (�= γg) be a 2-covariant tensor field semi-
conjugated with a non-isotropic torse-forming vector field ξ, which is not con-
vergent. Then it holds that ξ is semitorse-forming in Vn and

T (X,Y ) = γ · g(X,Y ) + ψ · ξ(X) · ξ(Y ) ∀X,Y ∈ TVn,

where γ, ψ are functions on Vn.

Proof Assume that there is a 2-covariant tensor field T on Vn, which is semicon-
jugated with a normalised torse-forming vector field ξ, which is not convergent.
Tensor T can be uniquely expressed in the form T = U + V , where U is a

symmetric part and V is an antisymmetric part of T . It holds

U(X,Y ) =
1
2
(
T (X,Y ) + T (Y,X)

)
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and

V (X,Y ) =
1
2
(
T (X,Y )− T (Y,X)

)

for any vector fields X,Y ∈ TVn. Therefore U and V are also semiconjugated
with ξ. Theorem 5 implies, that V = 0. Hence T ≡ U and so T is symmetric
and the assertion of Theorem 6 follows from Theorem 4. �

Now we will prove theorems for Riemannian spaces having Riemannian and
Ricci tensors semiconjugated with a torse-forming vector field. These theorems
generalize Kowolik’s results in [1].

Theorem 7 Let n > 2 and let Vn be a non-Einsteinian Riemannian space,
where the Ricci tensor is semiconjugated with a non-isotropic torse-forming
vector field ξ. Then ξ is convergent.

Proof Assume that the Ricci tensor Ric is semiconjugated with a torse-forming
vector field ξ.
Since Ric is a symmetric tensor, we get by Theorem 4

Ric(X,Y ) = γg(X,Y ) + ψ · ξ(X) · ξ(Y ) ∀X,Y ∈ TVn, (25)

where ξ(X) def= g(X, ξ) and ψ is a function on Vn.
Semitorse-forming fields fulfil Rh

αjβξαξβ = 0. Contracting it with respect to
h and j we obtain Rαβξαξβ = 0, which can be written in the form

Ric(ξ, ξ) = 0.

Let us put X = ξ a Y = ξ in (25). Since we can assume that ξ is normalized,
i.e. g(ξ, ξ) ≡ ξ(ξ) = e = ±1, we get ψ = −eγ and so the formula (25) has the
form

Ric(X,Y ) = γ ·
(
g(X,Y )− eξ(X) · ξ(Y )

)
∀X,Y ∈ TVn. (26)

Substituting Y = ξ in (26) we obtain

Ric(X, ξ) = 0 ∀X ∈ TVn.

It means that ξ is an eigenvector of the Ricci tensor corresponding to the zero
eigenvalue. Therefore ξ is convergent. �

Theorem 8 Let n > 2 and let Vn be a Riemannian space with a non-constant
curvature, where the Riemannian tensor is semiconjugated with a non-isotropic
torse-forming vector field ξ. Then ξ is convergent.

Proof Assume that a Riemannian space Vn with a non-constant curvature
has the Riemannian tensor which is semiconjugated with a torse-forming vector
field ξ which is not convergent. Then Vn has the Ricci tensor which is also
semiconjugated with ξ. Therefore by Theorem 7 the space Vn has to be an
Einsteinian space. We can easily see that ξ is concircular.
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Then, according to the result of [4] the Riemannian tensor has the form

Rhijk = K(ghjgik − ghkgij),

which means that Vn has a constant curvature, a contradiction. We have proved
that ξ has to be convergent. �
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