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Abstract

We study the existence of positive solutions of the integral equation

x(t) = μ

Z 1

0

k(t, s)f(s, x(s), x′(s), . . . , x(n−1)(s)) ds, n ≥ 2

in both Cn−1[0, 1] and W n−1,p[0, 1] spaces, where p ≥ 1 and μ > 0.
Throughout this paper k is nonnegative but the nonlinearity f may take
negative values. The Krasnosielski fixed point theorem on cone is used.

Key words: Positive solutions, Fredholm integral equations, cone,
boundary value problems, fixed point theorem.

2000 Mathematics Subject Classification: 34G20, 34K10, 34B10,
34B15

4 Introduction

In analyzing nonlinear phenomena many mathematical models give rise to prob-
lems for which only nonnegative solutions make sense. This paper deals with
existence of positive solutions of the integral equations of the form

x(t) = μ

∫ 1

0

k(t, s)f(s, x(s), s′(s), . . . , x(n−1)(s)) ds, (1.1)

where μ > 0 is a constant and n ≥ 2.
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Throughout this paper k is nonnegative but our nonlinearity f may take neg-
ative values. The literature on positive solutions is for the most part devoted to
(1.1), when f takes nonnegative values and f is not dependent on derivatives
of the function x (see [2]–[5]). Existence in this paper will be established us-
ing Krasnosielskii’s fixed point theorem in a cone, which we state here for the
convenience of the reader.

Theorem 4.1 (K. Deimling [4], D. Guo [5]). Let E = (E, ‖ · ‖) be a Banach
space and let K ⊂ E be a cone in E. Assume Ω1 and Ω2 are bounded and
open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2 and let A : K ∩ (Ω2 \ Ω1) → K be
continuous and completely continuous. In addition suppose either ‖Au‖ ≤ ‖u‖
for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2 or ‖Au‖ ≥ ‖u‖ for
u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2 hold. Then A has a fixed point
in K ∩ (Ω2 \ Ω1).

5 Main results

In this section we present some results for the integral equation (1.1).
Throughout the paper

I = [0, 1]× [0,∞)× (−∞,∞)n−1, J = [0,∞)× (−∞,∞)n−1

and

‖x‖n−1 = sup
t∈[0,1]

[
|x(t)|+ |x′(t)|+ . . . + |x(n−1)(t)|

]
,

where x ∈ Cn−1[0, 1].

Theorem 5.1 Suppose the following conditions are satisfied:

(2.1) k : [0, 1] × [0, 1] → [0,∞), ∂lk(t,s)
∂tl ( l = 0, 1, . . . , n − 2) exist and are

continuous on [0, 1]× [0, 1],

(2.2) there exists ∂n−1k(t,s)
∂tn−1 for all t ∈ [0, 1] and a.e. s ∈ [0, 1],

(2.3) there exist k∗ ∈ C[0, 1], ki ∈ L1[0, 1] and M > 0 such that

(a) k∗(t) > 0 for a.e. t ∈ [0, 1],

(b) ki(s) ≥ 0 and
∫ 1

0
ki(s)ds > 0 for i = 0, 1, . . . , n− 1 and a.e. s ∈ [0, 1],

(c) Mk∗(t)ki(s) ≤
∣∣∂ik(t,s)

∂ti

∣∣ ≤ ki(s) for i = 0, 1, . . . , n − 1; t ∈ [0, 1] and
a.e. s ∈ [0, 1],

(2.4) the map t → ∂n−1

∂tn−1 k(t, s) is continuous from [0, 1] to L1[0, 1],
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(2.5) there exists a function d ∈ C[0, 1] with d(t) > 0 for a.e. t ∈ [0, 1] such
that

k(t, s)− d(t)
[∣∣∂k(t, s)

∂t

∣∣ + . . . +
∣∣∂

n−1k(t, s)
∂tn−1

∣∣
]

≥ d(t)
[
k(t, s) +

∣∣∂k(t, s)
∂t

∣∣ + . . . +
∣∣∂

n−1k(t, s)
∂tn−1

∣∣
]

for all t ∈ [0, 1] and a.e. s ∈ [0, 1],

(2.6) there exists a constant c̃ > 0 with

∫ 1

0

k(t, s) ds ≤ c̃Md(t)k∗(t) for t ∈ [0, 1],

(2.7) f : I → (−∞,∞) is continuous and there exists a constant L > 0 with

f(t, v0, v1, . . . , vn−1) + L ≥ 0 for (t, v0, v1, . . . , vn−1) ∈ I,

(2.8) there exists a function ψ(u) such that

f(t, v0, v1, . . . , vn−1) + L ≤ ψ(v0 + |v1|+ . . . + |vn−1|)

on I, where ψ : [0,∞) → [0,∞) is continuous and nondecreasing and
ψ(u) > 0 for u > 0,

(2.9) there exists r > 0 such that r ≥ μLc̃ and

r

ψ(r + ‖φ‖n−1)
≥

n−1∑

i=0

μ sup
t∈[0,1]

∫ 1

0

∣∣∣∣
∂ik(t, s)

∂ti

∣∣∣∣ ds,

where φ(t) = μL
∫ 1

0
k(t, s) ds,

(2.10) f(t, v0, v1, . . . , vn−1) + L ≥ g(v0) for (t, v0, v1, . . . , vn−1) ∈ I with
g : [0,∞) → [0,∞) continuous and nondecreasing and g(u) > 0 for
u > 0,

(2.11) there exists R > 0 and t0 ∈ [0, 1] such that R > r, k∗(t0) > 0, d(t0) > 0
and

R ≤ μ
∫ 1

0
k(t0, s)+

[∣∣∂k(t0,s)
∂t

∣∣+ . . . +
∣∣∂n−1k(t0,s)

∂tn−1

∣∣
]
d(t0)g(εRMd(s)k∗(s)) ds,

where ε > 0 is any constant such that 1− μLc̃
R ≥ ε.

Then (1.1) has a nonnegative solution x ∈ Cn−1[0, 1] with x(t) > 0 for a.e.
t ∈ [0, 1].
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Proof The proof of Theorem 2.1 is similar to that of Theorem 2.1 in the paper
[1]. To show (1.1) has a positive solution we will look at

x(t) = μ

∫ 1

0

k(t, s)f∗(s, x(s)− φ(s), s′(s)− φ′(s), . . . , xn−1(s)− φ(n−1)(s)) ds,

(2.12)
where

f∗(t, v0, v1, . . . , vn−1) =

{
f(t, v0, v1, . . . , vn−1) + L, if (t, v0, v1, . . . , vn−1) ∈ I,

f(t, 0, v1, . . . , vn−1) + L, if (t, v0, v1, . . . , vn−1) ∈ Ĩ ,

with Ĩ = [0, 1]× (−∞, 0)× (−∞,∞)n−1.
We will show that there exists a solution x1 to (2.12) with x1(t) ≥ φ(t) for

t ∈ [0, 1]. If this is true then u(t) = x1(t) − φ(t) is a nonnegative solution of
(1.1) since for t ∈ [0, 1] we have

u(t) =

= μ

∫ 1

0

k(t, s)
[
f∗(s, x(s)− φ(s), x′(s)− φ′(s), . . . , x(n−1)(s)− φ(n−1)(s))

]
ds

− μL

∫ 1

0

k(t, s) ds

= μ

∫ 1

0

k(t, s)f(s, x1(s)− φ(s), x′1(s)− φ′(s), . . . , x(n−1)
1 (s)− φ(n−1)(s)) ds

= μ

∫ 1

0

k(t, s)f(s, u(s), u′(s), . . . , u(n−1)(s)) ds.

We will concentrate our study on (2.12).

Let E = (C(n−1)[0, 1], ‖ · ‖n−1) and

K = {u ∈ Cn−1[0, 1] : u(t)−d(t)
[
|u′(t)|+. . .+|u(n−1)(t)|

]
≥ Md(t)k∗(t)‖u‖n−1.

Clearly K is cone of E. Let

Ω1 = {u ∈ Cn−1[0, 1] : ‖u‖n−1 < r},
Ω2 = {u ∈ Cn−1[0, 1] : ‖u‖n−1 < R}

and

f̃(s, x(s)− φ(s)) = f∗(s, x(s)− φ(s), x′(s)− φ′(s), . . . , x(n−1) − φ(n−1)(s)),

where x ∈ Cn−1[0, 1]. Now, let

A : K ∩ (Ω2 \ Ω1) → Cn−1[0, 1]

be defined by

(Ax)(t) = μ

∫ 1

0

k(t, s)f̃(s, x(s)− φ(s)) ds.
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First we show A : K ∩ (Ω2 \Ω1) → K. If x ∈ K ∩ (Ω2 \Ω1) and t ∈ [0, 1], then
relations (2.1), (2.5) imply

Ax(t)− d(t)[|(Ax)′(t)|+ . . . + |(Ax)(n−1)(t)|]

≥ μ

∫ 1

0

k(t, s)f̃(s, x(s)− φ(s)) ds

− μd(t)
∫ 1

0

[∣∣∣∂k(t,s)
∂t

∣∣∣ + . . . +
∣∣∣∂n−1k(t,s)

∂tn−1

∣∣∣
]
f̃(s, x(s)− φ(s)) ds

≥ μd(t)
∫ 1

0

[
k(t, s) +

∣∣∂k
∂t (t, s)

∣∣ + . . . +
∣∣∣∂n−1k(t,s)

∂tn−1

∣∣∣
]
f̃(s, x(s)− φ(s)) ds

and this together with (2.3) yields

‖Ax‖n−1 ≥ Ax(t)− d(t)
[
|(Ax)′(t)|+ . . . + |(Ax)(n−1)(t)|

]

≥ μd(t)

(
n−1∑

i=0

Mk∗(t)
∫ 1

0

ki(s)f̃(s, x(s)− φ(s)) ds

)
. (2.13)

On the other hand (2.3) implies

‖Ax‖n−1 ≤
n−1∑

i=0

μ

∫ 1

0

ki(s)f̃(s, x(s)− φ(s)) ds. (2.14)

Taking into account (2.13)–(2.14) we conclude that

Ax(t)−d(t)[|(Ax)′(t)|+. . .+|(Ax)(n−1)(t)|] ≥ Md(t)k∗(t)‖Ax‖n−1 for t ∈ [0, 1].

Consequently Ax ∈ K so A : K ∩ (Ω2 \ Ω1) → K. We now show

‖Ax‖n−1 ≤ ‖x‖n−1 for x ∈ K ∩ ∂Ω1. (2.15)

To see this let x ∈ K ∩ ∂Ω1. Then ‖x‖n−1 = r and x(t) ≥ Md(t)k∗(t)r for
t ∈ [0, 1]. For t ∈ [0, 1] we have

n−1∑

i=0

|(Ax)(i)(t)| ≤
n−1∑

i=0

∫ 1

0

∣∣∣∣
∂ik(t, s)

∂ti

∣∣∣∣ f̃(s, x(s)− φ(s)) ds.

This together with (2.8)–(2.9) yields

‖Ax‖n−1 ≤ μψ (‖x‖n−1 + ‖φ‖n−1)
n−1∑

i=0

sup
t∈[0,1]

∫ 1

0

∣∣∣∣
∂ik(t, s)

∂ti

∣∣∣∣ ds

≤ μψ(r + ‖φ‖n−1)
n−1∑

i=0

sup
t∈[0,1]

∫ 1

0

∣∣∣∣
∂ik(t, s)

∂ti

∣∣∣∣ ds ≤ r = ‖x‖n−1.
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So (2.15) holds. Next we show

‖Ax‖n−1 ≥ ‖x‖n−1 for x ∈ K ∩ ∂Ω2. (2.16)

To see it let x ∈ K ∩ ∂Ω2. Then we get ‖x‖n−1 = R and x(t) ≥ RMd(t)k∗(t)
for t ∈ [0, 1]. Let ε be as in (2.11). For t ∈ [0, 1] we have from (2.6) that

x(t)− φ(t) = x(t)− μL

∫ 1

0

k(t, s) ds ≥ x(t)− μLc̃Md(t)k∗(t)R
R

≥ x(t)
(

1− μLc̃

R

)
≥ x(t)ε ≥ εRMd(t)k∗(t) > 0

for a.e. t ∈ [0, 1]. By (2.10)–(2.11) and (2.5) we have

‖Ax‖n−1 ≥ Ax(t0)− d(t0)[|(Ax)′(t0)|+ . . . + |(Ax)(n−1)(t0)|]

≥ μd(t0)
∫ 1

0

[
k(t0, s) +

∣∣∣∣
∂k(t0, s)

∂t

∣∣∣∣ + . . . +
∣∣∣∣
∂n−1k(t0, s)

∂tn−1

∣∣∣∣
]

g(εRMd(s)k∗(s)) ds

≥ R = ‖x‖n−1.

Hence we obtain (2.14). By (2.3)–(2.4) and the Arzela–Ascoli theorem we con-
clude that A : K ∩ (Ω2 \ Ω1) → K is continuous and compact. Theorem 1.1
implies A has a fixed point x1 ∈ K ∩ (Ω2 \ Ω1), i.e. r ≤ ‖x1‖n−1 ≤ R and

x1(t) ≥ Md(t)k∗(t)r for t ∈ [0, 1]. (2.18)

Taking into account relations (2.6), (2.9) and (2.18) we have

x1(t) ≥ Md(t)k∗(t)r ≥ μLc̃Md(t)k∗(t) ≥ μL

∫ 1

0

k(t, s) ds = φ(t).

This completes the proof of Theorem 2.1. �

Example 5.1 To illustrate the applicability of Theorem 2.1 we consider the
following boundary value problem

x′′(t) + μ((x(t) + |x′(t)|)2 − 1) = 0, x(0) = x′(0), x(1) = −x′(1). (2.19)

The problem (2.19) is equivalent to the problem of determinig the fixed point
of the operator T of the form

T (x)(t) = μ

∫ 1

0

k(t, s)[(x(s) + |x′(s)|)2 − 1] ds,

where k(t, s) is defined as follows

k(t, s) =

{
(2−t)(1+s)

3 , 0 ≤ s ≤ t ≤ 1
(2−s)(1+t)

3 , 0 ≤ t ≤ s ≤ 1.
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Fix t0 = 1
2 , d(t) = M = 1

4 , k∗(t) = 1, k0(s) = k1(s) = 4
3 , L = 1 and ψ(u) =

g(u) = u2 for t ∈ [0, 1] and u ∈ [0,∞). We claim (2.6) holds with c̃ = 10,
μ < 1

10 , R > 1 and ε = 1− μLc̃
R = 1− 10μ

R . To see this notice for t ∈ [0, 1] that
∫ 1

0

k(t, s) ds =
1
2
(1 + t− t2) ≤ 5

8
≤ c̃Md(t)k∗(t) ≤ c̃

16
.

Clearly g(εRMd(s)k∗(s)) = ε2R2M2d2(s)k∗2(s) = ε2R2

256 and

μd

(
1
2

)∫ 1

0

[
k

(
1
2
, s

)
+

∣∣∣∣
∂k

(
1
2 , s

)

∂t

∣∣∣∣

]
g(εRMd(s)k∗(s)) ds

=
με2R2

1024

∫ 1

0

[
k

(
1
2
, s

)
+

∣∣∣∣
∂k

(
1
2 , s

)

∂t

∣∣∣∣

]
ds ≥ R

for sufficiently large R. Next we claim (2.9) holds. To see this notice for t ∈ [0, 1]
that

φ(t) = μL

∫ 1

0

k(t, s)ds =
μ

2
(1 + t− t2)

and
‖φ‖1 =

μ

2
‖1− t− t2‖1 =

μ

2
sup

t∈[0,1]

[(1 + t− t2) + |1− 2t|] = μ

and

μ

[
sup

t∈[0,1]

∫ 1

0

k(t, s)ds + sup
t∈[0,1]

∫ 1

0

∣∣∣∣
∂k(t, s)

∂t

∣∣∣∣ ds

]
=

9μ

8
.

Finally notice (2.9) is satisfied with r = 10μ since 9
8μ ≤ r

ψ(r+μ) = 10
121μ for

μ ≤
√

80
33 . Thus all assumptions of Theorem 2.1 are satisfied so existence of a

positive solution of the problem (2.19) is guaranted.
It is possible to obtain another existence results for (1.1) if we change some

conditions on the nonlinearity f and some of conditions on the kernel k. Before
formulating a next theorem we will introduce some notation.
For p ≥ 1, Lp[0, 1] is the Banach space of all real functions x such that |x|p

is Lebesgue integrable on [0, 1] with the norm

‖x‖∗p =
(∫ 1

0

|x(t)|p
) 1

p

.

The symbol Wn−1,p[0, 1] (n ≥ 2) denotes the set of all functions x with
x(n−2) absolutely continuous and x(n−1) ∈ Lp[0, 1].
For x ∈ Wn−1,p[0, 1] we introduce the following norm

‖x‖n−1,p = sup
t∈[0,1]

⎡
⎣

n−2∑

j=0

|x(j)(t)|

⎤
⎦ + ‖x(n−1)‖∗p.

The space (Wn−1,p[0, 1], ‖ · ‖n−1,p) is the Banach space.
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We adopt the following convention y(t+τ) = 0 if t+τ 
∈ [0, 1] and y ∈ Lp[0, 1].
A function f : I → (−∞,∞) is a Carathéodory function provided:
If f = f(t, z), then
(i) the map z → f(t, z) is continuous for almost all t ∈ [0, 1],
(ii) the map t → f(t, z) is measurable for all z ∈ [0,∞)× (−∞,∞)n−1.
If f is a Carathéodory function, by a solution to (1.1) we will mean a function

x which has an absolutely continuous (n− 2) st derivative such that x satisfies
the integral equation (1.1) almost everywhere in [0, 1].

Theorem 5.2 Assume that conditions (2.1)–(2.2) and (2.5) are satisfied and
p, q are such that p, q ≥ 1 and 1

p + 1
q = 1. Suppose the following conditions are

satisfied

(2.20) there exist k∗ ∈ C[0, 1], ki ∈ Lp[0, 1], c̃ > 0 and M > 0 such that

(a) k∗(t) > 0 for a.e. t ∈ [0, 1],

(b) ki(s) ≥ 0 and
∫ 1

0
ki(s)ds > 0 for i = 0, 1, . . . , n− 1 and a.e. s ∈ [0, 1],

(c) Mk∗(t)ki(s) ≤
∣∣∣∂ik(t,s)

∂ti

∣∣∣ ≤ ki(s) for i = 0, 1, . . . , n − 1, t ∈ [0, 1] and
a.e. s ∈ [0, 1],

(d) the map (t, s) → ∂n−1k(t,s)
∂tn−1 is measurable,

(e)
∫ 1

0
k(t, s) ds ≤ c̃Md(t)k∗(t) for t ∈ [0, 1].

(2.21) f : I → (−∞,∞) is a Carathéodory function and there exist nonneg-
ative functions pj ∈ Lq[0, 1] (j = 0, 1, . . . , n − 1) and constants L > 0
and pn > 0 such that

(a) f(t, v0, v1, . . . , vn−1) + L ≥ 0 for a.e. t ∈ [0, 1] and
all (v0, v1, . . . , vn−1) ∈ J ,

(b) |f(t, v0, v1, . . . , vn−1)| ≤
∑n−2

i=0 pi(t)|vi| + pn−1(t) + pn|vn−1|
p
q for a.e.

t ∈ [0, 1] and all (v0, v1, . . . , vn−1) ∈ J ,

(c) f(t, v0, v1, . . . , vn−1) + L ≤ ψ(v0 + |v1|+ . . . + |vn−1|) for a.e. t ∈ [0, 1]
and all (v0, v1, . . . , vn−1) ∈ J , where ψ : [0,∞) → [0,∞) is a continuous
and nondecreasing with ψ(u) > 0 for u > 0,

(2.22) ‖ψ(x + |x′| + . . . + |x(n−1)|)‖∗q ≤ ϕ(‖x‖n−1,p) with ϕ : [0,∞) → [0,∞)
continuous and nondecreasing and x ∈ Wn−1,p[0, 1],

(2.23) f(t, v0, v1, . . . , vn−1) + L ≥ g(v0) for a.e. t ∈ [0,∞) and
all (v0, v1, . . . , vn−1) ∈ J with g : [0,∞) → [0,∞) continuous and non-
decreasing and g(u) > 0 for u > 0,
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(2.24) there exists r > 0 such that r ≥ μLc̃ and

r

ϕ(r + ‖φ‖n−1,p)
≥ μ(b + ‖kn−1‖∗p),

where

b =
n−2∑

i=0

sup
t∈[0,1]

∥∥∥∥
∂ik(t, ·)

∂ti

∥∥∥∥
∗

p

and φ is defined by (2.9),

(2.25) there exist R > 0 and t0 ∈ [0, 1] such that R > r, k∗(t0) > 0, d(t0) > 0
and

R ≤ μ

∫ 1

0

[
k(t0, s) +

∣∣∣∂k(t0,s)
∂t

∣∣∣+ . . . +
∣∣∣∂n−1k(t0,s)

∂tn−1

∣∣∣
]
d(t0)g(εRMd(s)k∗(s))ds,

where ε is defined by (2.11).

Then (1.1) has a nonnegative solution x ∈ Wn−1,p[0, 1] with x(t) > 0 for a.e.
t ∈ [0, 1].

Proof It is enough to show (2.12) has a solution u ∈ Wn−1,p[0, 1]. Let a(t) =
Md(t)k∗(t) and let

K = {u ∈ Wn−1,p[0, 1] : u(t)− d(t)
[
|u′(t)|+ . . . + |u(n−1)(t)|

]

≥ a(t)‖u‖n−1,p for a.e. t ∈ [0, 1]}.

Clearly K is a cone of Wn−1,p[0, 1].
Let

Ω1 = {x ∈ Wn−1,p[0, 1] : ‖x‖n−1,p < r},
Ω2 = {x ∈ Wn−1,p[0, 1] : ‖x‖n−1,p < R}

and

f̃(s, x(s)− φ(s)) = f∗(s, x(s)− φ(s), x′(s)− φ′(s), . . . , x(n−1)(s)− φ(n−1)(s)),

where x ∈ Wn−1,p[0, 1] and f∗ is defined by (2.12). We will show that there
exist a solution x1 ∈ Wn−1,p[0, 1] to the equation (2.12) with x1(t) ≥ φ(t) for
t ∈ [0, 1].
Let A : K ∩ (Ω2 \ Ω1) → Wn−1,p[0, 1] be defined by

Ax(t) = μ

∫ 1

0

k(t, s)f̃(s, x(s)− φ(s)) ds.

Then

|(Ax)(n−1)(t)| ≤ μ

∫ 1

0

kn(s)f̃(s, x(s)− φ(s)) ds (2.27)
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and

|Ax(t)|+ |(Ax)′(t)|+ . . . + |(Ax)(n−2)(t)| ≤ μ

n−2∑

i=0

∫ 1

0

ki(s)f̃(s, x(s)− φ(s)) ds.

(2.28)
From relations (2.27)–(2.28), (2.21)–(2.22) and Hölder’s inequality it follows

‖Ax‖n−1,p ≤ μ

n−1∑

i=0

∫ 1

0

ki(s)f̃(s, x(s)− φ(s)) ds

≤ μ

n−1∑

i=0

ϕ(‖x‖n−1,p + ‖φ‖n−1,p)‖ki‖∗p. (2.29)

Note that A is well defined operator. Now we will prove

A : K ∩ (Ω2 \ Ω1) → K.

If x ∈ K ∩ (Ω2 \ Ω1) and t ∈ [0, 1], then (2.20), (2.5) and (2.29) imply

Ax(t)− d(t)
[
|(Ax)′(t)|+ . . . + |(Ax)(n−1)(t)|

]

≥ μd(t)
∫ 1

0

[
k(t, s) +

∣∣∣∣
∂k(t, s)

∂t

∣∣∣∣ + . . . +
∣∣∣∣
∂n−1k(t, s)

∂tn−1

∣∣∣∣
]

f̃(s, x(s)− φ(s)) ds

≥ μd(t)Mk∗(t)

(
n−1∑

i=0

∫ 1

0

ki(s)f̃(s, x(s)− φ(s))

)
ds ≥ a(t)‖Ax‖n−1,p.

Thus Ax ∈ K and A : K ∩ (Ω2 \ Ω1) → K. Now we will prove that A is a
continuous operator. It is enough to show that the Niemytzki operator H :
Wn−1,p[0, 1] → Lq[0, 1] defined by

Hx(t) = f∗(t, x(t)− φ(t), x′(t)− φ′(t), . . . , x(n−1)(t)− φ(n−1)(t))

is continuous. The proof of the continuity of H is similar to the proof of Theo-
rem 1.2 in [6]. Let {xν} be a sequence of elements of Wn−1,p[0, 1] converging to
x in Wn−1,p[0, 1]. Then there exists a subsequence {x(n−1)

νλ (t)} of the sequence
{x(n−1)

ν (t)} such that
lim

λ→∞
x(n−1)

νλ
(t) = x(n−1)(t) for a.e. t ∈ [0, 1].

Moreover, there exists a function g ∈ Lp[0, 1] with

|x(n−1)
νλ

(t)| ≤ g(t) for a.e. t ∈ [0, 1]

([6], Lemma 2.1). Hence by (2.21)(b) we conclude that there exists a function
h ∈ Lq[0, 1] such that

|f∗(t, x(t)− φ(t), x′(t)− φ′(t), . . . , x(n−1)(t)− φ(n−1)(t)
− f∗(t, xνλ

(t)− φ(t), x′νλ
(t)− φ′(t), . . . ,

x(n−1)
νλ

(t)− φ(n−1)(t))| ≤ h(t) for a.e. t ∈ [0, 1].
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From the Lebesgue dominated convergence theorem it folows that the Niemytzki
operator H is continuous at the point x. We next show that A is completely
continuous. Let Ω be a bounded set in

(
Wn−1,p[0, 1], ‖ · ‖n−1,p

)
. Then by virtue

of (2.29) we have A(Ω) is bounded. We need to prove that A(Ω) is relatively
compact. We will use the Arzela–Ascoli and the Riesz theorems. In fact, let
yν ∈ A(Ω) i.e.

yν = A(xν), xν ∈ Ω.

Since A(Ω) is bounded in (Wn−1,p[0, 1], ‖·‖n−1,p) there exist subsequences {x(j)
νμ }

and {y(j)
νμ } of sequences {x(j)

ν } and {y(j)
ν } uniformly convergent to x(j) and y(j)

respectively for j = 0, 1, . . . , n − 2. Without loss of generality we can assume
that the sequences {x(j)

ν } and {y(j)
ν } are uniformly convergent to x(j) and y(j).

We will prove that there exists a subsequence {y(n−1)
νλ } of the sequence {y(n−1)

ν }
such that

lim
λ→∞

‖y(n−1)
νλ

− y‖∗p = 0, where y ∈ Lp[0, 1].

Indeed, for fixed τ > 0 we have by the Hölder inequality and the Fubini theorem
that

∫ 1

0

∣∣∣(Ax)(n−1)(t + τ)− (Ax)(n−1)(t)
∣∣∣
p

dt ≤

≤ μp

∫ 1

0

(∫ 1

0

∣∣∣∣
∂n−1

∂tn−1
k(t + τ, s)− ∂n−1

∂tn−1
k(t, s)

∣∣∣∣
p

ds

)
dt

×
∫ 1

0

(∫ 1

0

|f̃(s, x(s)− φ(s))|qds

) p
q

dt

≤ μpϕ (‖x‖n−1,p + ‖φ‖n−1,p)
p
∫ 1

0

(∫ 1

0

∣∣∣∣
∂n−1

∂tn−1
k(t + τ, s)− ∂n−1

∂tn−1
k(t, s)

∣∣∣∣
p

dt

)
ds.

Now using the fact that translates of Lp are functions continuous in the norm
we see that ∫ 1

0

∣∣∣(Ax)(n−1)(t + τ)− (Ax)(n−1)(t)
∣∣∣
p

dt → 0

as τ → 0 uniformly. From the Riesz compactness theorem it folows that there
exists a subsequence {y(n−1)

νλ } of the sequence {y(n−1)
ν } convergent in Lp[0, 1] to

a function y ∈ Lp[0, 1]. It is easy to notice that

y(n−1)(t) = y(t) for a.e. t ∈ [0, 1].

So A(Ω) is relatively compact, i.e. A is completely continuous. Next we show
that

‖Ax‖n−1,p ≤ ‖x‖n−1,p for x ∈ K ∩ ∂Ω1. (2.30)

Let x ∈ K ∩ ∂Ω1, so ‖x‖n−1,p = r and x(t) ≥ a(t)r for a.e. t ∈ [0, 1]. The
relations (2.21)–(2.22), (2.24), (2.27)–(2.29) yield

n−2∑

j=0

∣∣∣(Ax)(j)(t)
∣∣∣ ≤ μbϕ(‖x‖n−1,p + ‖φ‖n−1,p) (2.31)
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and

n−2∑

j=0

|(Ax)(j)(t)|+ ‖Ax‖∗p ≤ μϕ(‖x‖n−1,p + ‖φ‖n−1,p)(b + ‖kn−1‖∗p) ≤ r (2.32)

By (2.31)–(2.32) and (2.24) we get

‖Ax‖n−1,p ≤ ‖x‖n−1,p.

So (2.30) holds. Using arguments similar to these in the proof of Theorem 2.1
we conclude that

‖Ax‖n−1,p ≥ ‖x‖n−1,p for x ∈ K ∩ ∂Ω2.

Theorem 1.1 implies A has a fixed point x1 ∈ K ∩ (Ω2 \ Ω1) i.e.

r ≤ ‖x1‖n−1,p ≤ R and x1(t) ≥ a(t)r.

Thus for a.e. t ∈ [0, 1] we have x1(t) ≥ a(t)r ≥ φ(t). This completes the proof
of Theorem 2.3. �
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