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Abstract

This paper extends some known results on the boundedness of solu-
tions and the existence of periodic solutions of certain vector equations to
matrix equations.
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1 Introduction

Let M denote the space of all real n × n matrices, Rn the real n-dimensional
Euclidean space and R the real line −∞ < t < ∞. We shall be concerned here
with certain properties of solutions of differential equations of the form

...

X +AẌ +BẊ +H(X) = P (t,X, Ẋ, Ẍ) (1.1)

where X : R → M is the unknown, A,B ∈ M are constants, H : M → M
and P : R ×M×M×M → M. The specific properties we shall be interested
in are the ultimate boundedness of all solutions and the existence of periodic
solutions when P is periodic in t.
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66 M. O. OMEIKE

In [8], Tejumola establishes conditions under which all solutions of the matrix
differential equation,

Ẍ +AẊ +H(X) = P (t,X, Ẋ), (1.2)

are stable, bounded and periodic (depending on the choice of P ). These results
are extended to the equation (1.1).
For the special case in which (1.1) is an n-vector equation (so that X : R →

Rn, H : Rn → Rn and P : R×Rn ×Rn ×Rn → Rn) a number of boundedness,
stability and existence of periodic solutions results have been established by
Ezeilo and Tejumola [4], Afuwape [1] , Meng [5] and others for a number of
various vector third order differential equations. The conditions obtained in each
of these previous investigations are generalizations of the well-known Routh–
Hurwitz conditions

a > 0, c > 0, ab− c > 0 (1.3)

for the stability of the trivial solution of the linear differential equation

...
x +aẍ+ bẋ+ cx = 0 (1.4)

with constant coefficients. Our present investigations are akin to those of Teju-
mola [8], Meng [5], Afuwape [1] and we shall provide extensions of their results
to matrix differential equations of the form (1.1).

2 Notations and definitions

Some standard matrix notation will be used. For any X ∈ M, XT and xij ,
i, j = 1, 2, . . . , n denote the transpose and the elements of X respectively while
(xij)(yij) will sometimes denote the product matrix XY of the matrices X,Y ∈
M. Xi = (xi1, xi2, . . . , xin) and Xj = (x1j , x2j , . . . , xnj) stand for the i-th row
and j-th column of X respectively and X = (X1, X2, . . . , Xn) is the n2 column
vector consisting of the n rows of X .
We shall denote by JH(X) the n2 × n2 generalised Jacobian matrix associ-

ated with the function H : M → M and evaluated at X : that is, JH(X) is the
matrix associated with the Jacobian determinant ∂(H1,H2,...,Hn)

∂(X1,X2,...,Xn) . Corresponding

to the constant matrix A ∈ M we define an n2 × n2 matrix Ã consisting of n2

diagonal n × n matrix(aijIn)(In being the unit n × n matrix) and such that
(aijIn) belongs to the i-th n row and j-th n column (that is, counting n at a
time) of Ã. In the special case n = 2, Ã is the 4 × 4 matrix(

a11I2 a12I2

a21I2 a22I2

)
.

Next we introduce an inner product 〈., .〉 and a norm ‖ · ‖ onM as follows.
For arbitrary X,Y ∈ M, 〈X,Y 〉 = trace XY T . It is easy to check that 〈X,Y 〉 =
〈Y,X〉 and that ‖X − Y ‖2 = 〈X − Y,X − Y 〉 defines a norm of M. Indeed,
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‖X‖ = |X|n2 where | · |n2 denotes the usual Euclidean norm in Rn2
and X ∈ Rn2

is as defined above.
Lastly the symbol δ, with or without subscripts, denote finite positive con-

stants whose magnitudes depend only on A,B,H and P . Any δ, with a sub-
script, retains a fixed identity throughout while the unnumbered ones are not
necessarily the same each time they occur.

3 Statement of results

It will be assumed throughout the sequel that H ∈ C′(M) and that P ∈ C(R×
M×M×M). Further, H and P satisfy conditions for the existence of solutions
of (1.1) for any set of preassigned initial conditions.

Theorem 1 Let H(0) = 0 and suppose that

(i) the Jacobian matrix JH(X) of H(X) is symmetric and furthermore that
the eigenvalues λi(JH(X)) of JH(X), (i = 1, 2, . . . , n2) satisfy for X ∈
M,

0 < δh ≤ λi(JH(X)) ≤ ∆h (3.1)

where δh,∆h are finite constants;

(ii) the matrices Ã, B̃, JH(X) are associative and commute pairwise. The
eigenvalues λi(Ã) of Ã and λi(B̃) of B̃ (i = 1, 2, . . . , n2) satisfy

0 < δa ≤ λi(Ã) ≤ ∆a (3.2)

0 < δb < λi(B̃) ≤ ∆b (3.3)

where δa, δb,∆a,∆b are finite constants. Furthermore,

∆h ≤ kδaδb, (3.4)

where

k = min
{
α(1 − β)δb
δa(α+ ∆a)2

;
α(1 − β)δa
2(δa + 2α)2

}
(3.5)

α > 0, 0 < β < 1 are some constants,

(iii) P satisfies

‖P (t,X, Y, Z)‖ ≤ δ0 + δ1(‖X‖ + ‖Y ‖ + ‖Z‖) (3.6)

for all arbitrary X,Y, Z ∈ M, where δ0 ≥ 0, δ1 ≥ 0 are constants and δ1 is
sufficiently small.
Then every solution X(t) of (1.1) satisfies

‖X(t)‖ ≤ ∆1, ‖Ẋ(t)‖ ≤ ∆1, ‖Ẍ(t)‖ ≤ ∆1 (3.7)

for all t sufficiently large, where ∆1 is a constant the magnitude of which depends
only on δ0, δ1, A, B, H and P .
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This result provides an extension of a result of Afuwape [1], and Meng [5]
for an n-vector.

Theorem 2 Suppose, further to the conditions of Theorem 1, that P satisfies
P (t,X, Y, Z) = P (t + ω,X, Y, Z) uniformly for all X,Y, Z ∈ M. Then (1.1)
admits of at least one periodic solution with period ω.

4 Some preliminaries

The following results will be basic to the proofs of Theorems 1 and 2.

Lemma 1 [8] Let H(0) = 0 and assume that the matrices Ã and JH(X) are
symmetric and commute for all X ∈ M. Then

〈H(X), AX〉 =
∫ 1

0

XT ÃJH(σX)Xdσ.

Lemma 2 [1] Let D be a real symmetric �× � matrix, then for any X ∈ R� we
have

δd‖X‖2 ≤ 〈DX,X〉 ≤ ∆d‖X‖2,

where δd,∆d are the least and greatest eigenvalues of D, respectively.

Lemma 3 [1] Let Q,D be any two real � × � commuting symmetric matrices.
Then

(i) the eigenvalues λi(QD) (i = 1, 2, . . . , �) of the product matrix QD are all
real and satisfy

max
i≤j,k≤�

λj(Q)λk(D) ≥ λi(QD) ≥ min
1≤j,k≤�

λj(Q)λk(D);

(ii) the eigenvalues λi(Q +D) (i = 1, 2, . . . , �) of the sum of matrices Q and
D are real and satisfy{
max
i≤j≤�

λj(Q) + max
1≤k≤�

λk(D)
}

≥ λi(Q+D) ≥
{

min
1≤j≤�

λj(Q) + min
1≤k≤�

λk(D)
}
.

Proof of Theorem 1 Let us for convenience, replace Eq.(1.1) by the equivalent
system form

Ẋ = Y,

Ẏ = Z,

Ż = −AZ −BY −H(X) + P (t,X, Y, Z).
(4.1)

Our main tool in the proof is the scalar Lyapunov function

V : M×M×M → R
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adapted from [5] and defined for any function X,Y, Z ∈ M by

2V =
{〈β(1 − β)BX,BX〉 + 〈2αA−1BY, Y 〉 + 〈βBY, Y 〉
+ 〈αA−1Z,Z〉 + 〈α(Z +AY ), Y +A−1Z〉
〈Z +AY + (1 − β)BX,Z +AY + (1 − β)BX〉} (4.2)

where α > 0, 0 < β < 1 are some constants. For each term of this function it is
clear that

β(1−β)δb‖X‖2 ≤ 〈β(1−β)BX,BX〉 = β(1−β)
n∑

i=1

|BX i|2n ≤ β(1−β)∆b‖X‖2,

(4.3a)

2α∆−1
a δb‖Y ‖2 ≤ 〈2αA−1BY, Y 〉 = 2α

n∑
i=1

|A−1BY i|2n ≤ 2αδ−1
a ∆b‖Y ‖2. (4.3b)

In a similar manner,

βδb‖Y ‖ ≤ 〈βBY, Y 〉 = β

n∑
i=1

|BY i|2n ≤ β∆b‖Y ‖2, (4.3c)

α∆−1
a ‖Z‖2 ≤ 〈αA−1Z,Z〉 ≤ αδ−1

a ‖Z‖2, (4.3d)

0 ≤ 〈α(Z +AY ), Y +A−1Z〉 ≤ ν(‖Y ‖2 + ‖Z‖2), (4.3e)

and

0 ≤ 〈Z +AY + (1 − β)BX,Z +AY + (1 − β)BX〉

=
n∑

i=1

|Zi +AY i + (1 − β)BX i|2n ≤ µ(‖Z‖2 + ‖Y ‖2 + ‖X‖2), (4.3f)

for some positive constants ν, µ. The estimates above are valid since

n∑
i=1

|X i|2n =
n∑

i=1

|Xi|2n = |X|2n2 for any X ∈ M.

Combining these estimates (4.3a–4.3f) in (4.2) we obtain that

δ2(‖X‖2 + ‖Y ‖2 + ‖Z‖2) ≤ 2V ≤ δ3(‖X‖2 + ‖Y ‖2 + ‖Z‖2), (4.4)

δ2 = min{β(1 − β)δb; 2α∆−1
a δb + βδb;α∆−1

a }
and

δ3 = max{β(1 − β)∆b + µ; 2αδ−1
a ∆b + β∆b + ν + µ; αδ−1

a + ν + µ}.

From (4.4), we have that V (X,Y, Z) → ∞ as ‖X‖2 + ‖Y ‖2 + ‖Z‖2 → ∞.
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To prove our result, it suffices to prove that there exists a constant ∆1 ≥ 1
such that

‖X‖2 + ‖Y ‖2 + ‖Z‖2 ≤ ∆1, for t ≥ T (X0, Y0, Z0), (4.5)

for any solution (X,Y, Z) for (4.1), (X0 = X(0), Y0 = Y (0), Z0 = Z(0)).
Let (X,Y, Z) be any solution of (4.1), then the total derivative of V with

respect to t along this solution path is

V̇ = −U1 − U2 − U3 + U4 (4.6)

where

U1 =
〈

1 − β

2
BX,H(X)

〉
+ 〈βABY, Y 〉 +

〈α
2
Z,Z

〉

U2 =
〈

1 − β

2
BY,H(X)

〉
+ 〈αBY, Y 〉 + 〈(A+ αI)Y,H(X)〉

U3 =
〈

1 − β

4
BX,H(X)

〉
+
〈α

2
Z,Z

〉
+ 〈(I + 2αA−1)Z,H(X)〉

U4 =
〈
(1 − β)BX + (A + αI)Y + (I + 2αA−1)Z,P (t,X, Y, Z)

〉
.

To arrive at (4.5), we first prove the following:

Lemma 4 Subject to a conveniently chosen value for k in (3.5), we have for
all X,Y, Z

Uj ≥ 0, (j = 2, 3).

Proof For strictly positive constants k1, k2 conveniently chosen later, we have

〈(αI +A)Y,H(X)〉 =
∥∥∥k1 (αI +A)1/2

Y + 2−1k−1
1 (αI +A)1/2

H(X)
∥∥∥2

− 〈k2
1(αI +A)Y, Y 〉 − 4−1k−2

1 〈(αI +A)H(X), H(X)〉 (4.7a)

and

〈(I + 2αA−1)Z,H(X)〉 =

=
∥∥∥k2

(
I + 2αA−1

)1/2
Z + 2−1k−1

2

(
I + 2αA−1

)1/2
H(X)

∥∥∥2

− 〈k2
2(I + 2αA−1)Z,Z〉 − 〈4−1k−2

2 (I + 2αA−1)H(X), H(X)
〉
, (4.7b)

thus,

U2 = ‖k1(αI +A)1/2Y + 2−1k−1
1 (αI +A)1/2H(X)‖2

〈4−1(1 − β)BX − 4−1k−1
1 (αI +A)H(X), H(X)〉 + 〈(αB − k2

1(αI +A)Y, Y 〉
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and

U3 = ‖k2(I + 2αA−1)1/2Z + 2−1k−1
2 (I + 2αA−1)1/2H(X)‖2

+ 〈(1 − β)4−1BX − 4−1k−2
2 (I + 2αA−1)H(X), H(X)〉

+
〈[α

2
I − k2

2(I + 2αA−1)
]
Z,Z

〉
.

By Lemmas 1,2 and 3, we obtain

U2 ≥
{∫ 1

0

σ

∫ 1

0

XT

[
1 − β

4
B̃ − 1

4k2
1

(
αĨ + Ã

)
JH(σX)

]
JH(τσX)Xdτdσ

+Y T
[
αB̃ − k2

1(αĨ + Ã)
]
Y
}
, (4.8a)

and

U3 ≥
{∫ 1

0

σ

∫ 1

0

XT

[
1 − β

4
B̃ − 1

4k2
2

(
αĨ + 2αÃ−1

)
JH(σX)

]
JH(τσX)Xdτdσ

+ZT
[α
2
Ĩ − k2

2(Ĩ + 2αÃ−1)
]
Z
}
. (4.8b)

Furthermore, by using Lemmas 2 and 3, we obtain

U2 ≥
{
δh

[
1 − β

4
δb − 1

4k2
1

(α+ ∆a)∆h

]
‖X‖2 +

[
αδb − k2

1(α+ ∆a)
] ‖Y ‖2

}
,

(4.8c)
and

U3 ≥
{
δh

[
1 − β

4
δb − 1

4k2
2

(1 + 2αδ−1
a )∆h

]
‖X‖2 +

[α
2
− k2

2(1 + 2αδ−1
a )

]
‖Z‖2

}
,

(4.8d)
Thus, using (3.1), (3.2), (3.3) we obtain, for all X,Y ∈ M,

U2 ≥ 0 (4.9a)

if k2
1 ≤ αδb

α+∆a
with

∆h ≤ k2
1(1 − β)δb
(α+ ∆a)

≤ α(1 − β)δ2b
(α+ ∆a)2

(4.10a)

and for all X,Z inM,
U3 ≥ 0 (4.9b)

if k2
2 ≤ αδa

2(δ+2α) with

∆h ≤ k2
2(1 − β)δaδb
(2α+ δa)

≤ α(1 − β)δ2aδb
2(2α+ δa)2

. (4.10b)

Combining all the inequalities in (4.9) and (4.10), we have inequalities (3.4) with
(3.5) satisfied. Thus, for all X,Y, Z ∈ M, U2 ≥ 0 and U3 ≥ 0. This completes
the proof of Lemma 4. �
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Finally, we are left with estimates for U1 and U4. From (4.6), we clearly
have

U1 =
1 − β

2

∫ 1

0

XT B̃JH(σX)X dσ + βY T ÃB̃Y +
α

2
ZTZ

≥ 1 − β

2
δbδh‖X‖2 + βδaδb‖Y ‖2 +

α

2
‖Z‖2 ≥ δ4(‖X‖2 + ‖Y ‖2 + ‖Z‖2) (4.11)

where

δ4 = min
{
δb
2
δh(1 − β);βδaδb;

α

2

}
.

Since P (t,X, Y, Z) satisfies (3.6), by Schwarz’s inequality, we obtain

|U4| ≤ {(1 − β)∆b‖X‖ + (α+ ∆a)‖Y ‖ + (1 + 2αδ−1
a )‖Z‖}‖P (t,X, Y, Z)‖

≤ δ5(‖X‖ + ‖Y ‖ + ‖Z‖)[δ0 + δ1(‖X‖ + ‖Y ‖ + ‖Z‖)]
≤ 3δ1δ5(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + 31/2δ0δ5(‖X‖2 + ‖Y ‖2 + ‖Z‖2)1/2,

(4.12)
where

δ5 = max{(1 − β)∆b; (α + ∆a); (1 + 2αδ−1
a )}.

Combining inequalities (4.9), (4.11) and (4.12) in (4.6), we obtain

V̇ ≤ −2δ6(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + δ7(‖X‖2 + ‖Y ‖2 + ‖Z‖2)1/2, (4.13)

where

δ6 =
1
2
(δ4 − 3δ1δ5) and δ7 = 31/2δ0δ5.

Thus, with δ1 < 3−1δ−1
5 δ4, we have that δ6 > 0.

If we choose

(‖X‖2 + ‖Y ‖2 + ‖Z‖2)1/2 ≥ δ8 = 2δ7δ−1
6 ,

inequality (4.13) implies that

V̇ ≤ −δ6(‖X‖2 + ‖Y ‖2 + ‖Z‖2). (4.14)

Then there exists δ9 such that

V̇ ≤ −1 if ‖X‖2 + ‖Y ‖2 + ‖Z‖2 ≥ δ29 .

The remainder of the proof of Theorem 1 may now be obtained by use of
the estimates (4.4) and (4.14) and an obvious adaptation of the Yoshizawa type
reasoning employed in [5].

Proof of Theorem 2 The proof of this theorem follows as in the proof of
[5, Theorem 3].

Acknowledgement The author would like to express sincere thanks to the
anonymous referees for their invaluable corrections, comments and suggestions.



Ultimate boundedness results . . . 73

References

[1] Afuwape, A. U.: Ultimate boundedness results for a certain system of third order non-
linear differential equation. J. Math. Annal. Appl. 97 (1983), 140–150.

[2] Afuwape, A. U., Omeike, M. O.: Further ultimate boundedness of solutions of some
system of third order non-linear ordinary differential equations. Acta Univ. Palacki.
Olomuc., Fac. rer. nat., Math. 43 (2004), 7–20.

[3] Browder, F. E.: On a generalization of the Schauder fixed point theorem. Duke Math. J.
26 (1959), 291–303.

[4] Ezeilo, J. O. C., Tejumola, H. O.: Boundedness and periodicity of solutions of a cer-
tain system of third order non-linear differential equations. Annali Mat. Pura. Appl. 74
(1966), 283–316.

[5] Meng, F. W.: Ultimate boundedness results for a certain system of third order nonlinear
differential equations. J. Math. Anal. Appl. 177 (1993), 496–509.

[6] Omeike, M. O.: Qualitative Study of solutions of certain n-system of third order non-
linear ordinary differential equations. Ph.D. Thesis, University of Agriculture, Abeokuta,
2005.

[7] Reissig, R., Sansone, G., Conti, R.: Non-linear Differential Equations of higher order.
No-ordhoff International Publishing, 1974.

[8] Tejumola, H. O.: On a Lienard type matrix differential equation. Atti Accad. Naz. Lincei
Rendi. Cl. Sci. Fis. Mat. Natur (8) 60, 2 (1976), 100–107.

[9] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. The Mathematical So-
ciety of Japan, 1966.


		webmaster@dml.cz
	2012-05-04T00:42:28+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




