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Abstract

The aim of our article is to present a proof of the existence of local
minimizer in the classical optimality problem without constraints under
weaker assumptions in comparisons with common statements of the result.
In addition we will provide rather elementary and self-contained proof of
that result.

Key words: Second-order derivative; C1,1 function; stable function;
isolated minimizer of order 2.

2000 Mathematics Subject Classification: 49K10, 26B05

1 Introduction

Past all doubt it is very important to be able to find the minimum or maximum
of a function. Recall for example that by J. von Neumann every physical system
tends to have its minimum of internal energy.
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From the basic course of mathematical analysis we know the second-order
condition for strict local minimum (see [Zo]) given in Theorem 1 below. We will
use the following notation and terminology.

We denote by f ′(x;h), i.e.

f ′(x;h) = lim
t↓0

f(x+ th) − f(x)
t

,

the first-order directional derivative of f : RN → R at x ∈ RN in direction
h ∈ RN

If there exists f ′(x) ∈ L(RN ,R) (it means f ′(x) is an element of the set of
all continuous linear mappings from RN to R) such that f ′(x)h = f ′(x;h) for
every h ∈ SN

R
= {y ∈ RN ; ‖y‖ = 1}, and the limit in the definition of f ′(x)h is

uniform for h ∈ SN
R
, then we say that f : RN → R is Fréchet differentiable at

x ∈ RN .
Further,

f ′′(x;u, v) = lim
t↓0

f ′(x+ tu; v) − f ′(x; v)
t

denotes the second-order directional derivative of f at x in direction (u, v) ∈ RN .
We say that f : RN → R is a C2 function near x ∈ RN if it has continuous

second-order partial derivatives on some neighbourhood of x.
Analogously, we will say that a function f : RN → R satisfies a p-property

near x ∈ RN if that p-property holds on some neighbourhood of x.
Recall that x ∈ RN is an isolated minimizer of order 2 for a function f :

RN → R if there are a neighbourhood U of x and A > 0 satisfying f(y) ≥
f(x) + A‖y − x‖2 for every y ∈ U . We notice that each isolated minimizer of
order 2 is a strict local minimizer.

Theorem 1 Let f : RN → R be a C2 function near x ∈ RN . If f ′(x) = 0, and

f ′′(x;h, h) > 0,

for every h ∈ SN
R
, then x is an isolated minimizer of order 2 for f .

Since in some problems of applied mathematics—as for example in varia-
tional inequalities, semi-infinite programming, penalty functions, proximal point
methods, iterated local minimization by decomposition or augmented Lagran-
gian—differentiable functions which are not twice differentiable appear (see e.g.
[HSN, KT, TR, Q1, Q2]), it was studied the following class of functions.
We say that f : RN → R is a C1,1 function near x ∈ RN if it is differentiable

on some neighbourhood of x and its derivative f ′(·) is Lipschitz there.
It is clear that the class of C1,1 functions includes the class of C2 functions.

On the other hand, considering a function f : R → R defined as

f(x) =
∫ x

0

|t|dt, ∀x ∈ R,
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we have that f ′(x) = |x|, for every x ∈ R. It means that f ′(x) is Lipschitz
function on R, but f is not twice differentiable at 0.
R. Cominetti and R. Correa generalized Theorem 1 by the following way in

1990.

Theorem 2 [CC] Let f : RN → R be a C1,1 function near x ∈ RN . If
f ′(x) = 0, and

f∞(x;h) := lim inf
y→x,t↓0

f ′(y + th;h) − f ′(y;h)
t

> 0,

for every h ∈ SN
R
, then x is an isolated minimizer of order 2 for f .

The second-order condition from Theorem 2 was improved by elimination of
strict convergence in 2004. We used a certain derivative of the Dini type.

Theorem 3 [BP1] Let f : RN → R be a C1,1 function near x ∈ RN . If
f ′(x) = 0, and

f ′�
D(x;h) := lim inf

t↓0
f ′(x+ th;h) − f ′(x;h)

t
> 0,

for every h ∈ SN
R
, then x is an isolated minimizer of order 2 for f .

I. Ginchev, A. Guerraggio and M. Rocca presented the generalization of
Theorem 1 in terms of the Peano derivative in 2006.

Theorem 4 [GGR] Let f : RN → R be a C1,1 function near x ∈ RN . If
f ′(x) = 0, and

f ′�
P (x;h) := lim inf

t↓0
f(x+ th) − f(x) − tf ′(x;h)

t2/2
> 0,

for every h ∈ SN
R
, then x is an isolated minimizer of order 2 for f .

It can be easily derived from [TR, Theorem 4] that f ′�
P (x;h) ≥ f ′�

D(x;h).
Moreover, since the calculus with f ′�

P (x;h) seems to be more comfortable than
that with f ′�

D(x;h), we can say that Theorem 3 lost its sense after Theorem 4.
Example 1 confirms this fact.

Example 1 Let us consider a function

f(x) =
{ ∫ |x|

0 t(19
20 + sin ln t) dt, if x �= 0,

0, if x = 0.

In [BP2], we showed that f is a C1,1 function, f ′�
D(0; 1) = 19

20 − 1 < 0, and
f ′�

P (0; 1) = f ′�
P (0;−1) = 19

20 + 2
5 (−√

5) > 0. Due to Theorem 4 the function f
attains its strict local minimum, but Theorem 3 is not applicable.
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Another result was stated by A. Ben-Tal and J. Zowe in 1985. A function
f : RN → R for which there exist a neighbourhood U of x ∈ RN and K > 0
such that for all y ∈ U there exists the Fréchet derivative f ′(y) and

‖f ′(y) − f ′(x)‖ ≤ K‖y − x‖, ∀y ∈ U,

is called stable at x. We note that if f : RN → R is a C1,1 function near x ∈ RN ,
then f is stable at x.

Theorem 5 [BZ] Let f : RN → R be Fréchet differentiable near x ∈ RN and
let f be stable at x. If f ′(x) = 0 and

f ′′
P (x;h) := lim

t↓0
f(x+ th) − f(x) − tf ′(x;h)

t2/2
> 0,

for every h ∈ SN
R
, then x is a strict local minimizer 2 for f .

Finally, we note that we generalized both Theorems 4, 5 in terms of so called
�–stable functions as follows.
We say that a function f : RN → R is �-stable at x ∈ RN if there exist a

neighbourhood U of x and K > 0 such that

|f �(y;h) − f �(x;h)| ≤ K‖y − x‖, ∀y ∈ U, ∀h ∈ SN
R
,

where

f �(x;h) = lim inf
t↓0

f(x+ th) − f(x)
t

.

It is worth to note that the �–stability at x implies the strict differentiability of
the function at the point x.

Theorem 6 [BP2] Let f : RN → R be continuous near x ∈ RN and let f be
�-stable at x. If f ′(x) = 0, and

f ′�
P (x;h) > 0,

then x is an isolated minimizer of order 2 for f .

The C1,1 property can be generalized also in the following way.

Definition 1 We say that f : RN → R is �̃-stable at x ∈ RN if there exist a
neighbourhood U of x and K > 0 such that

|f �(z; z − y) − f �(y; z − y)| ≤ K‖z − y‖2, ∀y, z ∈ U.

Remark 1 Notice that a function f : RN → R is �̃-stable at x ∈ RN if there
exist a neighbourhood U of x and K > 0 such that

|f �(y + th;h) − f �(y;h)| ≤ Kt,

for every h ∈ SN
R
, y ∈ U and t > 0 satisfying y + th ∈ U .
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Remark 2 Notice that verifying the �-stability we compare f �(·, ·) for points
from U only with x but in all directions. Conversely, verifying the �̃-stability
we compare f �(·, ·) for every point from U with every point from U but only in
the corresponding direction.

In [BP3], we passed the problem whether we can replace the condition to
be �-stable by the condition to be �̃-stable in Theorem 6. In Section 3, we will
answer this question in the affirmative. Before it, in Section 2, we will examine
some properties of �̃-stable functions.

2 �̃-stability

At first, we will derive that the �̃-stability together with continuity implies the
Lipschitzness.

Lemma 1 [BP2, Lemma 4] Let f : RN → R be a continuous function, and let
a, b ∈ RN . Then there exist ξ1, ξ2 ∈ (a, b) such that

f �(ξ1; b− a) ≤ f(b) − f(a) ≤ f �(ξ2; b− a). (1)

Lemma 2 Let f : RN → R be a continuous function near x ∈ RN and let f be
�̃–stable at x. Then there exists a neighbourhood V of x such that

sup
h∈SN

R
, y∈V

|f �(y;h)| <∞.

Proof Suppose on the contrary that there are sequences {yn}∞n=1 ⊂ RN ,
{hn}∞n=1 ⊂ SN

R
such that yn → x as n→ ∞ and

lim
n→∞ |f �(yn;hn)| = ∞.

Without any loss of generality we can assume that either

lim
n→∞ f �(yn, hn) = −∞

or
lim

n→∞ f �(yn, hn) = +∞.

We suppose that the first case occurs (the second case can be treated by an
analogous way).
Next we can assume that for certain γ > 0 the condition in Definition 1 of

the �-stability is fulfilled on B(x, γ), and moreover f is continuous and bounded
on B(x, γ). Let δ > 0 denote a constant such that for each sufficiently large
n ∈ N we have : yn + δhn ∈ B(x, γ).
Now, if we combine the �̃-stability and Lemma 1, for each sufficiently large

n ∈ N we get ξn ∈ (yn, yn + δhn) such that the following holds :

f(yn + δhn) ≤ f(yn) + δf �(ξn;hn)
= f(yn) + δ[f �(ξn;hn) − f �(yn + δhn;hn) + f �(yn + δhn;hn)

−f �(yn;hn) + f �(yn;hn)]
≤ f(yn) + 2Kδ2 + δf �(yn;hn).
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Since f is bounded on B(x, γ) and f �(yn;hn) → −∞, the previous inequality
does not hold for any sufficiently large n ∈ N,which is a contradiction. �

Proposition 1 Let f : RN → R be a continuous function near x ∈ RN and let
f be �̃-stable at x. Then f is Lipschitz near x.

Proof Due to Lemma 2 there exists a ball B(x, δ) on which f is continuous
and

L := sup
y∈B(x,δ),h∈S

RN

|f �(y;h)| <∞.

Next by Lemma 1, for any pair of points a, b ∈ B(x, δ) there exists ξ ∈ (a, b) ⊂
B(x, δ) such that

|f(b) − f(a)| ≤ |f �(ξ; (b − a)/‖b− a‖)|‖b− a‖ ≤ L‖b− a‖. �

Now, we will show some properties of �̃-stable functions concerning differen-
tiability.

Lemma 3 Let f : RN → R be L-Lipschitz near x ∈ RN . Then

|f �(x;h2) − f �(x;h1)| ≤ L‖h1 − h2‖, ∀h1, h2 ∈ RN .

Proof We consider arbitrary h1, h2 ∈ RN . For sufficiently small t > 0 it holds

−L‖h2 − h1‖ ≤ f(x+ th2) − f(x+ th1)
t

=
f(x+ th2) − f(x)

t
− f(x+ th1) − f(x)

t

=
f(x+ th2) − f(x+ th1)

t
≤ L‖h2 − h1‖.

Hence,
|f �(x;h2) − f �(x;h1)| ≤ L‖h2 − h1‖. �

Proposition 2 Let f : RN → R be a continuous function near x ∈ RN and let
f be �̃-stable at x. Then for every y sufficiently close to x we have

(1) f is directionally differentiable at y and f ′(y;−h) = −f ′(y;h) for every
h ∈ SN

R
.

(2) the mapping h �→ f ′(y;h) from RN to R is Lipschitz.

Proof Assume that f is continous on some neighborhood U of x and that the
�̃-stability property holds on U , too. This means, that for some K > 0, we have:

|f �(z; z − y) − f �(y; z − y)| ≤ K‖z − y‖2, (2)



Second-order sufficient condition for �̃-stable functions 13

for every z, y ∈ U. Now fix y0 ∈ U, h0 ∈ SN
R
and show the existence of the direc-

tional derivative f ′(y0;h0). To do this, we will employ the following auxiliary
function g : R → R defined as follows:

g(t) = f(y0 + th0), t ∈ R.

Now we can express its lower Dini directional derivative in the following form
g�(t; 1) = f �(y0 + th0;h0). We have in particular that g�(0; 1) = f �(y0;h0).
Now we will show that the function g is �̃-stable at zero. So let us consider two
arbitrary points t1, t2 ∈ R such that y0 + tih0 ∈ U , i = 1, 2. Then by (2) we
have:

|g�(t1; t1 − t2) − g�(t2; t1 − t2)|
= |f �(y0 + t1h0; (t1 − t2)h0) − f �(y0 + t2h0; (t1 − t2)h0)| ≤ K|t1 − t2|2. (3)

Thus g is �̃-stable at t = 0. Now by the lipschitzness of f near x the function g
must be Lipschitz near t = 0. Hence, from the Rademacher theorem it follows
the existence of a sequence {tn}∞n=1 such that tn ↓ 0, and for every n ∈ N there
exists g′(tn) ∈ R. By (3) the sequence {g′(tn)}∞n=1 is Cauchy and consequently
there exists a limit

L = lim
n→∞ g′(tn) ∈ L(R,R). (4)

In what follows, we will show that in fact L = f ′(y0;h0). This will be true
if we prove that for each sequence {sk}∞k=1 such that sk ↓ 0 it holds∣∣∣∣L− f(y0 + skh0) − f(y0)

sk

∣∣∣∣→ 0 as k → ∞.

Now for every k ∈ N there is nk ∈ N such that tnk
∈ (0, sk) and furthermore,

by Lemma 1 and (3) there are ξk, ξ′k ∈ (0, sk) such that

K|tnk
− ξk| ≤ g′(tnk

) − g�(ξk; 1) ≤ g′(tnk
) − g(sk) − g(0)

sk

≤ g′(tnk
) − g�(ξ′k; 1) ≤ K|tnk

− ξ′k|.
This immediately implies that∣∣∣∣g′(tnk

) − g(sk) − g(0)
sk

∣∣∣∣→ 0 as k → ∞. (5)

Now since for every k ∈ N we have:∣∣∣∣L− f(y0 + skh0) − f(y0)
sk

∣∣∣∣ ≤ |L− g′(tnk
)| +

∣∣∣∣g′(tnk
) − g(sk) − g(0)

sk

∣∣∣∣ ,
by (4), (5) we get the existence of limit

L = lim
k→∞

f(y0 + skh0) − f(x)
sk

,
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whenever {sk}∞k=1 is a sequence such that sk ↓ 0. Hence the following limit
exists:

L = lim
s↓0

f(y0 + sh0) − f(y0)
s

.

The assertion (2) now follows immediately from Proposition 1 and Lemma 3.
�

3 Main result

Theorem 7 Let f : RN → R be continuous near x ∈ RN and let f be �̃-stable
at x. If f ′(x;h) = 0 for all h ∈ SRN , and

f ′�
P (x;h) > 0, ∀h ∈ SRN ,

then x is an isolated minimizer of order 2 for f .

Proof Without loss of generality we can assume that x = 0, and f(0) = 0. In
the proof, we will apply the mathematical induction on the dimension N . First
put N = 1 and suppose on the contrary that the assertion does not hold. Then
there exists a sequence {xn}n∈N such that xn → 0 as n→ ∞, and

f(xn) ≤ 1
n
|xn|2, ∀n ∈ N. (6)

Suppose, for example, that xn > 0 for every n ∈ N. By the hypothesis of
theorem it follows that there are δ > 0, α > 0 such that

f(t · 1)
t2

≥ α > 0, ∀t ∈ (0, δ). (7)

By (6) and (7) we have for n ∈ N sufficiently large, that

α ≤ f(xn)
x2

n

≤ 1
n
,

hence a contradiction. Thus the assertion is true for N = 1.
Now let the assertion holds for N ≥ 1 and we will prove it for N + 1. To do

this, let us assume again that x̂ = 0 is not a minimizer of order 2 for f . This
implies the existence of some sequence {xn}n∈N in RN+1 such that xn → 0 as
n→ ∞, and

f(xn) ≤ 1
n
‖xn‖2, ∀n ∈ N. (8)

Without loss of generality it can be assumed that for some neighbourhood U(0)
of zero, xn ∈ U(0) for every n ∈ N, and on U(0) the �̃-stability is valid. By
the compactness of the unit sphere we can assume that for some h0 ∈ SN+1,
hn := xn/‖xn‖ → h0 as n → ∞. First suppose that for infinitely many n ∈ N,
xn are contained in some linear subspace L ⊂ RN+1 of dimension k ≤ N . Then,
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according to our induction assumption, x̂ = 0 is an isolated minimizer od order
2 for f which contradicts the property (8). Now let us suppose that this is not
the case. Further let 0 < ρ < 1 −

√
2

2 and let v1, . . . , vN+1 ∈ SRN+1 ∩ B(h0; ρ)
are linearly independent vectors generating a convex cone C with nonempty
interior. Without loss of generality we can assume that xn ∈ intC, for every
n ∈ N. Let n ∈ N be fixed and tn = ‖xn‖. Let Fi be the i-th boundary face of
C such that

Fi ∩ {xn + s(hn − h0) : s ≥ 0} = {cn}. (9)

Then cn/‖cn‖ ∈ SRN+1 ∩ B(h0; ρ). In view of our induction assumption, there
exist some neighbourhood V (0) and A > 0 such that:

f(c)
‖c‖2

≥ A > 0, (10)

for every c ∈ V (0) ∩ ∂C, where ∂C denotes the boundary of C. Further for
some δ0 > 0, we have:

f(th0)
t2

≥ A > 0, ∀t ∈ (0, δ0). (11)

From (8) and (10) it follows that if n is sufficiently large, then

f(cn)
t2n

≥ f(cn)
‖cn‖2

≥ A >
1
n
≥ f(xn)

t2n
,

where tn := ‖xn‖ and ‖cn‖ ≥ tn. The last inequality can be shown as fol-
lows: cn = xn + sn(hn − h0), sn ≥ 0 ⇒ cn = (tn + sn)hn − snh0 ⇒ ‖cn‖ =
‖(tn + sn)hn − snh0‖ ≥ ‖(tn + sn)hn‖ − ‖snh0‖ = (tn + sn) − sn = tn. Hence
‖cn‖ ≥ tn. The last argument shows that f(cn) > f(xn) if n is large enough.
Next, Lemma 1 gives ηn ∈ (cn, xn) such that

f �(ηn;xn − cn) ≤ f(xn) − f(cn) < 0. (12)

Now again using Lemma 1, (8), (11), and (12), we have that for some ξn ∈
(tnhn, tnh0) and n large enough, it holds:

0 <
A

2
≤ f(tnh0) − f(tnhn)

t2n
≤ f �(ξn; tn(h0 − hn))

t2n

<
f �(ξn;h0 − hn) − f �(ηn;h0 − hn)

tn
. (13)

Claim 1 If n ∈ N is large enough, then ‖ξn − ηn‖ < tn.

Proof We will now express the difference ξn − ηn:

ξn − ηn = tnhn + θ1(tnh0 − tnhn) − [cn + θ2(xn − cn)]
= (θ1tn + sn − θ2sn)(h0 − hn),
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where θ1, θ2 ∈ (0, 1), sn ≥ 0 so that cn = xn+sn(hn−h0). For a two-dimensional
picture see the Figure 1.

α

β

γ

0
tnh0

h0

tnhn

hn

Cn

ηn

ξn

S
R

N+1

Fig. 1: Two-dimensional picture

Let us consider a triangle with vertices 0, tnh0, cn and denote its inner angles
by α, β, γ, respectively. It is clear that γ ≤ π/2 and α+β+γ = π. This implies:

β = π − α− γ ≥ π

2
− α. (14)

Now let vi, i = 1 . . . , N+1, be one of the vectors generating the cone C and
let ϕ denotes the angle between vectors h0 and vi, respectively. Then we have:

cosϕ = 〈h0, vi〉 = 〈h0, vi − h0 + h0〉 = 〈h0, vi − h0〉 + 〈h0, h0〉

= 1 + 〈h0, vi − h0〉 ≥ 1 − ‖vi − h0‖ ≥ 1 − ρ > 1 −
(
1 −

√
2

2

)

=
√

2
2

⇒ ϕ <
π

4
.
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Suppose that as in the picture, α denotes the angle between vectors h0 and
cn/‖cn‖. Then also α < π/4. Indeed, since we can express cn/‖cn‖ as a convex
combination of the pair of vectors vi, vi+1, i ∈ {1, . . . , N} : cn/‖cn‖ = λvi +
(1 − λ)vi+1, where λ ∈ [0, 1], we have

cosα =
〈
h0,

cn
‖cn‖

〉
= 〈h0, λvi + (1 − λ)vi+1〉

= λ〈h0, vi〉 + (1 − λ)〈h0, vi+1〉 >
√

2
2

⇒ α <
π

4
.

Thus, we have proved that for the choice of ρ ∈ (0, 1−√
2/2), we have the right

estimation for the angle α. Now by (14) it holds: β ≥ π/4 > α. This implies
the following property of the lengths of sides of the triangle:

tn > ‖cn − tnh0‖ > ‖ξn − ηn‖.
Thus we proved Claim. �

So we are now able to finish the proof of Theorem 7. If n ∈ N is large
enough, then following (12) and (13), by the �̃-stability and by Claim, we can
write

0 <
A

2
<
f �(ξn;h0 − hn) − f �(ηn;h0 − hn)

tn

=
1
σ

f �(ξn; ξn − ηn) − f �(ηn; ξn − ηn)
tn

≤ 1
σ

K‖ξn − ηn‖2

tn

<
1
σ
K‖ξn − ηn‖ = K‖hn − h0‖, (15)

where σ := θ1tn + sn − θ2sn > 0 (see the proof of the claim). Now since
‖hn − h0‖ → 0 as n→ ∞, we get a contradiction. �

4 Final remarks and questions

There exist functions which are �-stable but not �̃-stable at some point. See e.g.
[BP2, Ex.2]. It is not clear whether there exists a function which is �̃-stable but
not �–stable at a certain point. Also note, that the C1,1 property implies in an
obvious way the �̃-stability and �̃-stability. This means that Theorem 7 covers
the above mentioned theorems 3 and 4 as well as [LK,Theorem 3.4].
Now it seems natural to ask the following questions.

Question 1 Can we distinguish C1,1 functions near x and �̃-stable functions
at x; or can be the �̃-stability at x a characterization of C1,1 property near x or
not?

Theorem 7 would be more elegant if one could answer the following question
in the affirmative.

Question 2 Does the the �̃-stability of f : RN → R at x ∈ RN imply the
continuity of f near x?
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