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Abstract

In this paper there are discussed the three-component distributions of
affine space An+1. Functions {Mσ}, which are introduced in the neigh-
borhood of the second order, determine the normal of the first kind of
H-distribution in every center of H-distribution.
There are discussed too normals {Zσ} and quasi-tensor of the sec-

ond order {Sσ}. In the same way bunches of the projective normals of
the first kind of the M-distributions were determined in the differential
neighborhood of the second and third order.
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1 Introduction

The given paper applies to differential geometry of a multi-dimensional affine
space An+1. The three-component distributions of an affine space are discussed.

*Supported by grant No. 201/05/2707 of The Czech Science Foundation and by the Council
of the Czech Government MSM 6 198 959 214.

35



36 Marina F. GREBENYUK, Josef MIKEŠ

Functions {Mσ} are introduced in the neighborhood of the second order. They
determine the normal of the first kind of a H-distribution in every center of
a H-distribution. The normal {Mσ} is a generalization of Miheylesku normal
of the first kind for a hyperplane distribution of an affine space. The field of
the normals {Zσ} was constructed by an inner invariant method in the third
differential neighborhood of the forming element of the H-distribution. The
object {Zσ} determines the projective normal – analog of Fubini normal for
the H-distribution in every center of the forming element of the H-distribution.
The quasi-tensor of the second order {Sσ} determines the projective normal of
the first kind of the H-distribution. Projective normals of the first kind {Mσ},
{Zσ}, {Sσ} determine bunches of the projective normals of the first kind of the
H-distribution in the differential neighborhood of the second and third orders.
In the same way bunches of the projective normals of the first kind of the M -
distribution were determined in the differential neighborhood of the second and
third orders. We use results, which we have got in [2, 3].

2 Definition of the three-component distribution

Let us consider an (n + 1)-dimensional affine space An+1, which is taken to a
movable frame R = {A, ēI}. Differential equations of an infinitesimal transfer-
ence of the frame R look as follows: dA = ωI ēI , dēI = ωK

I ēK, where ω
K
I , ω

I

are invariant forms of an affine group, which satisfy equations of the structure:

dωI = ωK ∧ ωI
K, dωK

I = ωJ
I ∧ ωK

J .

Structural forms of a current point X = A + xI ēI of a space An+1 look as
follows:

�XI ≡ dxI + xKωI
K + ωI .

The combination of the current point X and point of the frame A leads to
the following equation:

�XI = ωI .

An immobility condition of the point A is written down as follows: ωI = 0.
Let the frame chosen by this way be called the frame R̃. Let Πr is an r-

dimensional plane in An+1 be given by the following way: Πr = [A, L̄p], where
L̄p = ēp + Λû

p ēû. Let m-dimensional plane Πm be set by the following way:
Πm = [A, M̄a], where M̄a = ēa +M α̂

a ēα̂. A hyperplane Πn is a set Πn = [A, T̄σ],
where T̄σ = ēσ +Hn+1

σ ēn+1.

Definition 1 The (n+1)-dimensional manifolds in spaces of notion {�Λû
p , ω

I},
{�M α̂

a , ω
I}, {�Hn+1

σ , ωI} which are determined by differential equations
�Λû

p = Λû
pKω

K, �M α̂
a = M α̂

aKω
K, �Hn+1

σ = Hn+1
σK ωK, (1)

are called distributions of the first kind accordingly of: r-dimensional linear
elements (Λ-distribution), m-dimensional linear elements (M -distribution) and
hyperplanes (H-distribution).
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Equations of the system (1) to each point A (center of distribution) are the
set according to planes Πr,Πm,Πn.
Let consider that manifolds (1) are distributions of tangent elements: center

A belongs to planes Πr,Πm,Πn. We demand, that in some area of the space
An+1 for any center A the following condition take place: A ∈ Πr ⊂ Πm ⊂ Πn.

Definition 2 The three of distributions of the affine space An+1, consisting of
basic distribution of the first kind r-dimensional linear elements Πr ≡ Λ (Λ-
distribution), equipping distribution of the first kind of m-dimensional linear
elements Πm ≡M (M -distribution) and equipping distribution of the first kind
of hyperplane elements Πr ≡ H (r < m < n) (H-distribution) with relation
of an incidence of their corresponding elements in a common center A of the
following view: A ∈ Λ ⊂M ⊂ H are called H-distribution.
Let us make the following canonization of the frame R̃: we will place vectors

ēp in the plane Πr, vectors ēi – in plane Πm, and vectors ēσ – in plane Πn. Such
frame will be called the frame of the null order R0. This definition leads to the
following equations:

Λû
p = 0, M α̂

a = 0, Hn+1
σ = 0.

In the frame R0 the H-distribution is defined by the differential equations:
ωû

p = Λû
pKω

K, ωα̂
i = M α̂

iKω
K, ωn+1

α = Hn+1
αK ωK.

According to N. Ostianu lemma it is possible partial the zero-order frame
R0 canonization, where Mn+1

iq = 0, Hn+1
αq = 0. We will call it frame of the first

order R1.
In the chosen frame R1 the manifoldH is determined by the following system

of differential equations:

ωû
p = Λû

pKω
K, ωn+1

i = Mn+1
iû ωû,

ωα
i = Mα

iKω
K, ωn+1

α = Hn+1
αû ωû, ωp

u = Ap
uKω

K.

3 Tensor of inholonomicity of H-distribution
It’s easy to show, that geometry of three-component distributions can be used
for studying geometry of regular and degenerate hyperzones, zones, hyperzone
distributions, surfaces of full and not full range, tangent equipped surfaces in
affine spaces. For example, we will suppose, that the H-distribution is holo-
nomic, that is the basic distribution Λ is holonomic. System of differential
equations ωû

0 = Λû
pω

p
0 , which is associated with basic Λ-distribution, is quite

integrable if and only if, when the tensor of the first order

rû
pq =

1
2
(Λû

pq − Λû
qp)

turns into zero.
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Tensor {rû
pq} will be called tensor of the inholonomicity of theH-distribution.

The basic Λ-distribution determines (n − r + 1)-parametric assemblage of r-
dimensional surfaces Vr (planes Λ are rounded by r-dimensional surfaces of
(n− r + 1)-parametric assemblage).
In the time of displacement of center A along a fixed surface Vr, differential

equations, which determine the H-distribution relatively the frame R̃

ωû
0 = Λû

qω
q, �Λû

p = (Λû
pq + Λû

pv̂Λv̂
q)ω

q,

�M α̂
i = (M α̂

iq +M α̂
iv̂Λ

v̂
q)ω

q, �Hn+1
α = (Hn+1

αq +Hn+1
αv̂ Λv̂

q)ω
q

are differential equations of r-dimensional zone Vr(m) of the order m [7, 8]
equipped by a field of hyperplanes H . A geometrical object {Hn+1

τ } (object H)
is the fundamental equipping object of a zone Vr(m).
Following G. F. Laptev [5], the zone Vr(m), on which the field of the funda-

mental equipping object H is set, we will call an equipped zone Vr(m) and we
will disignate as Vr(m)(H).
Let note, that relatively of the frame R0, which is adapted the fields of

the planes Λ,M,H , differential equations of the manifold Vr(m)(H) have more
simple form:

ωû
0 = 0, ωû

p = Λû
pqω

q, Λû
pq = Λû

qp, (2)

ωα̂
i = M α̂

iqω
q, (3)

ωn+1
α = Hn+1

αq ωq, (4)

where equations (2), (3) are analogous to equations of the zone Vr(m), which
are discussed in the work of M.M. Pohila [7]. Equations (4) characterize the
equipment of the zone Vr(m) by the field of hyperzones H .

Thus, a transformation of a tensor {rû
pq} to zero is the condition, where the

space An+1 desintegrates to (n−r+1)-parametric assemblage of equipped zones
Vr(m)(H). So plane Λ(A) in its center A is the tangent plane of the surface Vr

(Vr is basic surface of equipped zone Vr(m)(H)), plane (M(A)) is the tangentm-
plane of the basic surface in the center A. The hyperplaneH(A) is the equipping
plane of the zone Vr(m)(H). At that time we suppose, that the condition of the
incidence of planes Λ,M,H is executed .
On the other hand, equations (2), (4) determine in the frame R0 the hy-

perplane Hr [9], and equations (3) characterize an equipment of the hyperzone
Hr by field of planes M . This field of planes M is determined by the field
of the geometrical object {M α̂

a } – field of the fundamental equipping object of
the hyperzone Hr. We will disignate the hyperzone Hr, which is equipped by
the field of planes M , as Hr(M). Thus, the theory of the three-component
H-distribution is a generalization of theories of the regular hyperzone Hr and
the zone Vr(m)(H) of the affine space.



Equipping distributions for linear distribution 39

4 Tensor of inholonomicity of equipping distributions

Let consider the system of differential equations

ωα̂
0 = M α̂

a ω
a, (5)

which is associated with the M -distribution. This system is fully integrable
if and only if, when the tensor of inholonomicity {rα̂

ab} of the equipping M -
distribution

rα̂
ab =

1
2
(M α̂

ab −M α̂
ba)

equals to zero.
At rα̂

ab = 0 the system (5) determines (n−m+ 1)-parametric assemblage of
the m-dimensional surfaces Vm – m-dimensional integral manifolds. One and
only one such manifold passes across each point of the area of such manifolds
(planesM are rounded by m-dimensional surfaces Vm of (n−m+1)-parametric
assemblage).
In the time of displacement of the center A along the fixed surface Vm equa-

tions, that determine the H-distribution, define the tangent r-equipped surface
Vm(r) [4], which is equipped by the field of tangent hyperplanes H . Actually,
from system, which consists from differential equations (5) and equations, which
determines the H-distribution, we can pick out a subsystem

ωα̂ = M α̂
b ω

b, �M α̂
a = M α̂

abω
b, �Λi

p = Λi
pbω

b, M α̂
[ab] = 0.

This subsystem determines the tangent r-equipped surface Vm,r [4]. In this
case the geometrical object {Hn+1

τ } (object H) is the fundamental equipping
object of the tangent r-equipped surface Vm,r. Such tangent r-equipped surfaces
Vm,r, which are equipped by the field of tangent hyperplanes , we will disignate
as Vm,r(H). Thus, if the tensor of the inholonomicity {rα̂

ab} of the equipping
M -distribution equals to zero, so the space An+1 disintegrates to (n−m+ 1)-
parametric assemblage of manifolds look as follows Vm,r(H).
On the other hand, the H-distribution for which rα̂

ab = 0 can be interpreted
like the hyperzone Hm, which is equipped by the field of tangent planes Λ.
Hence, geometry of the H-distribution of the affine space, naturally, is richer
than geometry of tangent r-equipped surfaces and geometry of hyperzones Hm

of the affine space, because it consists of a constructions, which don’t have
any sense for the latter. Also, geometry of the H-distribution can be used for
studying of degenerated hyperzones [6] and surfaces [1].
The system of differential equations

ωn+1 = Hn+1
τ ωτ , (6)

which is associated with the equipping distribution of hyperplanes H (H-distri-
bution), is fully integrable if and only if, when the tensor of the first order

rn+1
τσ =

1
2
(Hn+1

τσ −Hn+1
στ )

turns into zero.
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On the condition, that the tensor of the inholonomicity {rn+1
τσ } of the equip-

ping H-distribution equals to zero, the system (6) determines one-parametric
assemblage of hypersurfaces Vn (planes H are rounded by hypersurfaces Vn of
one-parametric assemblage ).
In the time of a displacement of the center A along the fixed surface Vn equa-

tions, which determine the H-distribution, represent equations of the hypersur-
face, which is equipped by fields of geometrical objects {Λû

p} and {M α̂
a } (fields

of planes Λ and M , where Λ ⊂ M). Hence, the theory of the three-component
H-distribution is also the generalization of the theory of hypersurfaces of the
affine space.

5 Normals of the equipping distributions

Quasi-tensors were constructed in the second differential neighborhood:

Bp = − 1
r + 2

apqBq, Bi = − 1
m− r + 2

ajiBj − 1
m− r + 2

Λpka
kiBp,

Bα = − 1
m− r + 2

(HγαBγ + ΛpγH
γαBp +MiγH

γαBi),

∇Bp −Bpωn+1
n+1 + ωp

n+1 = Bp
Kω

K,

∇Bi −Biωn+1
n+1 + ωi

n+1 = Bi
Kω

K, ∇Bα −Bαωn+1
n+1 + ωα

n+1 = Bα
Kω

K.

The geometrical object {Bσ} determines the normal of the first kind of the
H-distribution by an inner invariant method. The normal B coincides with
the Blaschke normal in case of the hyperplane distribution. Affine normals of
the first kind Bn−r+1, Bn−m+1 of the Λ-distribution and of the M -distribution
accordingly are determined in the same way.
Quasi-tensors were constructed in the differential neighborhood of the second

order:

γp = − 1
r + 2

Λpqγq, γi = − 1
m− r + 2

M jiγj +
m− r − 2
m− r + 2

ΛpkM
kiγp,

γα = − 1
n−m+ 2

(Hαβγβ +
n−m− 2
n−m+ 2

(ΛpγH
αγγp +MiγH

αγγi),

∇γp − γpωn+1
n+1 + ωp

n+1 = γp
Kω

K,

∇γi − γiωn+1
n+1 + ωi

n+1 = γi
Kω

K, ∇γα − γαωn+1
n+1 + ωα

n+1 = γα
Kω

K.

Fields of the geometrical objects {γa}, {γσ} determine fields of the normals
of the first kind of the equippingM -distribution, of the equippingH-distribution
accordingly.
The quasi-tensor {Mσ}:

Mσ =
1
2
(Lσ + γσ), ∇Mσ −Mσωn+1

n+1 + ωσ
n+1 = Mσ

KωK,
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determines the normal of the first kind of the H-distribution in the differential
neighborhood of the second order, which is invariant relatively of the projective
group of the transformations.
The normal {Mσ} is the Mihajlesku normal of the first kind of the hyper-

plane distribution of the affine space.
The field of the affine normal of the first kind of the H-distribution is deter-

mined by the object {B̂τ} in the differential neighborhood of the third order:

B̂τ = Hρτ B̂ρ, ∇B̂τ − B̂τωn+1
n+1 + ωτ

n+1 = B̂τ
Kω

K.

The quasi-tensor {Zσ} of the third order:

Zσ = B̂σ + ĥσ, ∇Zσ −Zσωn+1
n+1 + ωσ

n+1 = Zσ
Kω

K,

determines the projective normal—analog of the Fubiny’s normal for the
H-distribution in each center of the forming element of the H-distribution.
The object {Za} determines the projective normal of the first kind of the

M -distribution.
The object {Sa}, where

Sσ = −1
2
(Hρn+1 +

1
n+ 2

pρ)Hρσ, ∇Sσ − Sσωn+1
n+1 + ωσ

n+1 = Sσ
KωK,

determines the projective normal of the first kind of the M -distribution.

Theorem 1 The projective normals of the first kindM, Z, S determine bunches
of the projective normals of the first kind of the H-distribution:
a) in the differential neighborhood of the second order

M̃σ(E) = Mσ − E(Mσ − Sσ);

b) in the differential neighborhood of the third order

Φ̂σ(E) = Zσ − E(Zσ −Mσ), Ẑσ(E) = Zσ − E(Zσ − Sσ),

where E – absolute invariant.

These normals determine bunches of the projective normals of the first kind
of the equipping M -distribution:
a) in the differential neighborhood of the second order

M̃a(E) = Mi − E(Ma − Sa).

b) in the differential neighborhood of the third order {Φ̂a(E)}, {M̂a(E)}.
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