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Abstract

By a nearlattice is meant a join-semilattice having the property that
every principal filter is a lattice with respect to the semilattice order. We
introduce the concept of (relative) annihilator of a nearlattice and char-
acterize some properties like distributivity, modularity or 0-distributivity
of nearlattices by means of certain properties of annihilators.

Key words: Nearlattice; semilattice; ideal; congruence; distributiv-
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1 Introduction

Algebraic structures being join-semilattices with respect to the induced order
relation appear frequently in algebraic logic. For example, implication alge-
bras, introduced by J. C. Abbott [1], describe algebraic properties of the logical
connective implication in the classical propositional logic. Implication alge-
bras have a very nice structure: with respect to the induced order, they are
join-semilattices, principal filters of which are Boolean algebras. Analogously,
for various logics of quantum mechanics the corresponding algebraic structures
have a semilattice structure with principal filters being special lattices.
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This fact motivated us to describe ∨-semilattices where every principal filter
is a lattice. They are called nearlattices (see e.g. [3, 5, 6, 11, 14, 15, 16, 17]).
More precisely, we studied the following structures.

Definition 1 A semilattice N = (N ;∨), where for each a ∈ N the principal
filter [a) = {x ∈ N ; a ≤ x} is a lattice with respect to the induced order ≤ of
N , is called a nearlattice.
It has been shown [4, 11] that nearlattices can be considered as algebras with

one ternary operation. Moreover, nearlattices considered as algebras of type (3)
form an equational class: indeed, if x, y, z ∈ N for a nearlattice N , the element
(x ∨ z) ∧ (y ∨ z) is correctly defined since both x ∨ z, y ∨ z ∈ [z) and [z) is a
lattice, and the following holds:

Proposition 1 ([4]) Let N = (N ;∨) be a nearlattice. Define a ternary oper-
ation by m(x, y, z) = (x ∨ z) ∧ (y ∨ z) on N . Then m(x, y, z) is an everywhere
defined operation and the following identities are satisfied:

(P1) m(x, y, x) = x;

(P2) m(x, x, y) = m(y, y, x);

(P3) m(m(x, x, y),m(x, x, y), z) = m(x, x,m(y, y, z));

(P4) m(x, y, p) = m(y, x, p);

(P5) m(m(x, y, p), z, p) = m(x,m(y, z, p), p);

(P6) m(x,m(y, y, x), p) = m(x, x, p);

(P7) m(m(x, x, p),m(x, x, p),m(y, x, p)) = m(x, x, p);

(P8) m(m(x, x, z),m(y, y, z), z) = m(x, y, z).

Conversely, let N = (N ;m) be an algebra of type (3) satisfying (P1)–(P7). If we
define x ∨ y = m(x, x, y), then (N ;∨) is a join-semilattice and for each p ∈ N,
([p);≤) is a lattice, where for x, y ∈ [p) their infimum is x ∧ y = m(x, y, p).
Hence (N ;∨) is a nearlattice. If, moreover, N = (N ;m) satisfies also (P8),
then the correspondence between nearlattices and algebras (N ;m) satisfying
(P1)–(P8) is one-to-one.

Thus nearlattices similarly as lattices have two faces and we shall alternate in
our investigations between them depending which one will be more convenient.
The following notions of distributivity for nearlattices have been introduced

in [4]:

Definition 2 Let N = (N ;m) be an algebra of type (3). We call N distributive
if it satisfies the identity

(D1) m(x,m(y, y, z), p) = m(m(x, y, p),m(x, y, p),m(x, z, p)).
If N satisfies the identity
(D2) m(x, x,m(y, z, p)) = m(m(x, x, y),m(x, x, z), p),
it is called dually distributive.
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It is expected that both notions are related in the case of nearlattices. Indeed,
one can prove the following statement:

Proposition 2 ([4]) Let N = (N ;m) be an algebra of type (3) satisfying
(P1)–(P7). Then the following conditions are equivalent:

(1) N is distributive;
(2) N is dually distributive;
(3) in the associated semilattice, every principal filter is a distributive lattice.

Due to the previous description of distributivity for nearlattices, we are able
to get very simple arguments to prove that in a distributive nearlattice N , every
ideal of N is a congruence class.

2 Ideals and congruence classes on distributive
nearlattices

The concept of an ideal in a distributive nearlattice was defined in [10]:

Definition 3 A subset ∅ �= I ⊆ N of a nearlattice N = (N ;m) is called an
ideal if

(I1) m(x, x, y) ∈ I for all x, y ∈ I;
(I2) m(x, y, p) ∈ I for all x ∈ I and y, p ∈ N with p ≤ x.

Note that I is an ideal of N if and only if it is a downset closed under
suprema with respect to the induced order of N .
Lemma 1 A subset ∅ �= I ⊆ N of a nearlattice N = (N ;∨) is an ideal if and
only if it satisfies the following two conditions

(i1) x, y ∈ I ⇒ x ∨ y ∈ I;

(i2) x ∈ I, a ≤ x ⇒ a ∈ I.

Proof It is clear. �

Example 1 Let N = ({x, x∨ y, y, p, q, 1};∨) be a nearlattice whose diagram is
depicted in Fig. 1. The set I = {x, x ∨ y, y} is clearly an ideal on N .
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By a congruence on a nearlattice N = (N ;m) we mean an equivalence
relation Θ on N such that for all x1, x2, y1, y2, z1, z2 ∈ N we have that 〈x1, x2〉 ∈
Θ, 〈y1, y2〉 ∈ Θ, 〈z1, z2〉 ∈ Θ imply

〈m(x1, y1, z1),m(x2, y2, z2)〉 ∈ Θ.

This concept can be translated for the alternative description of a nearlattice
as follows:

Lemma 2 Let N = (N ;∨) be a nearlattice. Then Θ is a congruence on N
if and only if it is an equivalence relation on N which satisfies the following
implication (∗):
〈x1, x2〉, 〈y1, y2〉 ∈ Θ ⇒ 〈x1 ∨ y1, x2 ∨ y2〉 ∈ Θ, and 〈x1 ∧ y1, x2 ∧ y2〉 ∈ Θ,
whenever x1 ∧ y1, x2 ∧ y2 are defined.

Proof (⇒) : Let Θ be a congruence on N . Let 〈x1, x2〉 ∈ Θ and 〈y1, y2〉 ∈ Θ.
Then, by definition of congruence on N , 〈m(x1, x1, y1),m(x2, x2, y2)〉 ∈ Θ, i.e.
〈x1 ∨ y1, x2 ∨ y2〉 ∈ Θ. Now, we observe the following property of Θ :

(P) If x ≤ y, 〈x, y〉 ∈ Θ and x ∧ z exists, then 〈x ∧ z, y ∧ z〉 ∈ Θ.

Indeed, we have 〈m(x, z, x ∧ z),m(y, z, x∧ z)〉 ∈ Θ, where

m(x, z, x ∧ z) = (x ∨ (x ∧ z)) ∧ (z ∨ (x ∧ z)) = x ∧ z

and
m(y, z, x ∧ z) = (y ∨ (x ∧ z)) ∧ (z ∨ (x ∧ z)) = y ∧ z,

and hence 〈x ∧ z, y ∧ z〉 ∈ Θ.
Now, assume that 〈x1, x2〉, 〈y1, y2〉 ∈ Θ, and x1 ∧ y1, x2 ∧ y2 exists. Then

〈x1, x1 ∨ x2〉 ∈ Θ and since x1 ∧ y1 exists, we have 〈x1 ∧ y1, (x1 ∨ x2) ∧ y1〉 ∈ Θ
by (P). Analogously, 〈y1, y1 ∨ y2〉 ∈ Θ entails

〈(x1 ∨ x2) ∧ y1, (x1 ∨ x2) ∧ (y1 ∨ y2)〉 ∈ Θ.

Therefore
〈x1 ∧ y1, (x1 ∨ x2) ∧ (y1 ∨ y2)〉 ∈ Θ.

Similarly we can show that 〈x2 ∧ y2, (x1 ∨ x2) ∧ (y1 ∨ y2)〉 ∈ Θ. Consequently,
due to transitivity of Θ we obtain 〈x1 ∧ y1, x2 ∧ y2〉 ∈ Θ.
(⇐) : Let Θ be an equivalence relation on N satisfying (∗). Let 〈x1, x2〉, 〈y1, y2〉,
〈z1, z2〉 ∈ Θ. Then 〈x1 ∨ z1, x2 ∨ z2〉, 〈y1 ∨ z1, y2 ∨ z2〉 ∈ Θ, and hence also

〈(x1 ∨ z1) ∧ (y1 ∨ z1), (x2 ∨ z2) ∧ (y2 ∨ z2)〉 ∈ Θ,

i.e. 〈m(x1, y1, z1),m(x2, y2, z2)〉 ∈ Θ, thus Θ is a congruence on N . �

We can show that for distributive nearlattices, the ideals are related to con-
gruences in the same way as it is for lattices (see e.g. [9]).
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Theorem 1 Let N = (N ;∨) be a distributive nearlattice. Then each ideal I of
N is a congruence class of ΘI ∈ ConN , defined by

〈x, y〉 ∈ ΘI iff there exists c ∈ I such that x ∨ c = y ∨ c.
Proof Of course, ΘI is reflexive and symmetric. Suppose 〈a, b〉 ∈ ΘI and
〈b, c〉 ∈ ΘI . Then a ∨ x = b ∨ x and b ∨ y = c ∨ y for some x, y ∈ I. Since I
is an ideal, we have x ∨ y ∈ I. Thus a ∨ x ∨ y = b ∨ x ∨ y = c ∨ x ∨ y, whence
〈a, c〉 ∈ ΘI , i.e. ΘI is an equivalence on N .
Let 〈a, b〉 ∈ ΘI and c ∈ N . Then there exists x ∈ I such that a ∨ x = b ∨ x

and thus a ∨ c ∨ x = b ∨ c ∨ x, hence 〈a ∨ c, b ∨ c〉 ∈ ΘI . Using transitivity of
ΘI , we easily obtain that ΘI is compatible with the operation ∨.
Now, let 〈a, b〉 ∈ ΘI , 〈c, d〉 ∈ ΘI and let a ∧ c, b ∧ d are defined. Then

a ∨ x = b ∨ x and c ∨ y = d ∨ y for some x, y ∈ I. Applying distributivity of N,
we have

(a ∨ x) ∧ (c ∨ y) = (a ∧ c) ∨ (x ∧ c) ∨ (a ∧ y) ∨ (x ∧ y) = (a ∧ c) ∨ z,
where z = (x ∧ (c ∨ y)) ∨ (y ∧ (a ∨ x)) ∈ I. Analogously,

(b ∨ x) ∧ (d ∨ y) = (b ∧ d) ∨ (x ∧ d) ∨ (b ∧ y) ∨ (x ∧ y) = (b ∧ d) ∨ z,
which gives 〈a∧ c, b∧ d〉 ∈ ΘI , i.e. ΘI is compatible with a partial operation ∧.
Applying Lemma 2, we have shown that ΘI is a congruence on N .
Further, suppose a, b ∈ I. By (i1), a∨b ∈ I and since a∨(a∨b) = b∨(a∨b),

we have 〈a, b〉 ∈ ΘI . Conversely, let a ∈ I and 〈a, c〉 ∈ ΘI . Then there exists
x ∈ I such that a ∨ x = c ∨ x. But a ∨ x ∈ I, whence c ∨ x ∈ I. Since c ≤ c ∨ x,
by (i2) we have c ∈ I, which yields I = [a]ΘI , i.e. I is a class of ΘI . �

Corollary 1 Each ideal of a nearlattice N = (N ;∨) is a class of at least one
congruence if and only if N is distributive.
Proof If N is distributive and I is its ideal then, by Theorem 1, I is a class of
the congruence ΘI .
Conversely, let N be not distributive. Then, by Proposition 2, there exists

a principal filter [b) which is not a distributive lattice, i.e. it contains N5 or M3

(see Fig. 2).
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In both cases, one can easily prove that (x] = I(x) = {a ∈ N ; a ≤ x} is an
ideal on nearlattice N which is not a class of any congruence Θ on N . Indeed,
let (x] be a class of congruence Θ on N . Since u, x ∈ (x] we have 〈u, x〉 ∈ Θ
(see Fig. 2). So 〈u ∨ z, x ∨ z〉 ∈ Θ, i.e. 〈z, v〉 ∈ Θ. Further, 〈z ∧ y, v ∧ y〉 ∈ Θ
because z ∧ y and v ∧ y exists in [u). Hence 〈u, y〉 ∈ Θ, which yields y ∈ (x], a
contradiction. �

3 Annihilators on nearlattices

The aim of this section is to show that annihilators can be used for a character-
ization of distributivity or modularity of nearlattices in the way similar to that
for lattices, see e.g. [7, 12, 13]. However, the concept of a relative annihilator
must be defined in a slightly different way from that for lattices [2, 8, 12].

Definition 4 Let N = (N ;∨) be a nearlattice and a, b, x, z ∈ N . By a relative
annihilator of a with respect to b we mean the set 〈a, b〉 = {z ∈ N ; z ≤ x where
a ∧ x exists and a ∧ x ≤ b}.

Remark 1 It means that our relative annihilator in a nearlattice is in fact a
downset of a relative annihilator as defined in [7, 12, 13]. The reason is that
e.g. for 〈q, y〉 of the nearlattice from Example 1 we have (x ∨ y) ∧ q ≤ y thus
x∨ y ∈ 〈q, y〉 but x ≤ x∨ y and x∧ q is not defined. Hence, we must extend the
original concept into a downset.

Theorem 2 Let N = (N ;∨) be a nearlattice. The following conditions are
equivalent:

(i) N is distributive;
(ii) 〈a, b〉 is an ideal of N for all a, b ∈ N ;

(iii) 〈a, b〉 is an ideal of N for each b ≤ a.

Proof (i)⇒(ii): Let N be distributive and a, b ∈ N . Suppose z ∈ 〈a, b〉 and
y ≤ z. Then obviously y ∈ 〈a, b〉. If z, y ∈ 〈a, b〉 then z ≤ x1 with a ∧ x1 ≤ b
and y ≤ x2 with a ∧ x2 ≤ b (for some x1, x2 ∈ N). Thus z ∨ y ≤ x1 ∨ x2. It is
evident that all considered meets exist and due to distributivity of N ,

(x1 ∨ x2) ∧ a = (x1 ∧ a) ∨ (x2 ∧ a) ≤ b.

Hence x1 ∨ x2 ∈ 〈a, b〉 and thus also z ∨ y ∈ 〈a, b〉, i.e. 〈a, b〉 is an ideal of N .
(ii)⇒(iii) is trivial. Prove (iii)⇒(i). Let a ∈ N and x, y, z ∈ [a). Then

y ∧ x, z ∧ x exist and (y ∧ x) ∨ (z ∧ x) ≤ x. Hence, by (iii), 〈x, (y ∧ x) ∨ (z ∧ x)〉
is an ideal I of N . Since x ∧ y ≤ (y ∧ x) ∨ (z ∧ x), we have y ∈ I. Analogously,
x ∧ z ≤ (y ∧ x) ∨ (z ∧ x), thus z ∈ I and hence also y ∨ z ∈ I, i.e. (y ∨ z) ∧ x ≤
(y ∧ x) ∨ (z ∧ x). We have shown that [a) is a distributive lattice thus the
nearlattice N is distributive. �
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Example 2 A nearlatticeN depicted in Fig. 3 is not distributive and hence the
relative annihilator 〈a, b〉 = {p, q, b, x, y} is not an ideal ofN because x, b ∈ 〈a, b〉
but 1 = x ∨ b /∈ 〈a, b〉.
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We say that a nearlattice N = (N ;∨) is modular if each its principal filter
is a modular lattice with respect to the induced order ≤.
The following result is a generalization of that from [8] for nearlattices:

Theorem 3 Let N = (N ;∨) be a nearlattice. The following conditions are
equivalent:

(i) N is modular;
(ii) x ∨ y ∈ 〈a, b〉 for each b ≤ a and all x ∈ (b], y ∈ 〈a, b〉.

Proof (i)⇒(ii): Let y ∈ 〈a, b〉 for b ≤ a and x ∈ (b], i.e. x ≤ b ≤ a, thus
x, b, a, x ∨ y ∈ [x) and, due to modularity of the lattice [x),

a ∧ (x ∨ y) = (a ∧ y) ∨ x ≤ b

whence x ∨ y ∈ 〈a, b〉.
(ii)⇒(i): Let x, y, z ∈ [a) for some a ∈ N with x ≤ z. Then z∧y exists in [a) and
x∨ (z∧y) ≤ z and z∧x = x ≤ x∨ (z∧y), therefore x ∈ 〈z, x∨ (z∧y)〉. Further,
z∧y ≤ x∨(z∧y) thus y ∈ 〈z, x∨(z∧y)〉. By (ii) we have x∨y ∈ 〈z, x∨(z∧y)〉,
i.e. (x ∨ y) ∧ z ≤ x ∨ (y ∧ z) and hence [a) as well as N is modular. �

Example 3 One can easily see that the nearlattice N in Fig. 3 is not modular.
For b ≤ a and for p ∈ (b], y ∈ 〈a, b〉 we have 1 = p ∨ y /∈ 〈a, b〉.

Let N = (N ;∨) be a nearlattice and ∅ �= A ⊆ N . A is called a sublattice
of N if it is a lattice with respect to the induced order ≤ of N and ∨ and ∧
coincide with the corresponding operations of N .
A sublattice M of a nearlattice N is called maximal if M is not a proper

sublattice of another sublattice of N .
From now on, we will suppose that every maximal sublattice Mγ of a near-

lattice N has a least element 0γ .
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We define a nearlattice (N ;∨) to be 0-distributive if for all x, y, z ∈ Mγ , if
x ∧ y, x ∧ z are defined and

x ∧ y = 0γ = x ∧ z then x ∧ (y ∨ z) = 0γ .

Definition 5 Let N be a nearlattice such that each of its maximal sublattices
Mγ has a least element 0γ . For a ∈ N, define 〈a〉γ = {y ∈Mγ ; a ∧ y = 0γ}, the
so-called annihilator of a.

Remark 2 It is an easy observation that if a nearlattice N has a least element
0 (and hence it is a lattice M1) then we have 〈a〉1 = 〈a, 0〉 for each a ∈ N .
Moreover, in every nearlattice N where each maximal sublattice Mγ has a least
element 0γ we have 〈a〉γ = 〈a, 0γ〉 ∩Mγ for each a ∈Mγ .

Theorem 4 Let N be a nearlattice such that each of its maximal sublattices
Mγ has a least element 0γ. The following conditions are equivalent:

(i) every Mγ is 0-distributive;

(ii) 〈a〉γ is an ideal in Mγ for each a ∈ N whenever 〈a〉γ �= ∅.
Proof (i)⇒(ii): Let x, y, z ∈ Mγ and assume x ∧ z = 0γ , y ∧ z = 0γ . Due to
0-distributivity of Mγ , also (x ∨ y) ∧ z = 0γ and hence x ∨ y ∈ 〈z〉γ . Of course,
if t ∈ 〈z〉γ and u ≤ t for u ∈Mγ then z ∧ u ≤ z ∧ t = 0γ whence u ∈ 〈z〉γ . Thus
〈z〉γ is an ideal of Mγ .
(ii)⇒(i): Let a, b, c ∈ Mγ and a ∧ c = 0γ , b ∧ c = 0γ . Then a, b ∈ 〈c〉γ and,

by (ii), also a ∨ b ∈ 〈c〉γ , i.e. (a ∨ b) ∧ c = 0γ thus Mγ is 0-distributive. �

Example 4 (a) Consider the nearlattice N = (N ;∨) depicted in Fig. 4.
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Clearly, M1 = {01, a, b, c, 1} and M2 = {02, c, 1} are the only maximal sublat-
tices of N . We have a∧ b = b∧ c = 01, but b∧ (a∨ c) = b∧ 1 = b �= 01, so M1 is
not 0-distributive, i.e. N is not 0-distributive. Let us note that for x ∈ {a, b, c},
the set 〈x〉1 is not an ideal in M1. On the contrary,M2 is 0-distributive and for
each its element y ∈M2, the set 〈y〉2 is an ideal in M2.
(b) It is easy to check that for each a ∈ N of the nearlattice N from Exam-

ple 2 (see Fig. 3), if 〈a〉γ �= ∅ then it is an ideal in Mγ (γ = 1, 2 and 01 = p,
02 = q). Hence N is 0-distributive.
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