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Abstract

The statistical analysis of compositional data, multivariate data when
all its components are strictly positive real numbers that carry only rel-
ative information and having a simplex as the sample space, is in the
state-of-the-art devoted to represent compositions in orthonormal bases
with respect to the geometry on the simplex and thus provide an isomet-
ric transformation of the data to an usual linear space, where standard
statistical methods can be used (e.g. [2], [4], [5], [9]). However, in some
applications from geosciences ([14]) or statistical aspects of multicriteria
evaluation theory ([13]) it seems to be convenient to use another types of
bases. This paper is devoted to describe its basic properties and illustrate
the results on an example.

Key words: Aitchison geometry on the simplex; bases on the sim-
plex; additive logratio transformations.
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1 Simplicial geometry

The concept of compositional data and its geometry on the simplex (called
Aitchison geometry) is the starting point for building up statistical models for
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such data. This short course follows earlier developements of compositional data
([1]) and cites the present results of the active research, as summarized in [8],
[11] and [12].

Definition 1 A row vector, x = (x1, . . . , xD), is called D-parts composition
when all its components are strictly positive real numbers and they carry only
relative information.

The assertion that D-parts composition (or only composition in short) carry
only relative information means that all the relevant information is contained in
the ratios among the parts, i.e. if c is a nonzero real number, (x1, . . . , xD) and
(cx1, . . . , cxD) convey essentially the same information. A way to simplify the
use of compositions is to represent them in closed form, i.e. as positive vectors
with constant sum κ (usually 1 or 100 in case of percentages) of the parts. As a
consequence, D-parts composition can be identified with the following vector:

Definition 2 For any composition x, the closure operation of x to the constant
κ is defined as

C(x) =

(
κx1∑D
i=1 xi

, . . . ,
κxD∑D
i=1 xi

)
.

Proposition 1 The sample space of compositional data is the simplex, defined
as

SD =

{
x = (x1, . . . , xD), xi > 0,

D∑

i=1

xi = κ

}
.

The basics of Aitchison geometry on the simplex are mentioned below:

Definition 3 Perturbation of a composition x = C(x1, . . . , xD) ∈ SD by a
composition y = C(y1, . . . , yD) ∈ SD is a composition

x⊕ y = C(x1y1, . . . , xDyD).

Definition 4 Power transformation of a composition x ∈ SD by a constant
α ∈ R is a composition

α� x = C(xα
1 , . . . , x

α
D).

Proposition 2 The simplex with the perturbation operation and the power
transformation, (SD,⊕,�), is a vector space.

The analogy between real vector space and the simplex leads to a definition
of compositional (straight) line, based on operations of perturbation and power
transformation, as the compositions x(t), t ∈ R, satisfying

x(t) = x0 ⊕ (t� u),

with starting point x0 and with direction given by the composition u.
Let us remark, that the neutral element is the composition n = C(1, . . . , 1) =

( 1
D , . . . ,

1
D ). The vector structure of SD allows us to use the concepts of linear

dependence and independence.
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Definition 5 A set of m compositions in SD, x1, . . .xm, is said to be linearly
perturbation-dependent if there exist scalars α1, . . . , αm not all zero, such that

(α1 � x1)⊕ · · · ⊕ (αm � xm) = n.

If no such scalars exist, the set is called linearly perturbation-independent.

In simplex SD, the maximum of perturbation-independent compositions is
D − 1. Thus, SD is a vector space of dimension D − 1.

Definition 6 If compositions e1, . . . , eD−1 are perturbation-independent, they
constitute a (simplicial) basis of SD, i.e. each composition x ∈ SD can be
expressed as

x = (α1 � e1)⊕ · · · ⊕ (αD−1 � eD−1)

for some coefficients αi, i = 1, . . . , D − 1, that are termed coordinates with
respect to the basis.

For deeper investigation of the bases on the simplex, we introduce further
the concepts of inner product and norm in Aitchison geometry that enable us
to use concepts of orthogonality and orthonormality of the bases.

Definition 7 Inner product of x,y ∈ SD,

〈x,y〉a =
1
D

D−1∑

i=1

D∑

j=i+1

ln
xi

xj
ln
yi

yj
=

D∑

i=1

ln
xi

g(x)
ln

yi

g(y)
,

and norm of x ∈ SD,

‖x‖a =
√
〈x,x〉a,

where g(x) = (x1 . . . xD)
1
D denotes the geometric mean of the parts of the

compositional vector in the argument.

It is easy to see, that using orthonormal bases on the simplex, all operations
and metric concepts like perturbation, power transformation, inner product and
norm are translated into coordinates as ordinary vector operations (sum of two
vectors and multiplication of a vector by a scalar). See [6], [7] for details.

As consequence of the mentioned concepts we obtain the following definition:

Definition 8 The cosine of the angle ∠(x,y)a between two compositions x, y ∈
SD, satisfying x �= n, x �= y, is expressible as

cos∠(x,y)a =
〈x,y〉a
‖x‖a‖y‖a

.
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2 Bases for additive logratio transformations

Let us have a generating system of compositions in the simplex, w1, . . . ,wD,
where wi = C(1, 1 . . . , e, . . . , 1) (the number e, base of natural logarithm, is
placed in the i-th column, i = 1, . . . , D). Then, taking any D − 1 vectors, we
obtain a basis, e.g. w1, . . . ,wD−1, and any vector x ∈ SD can be written as

x = ln
x1

xD
� (e, 1, . . . , 1, 1)⊕ ln

x2

xD
� (1, e, 1, . . . , 1)⊕ ln

xD−1

xD
� (1, 1 . . . , 1, e).

The mentioned basis has the following properties:

Theorem 1 Let w1, . . . ,wD−1 be the basis defined above. Then for 1 ≤ i, j ≤
D − 1, i �= j,

〈wi,wj〉a = − 1
D
, ‖wi‖2a =

D − 1
D

, cos∠(wi,wj)a = − 1
D − 1

.

Proof We use the inner product in the form

〈x,y〉a =
D∑

k=1

ln
xk

g(x)
ln

yk

g(y)

for any x, y ∈ SD. Thus, in our case,

〈wi,wj〉a =
D∑

k=1,k 
=i,j

ln
1

D
√

e
ln

1
D
√

e
+2 ln

e
D
√

e
ln

1
D
√

e
=
D − 2
D2

− 2(D − 1)
D2

= − 1
D
.

Analogously

‖wi‖2a =
D∑

k=1,k 
=i,j

(
ln

1
D
√

e

)2

+
(

ln
e

D
√

e

)2

=
D − 1
D2

+
(D − 1)2

D2
=
D − 1
D

.

The value for cos∠(wi,wj)a = − 1
D−1 is a simple consequence. �

Example 1 In case of D = 3 we obtain w1 = C(e, 1, 1), w2 = C(1, e, 1), so thus

‖w1‖a = ‖w2‖a =
√

6
3 and ∠(w1,w2)a = 120◦. Compositional straight lines

x1(t) = n⊕ (t�w1) = C(et, 1, 1), t ∈ R,

and
x2(s) = n⊕ (s�w2) = C(1, es, 1), s ∈ R,

with neutral element n = C(1, 1, 1) for starting points and directions given by
w1 and w2 are displayed on Figure 1. It is clear that their common composition
is just the neutral element n, obtained for t = s = 0.
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x y

z

n

x1 2x

Compositional lines x1(t) and x2(s) with neutral element n for starting points
and directions given by w1 and w2.

The coefficients ln x1
xD
, . . . , ln xD−1

xD
of the above mentioned basis correspond

to one member of the well known additive logratio (alr) transformations family,
introduced by [1]. To obtain all the alr transformations, it is sufficient to choose
by permutation another D − 1 vectors from the generating system ([10]). We
keep the basis chosen above, the considerations for the others are analogous.
Thus, we denote by alrD the transformation that gives the expression of a
composition in additive logratio coordinates with the part xD as ratioing part,

alrD(x) =
(

ln
x1

xD
, ln

x2

xD
, . . . , ln

xD−1

xD

)
= y.

The inverse of alrD transformation, which gives the coordinates in the canonical
basis of real space, is defined as

alr−1
D (y) = C(exp(y1), . . . , exp(yD−1), 1) = x.

Let us emphasize that the alrD (and also other transformations from the
alr transformations family) is not isometric (its basis on the simplex is not
orthonormal, see Theorem 1), i.e. metric concepts are not translated like as
ordinary vector operations. On the other side, by many statistical methods this
doesn’t play a role and the remaining properties are sufficient (e.g. [1], [3], [9],
for details). Moreover, the form of alr coordinates enables to use it by expert
processes in multicriteria evaluation theory ([13]).
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