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Abstract

In this paper we introduce the notion of the structure space of
Γ-semigroups formed by the class of uniformly strongly prime ideals. We
also study separation axioms and compactness property in this structure
space.
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1 Introduction

In [4], L. Gillman studied “Rings with Hausdorff structure space” and in [7],
C. W. Kohls studied “The space of prime ideals of a ring”. In [1], M. R. Adhikari
and M. K. Das studied ‘Structure spaces of semirings’.

In [9], M. K. Sen and N. K. Saha introduced the notion of Γ-Semigroup.
Some works on Γ-Semigroups may be found in [10], [8], [5], [6], [2] and [3].

In this paper we introduce and study the structure space of Γ-Semigroups.
For this we consider the collection A of all proper uniformly strongly prime
ideals of a Γ-Semigroup S and we give a topology τA on A by means of closure
operator defined in terms of intersection and inclusion relation among these ide-
als of the Γ-Semigroup S. We call the topological space (A, τA)—the structure
space of the Γ-Semigroup S. We study separation axioms, compactness and
connectedness in this structure space.
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2 Preliminaries

Definition 2.1 Let S = {a, b, c, . . .} and Γ = {α, β, γ, . . . } be two nonempty
sets. S is called a Γ-semigroup if

(i) aαb ∈ S, for all α ∈ Γ and a, b ∈ S and
(ii) (aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ.

S is said to be Γ-semigroup with zero if there exists an element 0 ∈ S such that
0αa = aα0 = 0 for all α ∈ Γ.

Example 2.2 Let S be a set of all negative rational numbers. Obviously S is
not a semigroup under usual product of rational numbers. Let

Γ = {− 1
p : p is prime}.

Let a, b, c ∈ S and α ∈ Γ. Now if aαb is equal to the usual product of ra-
tional numbers a, α, b, then aαb ∈ S and (aαb)βc = aα(bβc). Hence S is a
Γ-semigroup.

Definition 2.3 Let S be a Γ-semigroup and α ∈ Γ. Then e ∈ S is said to be
an α-idempotent if eαe = e. The set of all α-idempotents is denoted by Eα

and we denote
⋃

α∈ΓEα by E(S). The elements of E(S) are called idempotent
element of S.

Definition 2.4 A nonempty subset I of a Γ-semigroup S is called an ideal if
IΓS ⊆ I and SΓI ⊆ I where for subsets U, V of S and Δ of Γ, UΔV = {uαv :
u ∈ U, v ∈ V, α ∈ Δ}.

Definition 2.5 A nonempty subset I of a Γ-semigroup S is called an ideal if
IΓS ⊆ I and SΓI ⊆ I where for subsets U, V of S and Δ of Γ, UΔV = {uαv :
u ∈ U, v ∈ V, α ∈ Δ}. An ideal I of S is called a proper ideal if I �= S.

Definition 2.6 A proper ideal P of a Γ-Semigroup S is called a prime ideal of
S if AΓB ⊆ P implies A ⊆ P or B ⊆ P for any two ideals A,B of S.

Definition 2.7 An ideal I of a Γ-semigroup S is said to be full if E(S) ⊆ I.
An ideal I of a Γ-semigroup S is said to be a prime full ideal if it is both

prime and full.

Theorem 2.8 Let S be a Γ-semigroup. For an ideal P of S, the following are
equivalent.

(i) If A and B are ideals of S such that AΓB ⊆ P then either A ⊆ P or
B ⊆ P .

(ii) If aΓSΓb ⊆ P then either a ∈ P or b ∈ P (a, b ∈ S)
(iii) If I1 and I2 are two right ideals of S such that I1ΓI2 ⊆ P then either

I1 ⊆ P or I2 ⊆ P .
(iv) If J1 and J2 are two left ideals of S such that J1ΓJ2 ⊆ P then either

J1 ⊆ P or J2 ⊆ P .
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Proof (i) ⇒ (ii): Suppose aΓSΓb ⊆ P . Then <a>Γ<a>Γ<b>Γ<b> ⊆
P . Since <a>Γ<a>, <b>Γ<b> are ideals of S, so by (i) we have either
<a>Γ<a> ⊆ P or <b>Γ<b> ⊆ P . By repeated uses of (i) we get a ∈ <a> ⊆ P
or b ∈ <b> ⊆ P .

(ii)⇒ (iii): Let I1ΓI2 ⊆ P . Let I1 �⊆ P . Then there exists an element a1 ∈ I1
such that a1 /∈ P . Then for every a2 ∈ I2 we have a1ΓSΓa2 ⊆ I1ΓI2 ⊆ P . Hence
from (ii) a2 ∈ P . Thus I2 ⊆ P . Similarly (ii) implies (iv).

The proof is completed by observing that (i) is implied obviously either by
(iii) or by (iv). �

Definition 2.9 An ideal P of a Γ-Semigroup S is called a uniformly strongly
prime ideal(usp ideal) if S and Γ contain finite subsets F and Δ respectively
such that xΔFΔy ⊆ P implies that x ∈ P or y ∈ P for all x, y ∈ S.

Theorem 2.10 Let S be a Γ-semigroup. Then every uniformly strongly prime
ideal is a prime ideal.

Proof Let P be a uniformly strongly prime ideal of S. Then S and Γ contain
finite subsets F and Δ respectively such that xΔFΔy ⊆ P implies that x ∈ P or
y ∈ P for all x, y ∈ S. Now let aΓSΓb ⊆ P . Thus we have aΔFΔb ⊆ aΓSΓb ⊆ P
and hence we have a ∈ P or b ∈ P . Hence P is prime ideal by Theorem 2.8.

�

Throughout this paper S will always denote a Γ-Semigroup with zero and
unless otherwise stated a Γ-Semigroup means a Γ-Semigroup with zero.

3 Structure space of Γ-semigroups

SupposeA is the collection of all uniformly strongly prime ideals of a Γ-Semigroup
S. For any subset A of A, we define

A = {I ∈ A :
⋂

Iα∈A

Iα ⊆ I}.

It is easy to see that ∅ = ∅.
Theorem 3.1 Let A, B be any two subsets of A. Then

(i) A ⊆ A

(ii) A = A

(iii) A ⊆ B =⇒ A ⊆ B

(iv) A ∪B = A ∪B
Proof (i): Clearly,

⋂
Iα∈A Iα ⊆ Iα for each α and hence A ⊆ A.

(ii): By (i), we have A ⊆ A. For converse part, let Iβ ∈ A. Then
⋂

Iα∈A Iα ⊆
Iβ . Now Iα ∈ A implies that

⋂
Iγ∈A Iγ ⊆ Iα for all α ∈ Λ. Thus

⋂

Iγ∈A

Iγ ⊆
⋂

Iα∈A

Iα ⊆ Iβ i.e.
⋂

Iγ∈A

Iγ ⊆ Iβ .



40 S. CHATTOPADHYAY, S. KAR

So Iβ ∈ A and hence A ⊆ A. Consequently, A = A.

(iii): Suppose that A ⊆ B. Let Iα ∈ A. Then
⋂

Iβ∈A Iβ ⊆ Iα. Since A ⊆ B,
it follows that ⋂

Iβ∈B

Iβ ⊆
⋂

Iβ∈A

Iβ ⊆ Iα.

This implies that Iα ∈ B and hence A ⊆ B.

(iv): Clearly, A ∪B ⊆ A ∪B.

For the reverse part, let Iα ∈ A ∪B. Then
⋂

Iβ∈A∪B Iβ ⊆ Iα.
It is easy to see that

⋂

Iβ∈A∪B

Iβ =
( ⋂

Iβ∈A

Iβ

)
∩
( ⋂

Iβ∈B

Iβ

)
.

Since
⋂

Iβ∈A Iβ and
⋂

Iβ∈B Iβ are ideals of S, we have

( ⋂

Iβ∈A

Iβ

)
Γ
( ⋂

Iβ∈B

Iβ

)
⊆
( ⋂

Iβ∈A

Iβ

)
∩
( ⋂

Iβ∈B

Iβ

)
=

⋂

Iβ∈A∪B

Iβ ⊆ Iα

Since every uniformly strongly prime ideal is prime, Iα is a prime ideal of S and
hence either

⋂
Iβ∈A Iβ ⊆ Iα or

⋂
Iβ∈B Iβ ⊆ Iα i.e. either Iα ∈ A or Iα ∈ B i.e.

Iα ∈ A ∪B. Consequently, A ∪B ⊆ A ∪B and hence A ∪B = A ∪B. �

Definition 3.2 The closure operator A −→ A gives a topology τA on A. This
topology τA is called the hull-kernel topology and the topological space (A, τA)
is called the structure space of the Γ-Semigroup S.

Let I be a ideal of a Γ-Semigroup S. We define

Δ(I) = {I ′ ∈ A : I ⊆ I ′} and CΔ(I) = A \Δ(I) = {I ′ ∈ A : I �⊆ I ′}.

Now we have the following result:

Proposition 3.3 Any closed set in A is of the form Δ(I), where I is a ideal
of a Γ-Semigroup S.

Proof Let A be any closed set in A, where A ⊆ A. Let A = {Iα : α ∈ Λ} and
I =

⋂
Iα∈A Iα. Then I is a ideal of S. Let I ′ ∈ A. Then

⋂
Iα∈A Iα ⊆ I ′. This

implies that I ⊆ I ′. Consequently, I ′ ∈ Δ(I). So A ⊆ Δ(I).
Conversely, let I ′ ∈ Δ(I). Then I ⊆ I ′ i.e.

⋂
Iα∈A Iα ⊆ I ′. Consequently,

I ′ ∈ A and hence Δ(I) ⊆ A. Thus A = Δ(I). �

Corollary 3.4 Any open set in A is of the form CΔ(I), where I is an ideal
of S.
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Let S be a Γ-Semigroup and a ∈ S. We define

Δ(a) = {I ∈ A : a ∈ I} and CΔ(a) = A \Δ(a) = {I ∈ A : a /∈ I}.

Then we have the following result:

Proposition 3.5 {CΔ(a) : a ∈ S} forms an open base for the hull-kernel topol-
ogy τA on A.

Proof Let U ∈ τA. Then U = CΔ(I), where I is an ideal of S. Let J ∈ U =
CΔ(I). Then I �⊆ J . This implies that there exists a ∈ I such that a /∈ J . Thus
J ∈ CΔ(a). Now it remains to show that CΔ(a) ⊂ U . Let K ∈ CΔ(a). Then
a /∈ K. This implies that I �⊆ K. Consequently, K ∈ U and hence CΔ(a) ⊂ U .
So we find that J ∈ CΔ(a) ⊂ U . Thus {CΔ(a) : a ∈ S} is an open base for the
hull-kernel topology τA on A.

Theorem 3.6 The structure space (A, τA) is a T0-space.

Proof Let I1 and I2 be two distinct elements of A. Then there is an element
a either in I1 \ I2 or in I2 \ I1. Suppose that a ∈ I1 \ I2. Then CΔ(a) is a
neighbourhood of I2 not containing I1. Hence (A, τA) is a T0-space. �

Theorem 3.7 (A, τA) is a T1-space if and only if no element of A is contained
in any other element of A.

Proof Let (A, τA) be a T1-space. Suppose that I1 and I2 be any two distinct
elements of A. Then each of I1 and I2 has a neighbourhood not containing the
other. Since I1 and I2 are arbitrary elements of A, it follows that no element of
A is contained in any other element of A.

Conversely, suppose that no element of A is contained in any other element
of A. Let I1 and I2 be any two distinct elements of A. Then by hypothesis,
I1 �⊂ I2 and I2 �⊂ I1. This implies that there exist a, b ∈ S such that a ∈ I1 but
a /∈ I2 and b ∈ I2 but b /∈ I1. Consequently, we have I1 ∈ CΔ(b) but I1 /∈ CΔ(a)
and I2 ∈ CΔ(a) but I2 /∈ CΔ(b) i.e. each of I1 and I2 has a neighbourhood not
containing the other. Hence (A, τA) is a T1-space. �

Corollary 3.8 LetM be the set of all proper maximal ideals of a Γ-Semigroup
S with unities. Then (M, τM) is a T1-space, where τM is the induced topology
onM from (A, τA).

Theorem 3.9 (A, τA) is a Hausdorff space if and only if for any two distinct
pair of elements I, J of A, there exist a, b ∈ S such that a /∈ I, b /∈ J and there
does not exist any element K of A such that a /∈ K and b /∈ K.

Proof Let (A, τA) be a Hausdorff space. Then for any two distinct elements
I, J of A, there exist basic open sets CΔ(a) and CΔ(b) such that I ∈ CΔ(a),
J ∈ CΔ(b) and CΔ(a) ∩ CΔ(b) = ∅. Now I ∈ CΔ(a) and J ∈ CΔ(b) imply
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that a /∈ I and b /∈ J . If possible, let K be any element of A such that a /∈ K
and b /∈ K. Then K ∈ CΔ(a), K ∈ CΔ(b) and hence K ∈ CΔ(a) ∩ CΔ(b), a
contradiction, since CΔ(a)∩CΔ(b) = ∅. Thus there does not exist any element
K of A such that a /∈ K and b /∈ K.

Conversely, suppose that the given condition holds and I, J ∈ A such that
I �= J . Let a, b ∈ S be such that a /∈ I, b /∈ J and there does not exist any
K of A such that a /∈ K and b /∈ K. Then I ∈ CΔ(a), J ∈ CΔ(b) and
CΔ(a) ∩ CΔ(b) = ∅. This implies that (A, τA) is a Hausdorff space. �

Corollary 3.10 If (A, τA) is a Hausdorff space, then no proper uniformly
strongly prime ideal contains any other proper uniformly strongly prime ideal.
If (A, τA) contains more than one element, then there exist a, b ∈ S such that
A = CΔ(a) ∪ CΔ(b) ∪Δ(I), where I is the ideal generated by a, b.

Proof Suppose that (A, τA) is a Hausdorff space. Since every Hausdorff space
is a T1-space, (A, τA) is a T1-space. Hence by Theorem 3.7, it follows that
no proper uniformly strongly prime ideal contains any other proper uniformly
strongly prime ideal. Now let J,K ∈ A be such that J �= K. Since (A, τA)
is a Hausdorff space, there exist basic open sets CΔ(a) and CΔ(b) such that
J ∈ CΔ(a), K ∈ CΔ(b) and CΔ(a) ∩ CΔ(b) = ∅. Let I be the ideal generated
by a, b. Then I is the smallest ideal containing a and b. Let K ∈ A. Then
either a ∈ K, b /∈ K or a /∈ K, b ∈ K or a, b ∈ K. The case a /∈ K, b /∈ K
is not possible, since CΔ(a) ∩ CΔ(b) = ∅. Now in the first case, K ∈ CΔ(b)
and hence A ⊆ CΔ(a) ∪ CΔ(b) ∪ Δ(I). In the second case, K ∈ CΔ(a) and
hence A ⊆ CΔ(a) ∪ CΔ(b) ∪ Δ(I). In the third case, K ∈ Δ(I) and hence
A ⊆ CΔ(a) ∪ CΔ(b) ∪ Δ(I). So we find that A ⊆ CΔ(a) ∪ CΔ(b) ∪ Δ(I).
Again, clearly CΔ(a)∪CΔ(b)∪Δ(I) ⊆ A. Hence A = CΔ(a)∪CΔ(b)∪Δ(I).

�

Theorem 3.11 (A, τA) is a regular space if and only if for any I ∈ A and
a /∈ I, a ∈ S, there exist an ideal J of S and b ∈ S such that I ∈ CΔ(b) ⊆
Δ(J) ⊆ CΔ(a).

Proof Let (A, τA) be a regular space. Let I ∈ A and a /∈ I. Then I ∈ CΔ(a)
and A\CΔ(a) is a closed set not containing I. Since (A, τA) is a regular space,
there exist disjoints open sets U and V such that I ∈ U and A \ CΔ(a) ⊆ V .
This implies that A \ V ⊆ CΔ(a). Since V is open, A \ V is closed and hence
there exists an ideal J of S such that A \ V = Δ(J), by Proposition 3.3. So we
find that Δ(J) ⊆ CΔ(a). Again, since U ∩ V = ∅, we have V ⊆ A \ U . Since
U is open, A \ U is closed and hence there exists an ideal K of S such that
A \ U = Δ(K) i.e. V ⊆ Δ(K). Since I ∈ U , I /∈ A \ U = Δ(K). This implies
that K �⊆ I. Thus there exists b ∈ K(⊂ S) such that b /∈ I. So I ∈ CΔ(b). Now
we show that V ⊆ Δ(b). Let M ∈ V ⊆ Δ(K). Then K ⊆ M . Since b ∈ K,
it follows that b ∈ M and hence M ∈ Δ(b). Consequently, V ⊆ Δ(b). This
implies that A \Δ(b) ⊆ A \ V = Δ(J) =⇒ CΔ(b) ⊆ Δ(J). Thus we find that
I ∈ CΔ(b) ⊆ Δ(J) ⊆ CΔ(a).
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Conversely, suppose that the given condition holds. Let I ∈ A and Δ(K) be
any closed set not containing I. Since I /∈ Δ(K), we have K �⊂ I. This implies
that there exists a ∈ K such that a /∈ I. Now by the given condition, there
exists an ideal J of S and b ∈ S such that I ∈ CΔ(b) ⊆ Δ(J) ⊆ CΔ(a). Since
a ∈ K, CΔ(a) ∩Δ(K) = ∅. This implies that Δ(K) ⊆ A \ CΔ(a) ⊆ A \Δ(J).
Since Δ(J) is a closed set, A \ Δ(J) is an open set containing the closed set
Δ(K). Clearly, CΔ(b) ∩ (A \Δ(J)) = ∅. So we find that CΔ(b) and A \Δ(J)
are two disjoints open sets containing I and Δ(K) respectively. Consequently,
(A, τA) is a regular space. �

Theorem 3.12 (A, τA) is a compact space if and only if for any collection
{aα}α∈Λ ⊂ S there exists a finite subcollection {ai : i = 1, 2, . . . , n} in S such
that for any I ∈ A, there exists ai such that ai /∈ I.

Proof Let (A, τA) be a compact space. Then the open cover {CΔ(aα) : aα ∈ S}
of (A, τA) has a finite subcover {CΔ(ai) : i = 1, 2, . . . , n}. Let I be any element
of A. Then I ∈ CΔ(ai) for some ai ∈ S. This implies that ai /∈ I. Hence
{ai : i = 1, 2, . . . , n} is the required finite subcollection of elements of S such
that for any I ∈ A, there exists ai such that ai /∈ I.

Conversely, suppose that the given condition holds. Let {CΔ(aα) : aα ∈ S}
be an open cover of A. Suppose to the contrary that no finite subcollection of
{CΔ(aα) : aα ∈ S} covers A. This means that for any finite set {a1, a2, . . . , an}
of elements of S,

CΔ(a1) ∪CΔ(a2) ∪ . . . ∪ CΔ(an) �= A
=⇒ Δ(a1) ∩Δ(a2) ∩ . . . ∩Δ(an) �= ∅
=⇒ there exists I ∈ A such that I ∈ Δ(a1) ∩Δ(a2) ∩ . . . ∩Δ(an)
=⇒ a1, a2, . . . , an ∈ I, which contradicts our hypothesis .
So the open cover {CΔ(aα) : aα ∈ S} has a finite subcover and hence (A, τA)

is compact.

Corollary 3.13 If S is finitely generated, then (A, τA) is a compact space.

Proof Let {ai : i = 1, 2, . . . , n} be a finite set of generators of S. Then for any
I ∈ A, there exists ai such that ai /∈ I, since I is a proper uniformly strongly
prime ideal of S. Hence by Theorem 3.12, (A, τA) is a compact space. �

Definition 3.14 A Γ-Semigroup S is called a Noetherian Γ-Semigroup if it
satisfies the ascending chain condition on ideals of S i.e. if I1 ⊆ I2 ⊆ . . . ⊆ In ⊆
. . . is an ascending chain of ideals of S, then there exists a positive integer m
such that In = Im for all n ≥ m.

Theorem 3.15 If S is a Noetherian Γ-Semigroup, then (A, τA) is countably
compact.

Proof Let {Δ(In)}∞n=1 be a countable collection of closed sets in A with finite
intersection property (FIP). Let us consider the following ascending chain of
prime ideals of S: <I1> ⊆ <I1 ∪ I2> ⊆ <I1 ∪ I2 ∪ I3> ⊆ . . .
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Since S is a Noetherian Γ-Semigroup, there exists a positive integer m such
that <I1 ∪ I2 ∪ . . . ∪ Im> = <I1 ∪ I2 ∪ . . . ∪ Im+1> = . . .

Thus it follows that <I1 ∪ I2 ∪ . . . ∪ Im> ∈ ⋂∞
n=1 Δ(In). Consequently,⋂∞

n=1 Δ(In) �= ∅ and hence (A, τA) is countably compact. �

Corollary 3.16 If S is a Noetherian Γ-Semigroup and (A, τA) is second count-
able, then (A, τA) is compact.

Proof Proof follows from Theorem 3.15 and the fact that a second countable
space is compact if it is countably compact. �

Remark 3.17 Let {Iα} be a collection of prime ideals of a Γ-semigroup S.
Then

⋂
Iα is an ideal of S but it may not be a prime ideal of S, in general.

However; in particular, we have the following result:

Proposition 3.18 Let {Iα} be a collection of prime ideals of a Γ-semigroup S
such that {Iα} forms a chain. Then

⋂
Iα is a prime ideal of S.

Proof Clearly,
⋂
Iα is an ideal of S. Let AΓB ⊆ ⋂

Iα for any two ideals
A,B of S. If possible, let A,B �⊆ ⋂

Iα. Then there exist α and β such that
A �⊆ Iα and B �⊆ Iβ . Since Iα is a chain, let Iα ⊆ Iβ . This implies that B �⊆ Iα.
Since AΓB ⊆ Iα and Iα is prime, we must have either A ⊆ Iα or B ⊆ Iα, a
contradiction. Therefore, either A ⊆ ⋂

Iα or B ⊆ ⋂
Iα. Consequently,

⋂
Iα is

a prime ideal of S. �

Definition 3.19 The structure space (A, τA) is called irreducible if for any
decomposition A = A1 ∪A2, where A1 and A2 are closed subsets of A, we have
either A = A1 or A = A2.

Theorem 3.20 Let A be a closed subset of A. Then A is irreducible if and
only if

⋂
Iα∈A Iα is a prime ideal of S.

Proof Let A be irreducible. Let P and Q be two ideals of S such that PΓQ ⊆⋂
Iα∈A Iα. Then PΓQ ⊆ Iα for all α. Since Iα is prime, either P ⊆ Iα or

Q ⊆ Iα which implies for Iα ∈ A either Iα ∈ {P} or Iα ∈ {Q}. Hence A =
(A ∩ P ) ∪ (A ∩ Q). Since A is irreducible and (A ∩ P ), (A ∩ Q) are closed, it
follows that A = A∩P or A = A∩Q and hence A ⊆ P or A ⊆ Q. This implies
that P ⊆ ⋂

Iα∈A Iα or Q ⊆ ⋂
Iα∈A Iα. Consequently,

⋂
Iα∈A Iα is a prime ideal

of S.
Conversely, suppose that

⋂
Iα∈A Iα is a prime ideal of S. Let A = A1 ∪A2,

where A1 and A2 are closed subsets of A. Then
⋂

Iα∈A Iα ⊆
⋂

Iα∈A1
Iα and⋂

Iα∈A Iα ⊆
⋂

Iα∈A2
Iα. Also

⋂

Iα∈A

Iα =
⋂

Iα∈A1∪A2

Iα =
( ⋂

Iα∈A1

Iα

)
∩
( ⋂

Iα∈A2

Iα

)
.



On structure space of Γ-semigroups 45

Now
( ⋂

Iα∈A1

Iα

)
Γ
( ⋂

Iα∈A2

Iα

)
⊆
( ⋂

Iα∈A1

Iα

)
and

( ⋂

Iα∈A1

Iα

)
Γ
( ⋂

Iα∈A2

Iα

)
⊆
( ⋂

Iα∈A2

Iα

)
.

Thus we have
( ⋂

Iα∈A1

Iα

)
Γ
( ⋂

Iα∈A2

Iα

)
⊆
( ⋂

Iα∈A1

Iα

)
∩
( ⋂

Iα∈A2

Iα

)
.

Since
⋂

Iα∈A Iα is prime, it follows that either

⋂

Iα∈A1

Iα ⊆
⋂

Iα∈A

Iα or
⋂

Iα∈A2

Iα ⊆
⋂

Iα∈A

Iα.

So we find that
⋂

Iα∈A

Iα =
⋂

Iα∈A1

Iα or
⋂

Iα∈A

Iα =
⋂

Iα∈A2

Iα.

Let Iβ ∈ A. Then we have

⋂

Iα∈A1

Iα ⊆ Iβ or
⋂

Iα∈A2

Iα ⊆ Iα.

Since A1, A2 ⊆ A, so either Iα ⊆ Iβ for all Iα ∈ A1 or Iα ⊆ Iβ for all Iα ∈ A2.
Thus Iβ ∈ A1 = A1 or Iβ ∈ A2 = A2, since A1 and A2 are closed. i.e. A = A1

or A = A2. �

Let C be the collection of all uniformly strongly prime full ideals of a Γ-semi-
group S. Then we see that C is a subset of A and hence (C, τC) is a topological
space, where τC is the subspace topology.

In general, (A, τA) is not compact and connected. But in particular, for the
topological space (C, τC), we have the following results:

Theorem 3.21 (C, τC) is a compact space.

Proof Let {Δ(Iα) : α ∈ Λ} be any collection of closed sets in C with finite
intersection property. Let I be the uniformly strongly prime full ideal generated
by E(S). Since any uniformly strongly prime full ideal J contains E(S), J
contains I. Hence I ∈ ⋂

α∈Λ Δ(Iα) �= ∅. Consequently, (C, τC) is a compact
space. �

Theorem 3.22 (C, τC) is a connected space.

Proof Let I be the uniformly strongly prime ideal generated by E(S). Since
any uniformly strongly prime full ideal J contains E(S), J contains I. Hence I
belongs to any closed set Δ(I ′) of C. Consequently, any two closed sets of C are
not disjoint. Hence (C, τC) is a connected space. �
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