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Abstract

A lattice L is said to satisfy (the lattice theoretic version of) Frankl’s
conjecture if there is a join-irreducible element f ∈ L such that at most
half of the elements x of L satisfy f ≤ x. Frankl’s conjecture, also called
as union-closed sets conjecture, is well-known in combinatorics, and it
is equivalent to the statement that every finite lattice satisfies Frankl’s
conjecture.
Let m denote the number of nonzero join-irreducible elements of L. It

is well-known that L consists of at most 2m elements. Let us say that L
is large if it has more than 5 · 2m−3 elements. It is shown that every large
semimodular lattice satisfies Frankl’s conjecture. The second result states
that every finite semimodular planar lattice L satisfies Frankl’s conjecture.
If, in addition, L has at least four elements and its largest element is join-
reducible then there are at least two choices for the above-mentioned f .
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Given an m-element finite set A = {a1, . . . , am}, m ≥ 3, a family (or, in
other words, a set) F of at least two subsets of A, i.e. F ⊆ P (A), is called
a union-closed family (over A) if X ∪ Y ∈ F whenever X,Y ∈ F . It was
Peter Frankl in 1979 (cf. Frankl [9]) who formulated the following conjecture,
now called as Frankl’s conjecture or the union-closed sets conjecture: if F is as
above then there exists an element of A which is contained in at least half of
the members of F . In spite of at least three dozen papers, cf. the bibliography
given in [8], this conjecture is still open.

Now let L be a finite lattice. As usual, the set of its nonzero join-irreducible
elements will be denoted by J(L). We say that L satisfies (the lattice theoretic
version of) Frankl’s conjecture if |L| = 1 or there is an f ∈ J(L) such that for
the principal filter ↑f = {x ∈ L : f ≤ x} we have |↑f | ≤ |L|/2. Stanley [17]
and Poonen [14] or Abe and Nakano [3] have shown that (the original) Frankl’s
conjecture is true if and only if all finite lattices satisfy (the lattice theoretic)
Frankl’s conjecture. (For details one can also see [6].) This fact has initiated
a series of lattice theoretical results given by Abe and Nakano [1], [2], [3], [4],
Herrmann and Langsdorf [13], and Reinhold [15], and two combinatorial results
achieved by means of lattices, cf. [6] and [8]. In particular, lower semimodular
lattices satisfy Frankl’s conjecture by [15], and the method of [15] makes it
clear that the situation for (upper) semimodular lattices is much harder. In
fact, it is (and it remains) unknown if semimodular lattices satisfy Frankl’s
conjecture. The goal of the present paper is to present two subclasses of the
class of finite semimodular lattices such that every lattice L in these subclasses
satisfies Frankl’s conjecture; in fact, L usually satisfies the conjecture in a bit
stronger form.

For elements x and y of a lattice L, let x � y denote the “covers or equals”
relation. That is, x � y iff x ≤ y and there is no z ∈ L with x < z < y.
Recall that L is called (upper) semimodular if, for any a, b, c ∈ L, a � b implies
a∨ c � b∨ c. Let J(L) denote the set of non-zero join-irreducible elements of L,
and let m = |J(L)|. Since each element of L is the join of a subset of J(L), L
has at most 2m elements. Strengthening a former result of Gao and Yu [10], it
is shown in [6] that L satisfies Frankl’s conjecture provided |L| ≥ 2m− 2m/2. In
the semimodular case we can prove more. For simplicity, finite lattices L with
more than 5·2m−3 = 2m− 3

8 ·2m elements will be called large. The height h(x) of
an element x ∈ L is the length (number of elements minus one) of any maximal
chain in the principal ideal ↓x. (This makes sense, for any two maximal chains
has the same length by semimodularity.)

Theorem 1 Let L be a finite semimodular lattice. If L is large in the sense
|L| > 5 · 2m−3, where m = |J(L)|, then L satisfies Frankl’s conjecture.

Proof Let A(L) denote the set of atoms of L.
First we show that |J(L) \A(L)| ≤ 1. By way of contradiction, assume that

a1 and a2 are distinct elements of J(L) \ A(L). Let a3, . . . , am be the rest of
nonzero join-irreducible elements, i.e., J(L) = {a1, a2, . . . , am}. Let Bm be the
boolean lattice with atoms x1, . . . , xm, and consider both Bm = (Bm;∨, 0) and
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L = (L;∨, 0) as join-semilattices with 0. Since Bm is the free join-semilattice
with 0, there is a surjective homomorphism ϕ : Bm → L, xi �→ ai. Let Θ denote
the kernel of ϕ. Then, for i = 1, 2, the Θ-class [xi] of xi is not a singleton, for
otherwise ai would be an atom. Since ai �= 0, we conclude that 0 /∈ [xi]. Since
Θ-classes are convex subsemilattices, there are elements y1 ∈ [x1] and y2 ∈ [x2]
such that y1 � x1 and y2 � x2. They are distinct, for a1 �= a2. Let z = y1 ∧ y2;
it is an atom or the zero of Bm.

J :

1y 2y

1x 2xz

I :

1y 2y

1x 2x

Fig. 1: Two ideals in Bm

First assume that z is an atom, and consider the ideal I = ↓(y1∨y2) inBm, cf.
Figure 1. Let K denote the subsemilattice generated by those atoms of Bm that
are not in I; K is not indicated in the figure. It follows from (x1, y1), (x2, y2) ∈ Θ
that the restriction Θ|I to I includes the semilattice congruence indicated in the
figure. Hence Θ collapses I to five or less elements. For u ∈ K, let u ∨ I =
{u∨ t : t ∈ I}. If (t1, t2) ∈ Θ|I then (u∨ t1, u∨ t2) ∈ Θ. Hence Θ collapses u∨ I
to five or less elements. Now Bm is the union of the pairwise disjoint subsets
u ∨ I, u ∈ Bm. Therefore L ∼= Bm/Θ consists of at most 5 · |K| = 5 · 2m−3

elements, which contradicts the assumption that L is large.
Secondly, assume that z = 0, and consider the ideal J = ↓(y1 ∨ y2), cf.

Figure 1. Then the same argument as above gives |L| ≤ 9 · 2m−4 < 5 · 2m−3, a
contradiction again. This proves that |J(L) \A(L)| ≤ 1.

Now, let us recall a well-known fact on semimodular lattices. An n-element
subset U = {c1, . . . , cn} of A(L) is called independent if the sublattice [U ]
generated by U is boolean with A([U ]) = U . It is well-known, cf. e.g., Theorem
IV.2.4 in Grätzer [11], that U is independent if and only if

(c1 ∨ · · · ∨ ci) ∧ ci+1 = 0 for i = 1, 2, . . . , n− 1. (1)

We need another, much easier version of independence: U ⊆ J(L) will be called
an irredundant set if u �≤ ∨(

U \ {u}
)

for every u ∈ U . In other words, U =
{c1, . . . , cn} is independent if no joinand can be omitted from c1 ∨ · · · ∨ cn.

Now, armed with |J(L) \A(L)| ≤ 1, let us introduce some new notations. If
|J(L) \A(L)| = 1, then let a1 be the only element of J(L) \A(L), let a2, . . . , ak

be the atoms in ↓a1, and let b1, . . . , bm−k be the rest of atoms. (Note that
k ≥ 2.) Otherwise, when J(L) = A(L), let k = 1, let a1 be an arbitrarily fixed
atom, and let b1, . . . , bm−1 be the rest of atoms.
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We claim that |↑a1| ≤ |L|/2. It suffices to show that for each x ∈ ↑a1 there
exists an y = y(x) ∈ L \ ↑a1 such that a ∨ y = x. (If there are several elements
y with this property then we choose one of them.) Indeed, then the existence of
the injective mapping ↑a1 → L \ ↑a1, x �→ y(x) will complete the proof. So, let
x ∈ ↑a1 be an arbitrary element. Then, clearly, there is an irredundant subset
U of J(L) whose join is x.

First let us assume that ai is in U for some 1 ≤ i ≤ k. Now we define
y =

∨(
U \ {ai}

)
. Then x = ai ∨ y and ai ≤ a1 ≤ x gives x = a1 ∨ y while the

irredundance of U yields ai �≤ y, implying y /∈ ↑a1.
Secondly, we assume that no ai belongs to U . Then U is a set of atoms, say

U = {b1, . . . , bn}. Using condition (1) and the irredundance of U we conclude
that U is an independent set. Define di = b1 ∨ · · · ∨ bi−1 ∨ bi+1 ∨ · · · bn. Then
the di, 1 ≤ i ≤ n, are the coatoms of the boolean sublattice generated by U .
If a1 ≤ di for all i, then a1 ≤

∧n
i=1 di = 0, a contradiction. Hence we can

select an i ∈ {1, . . . , n} such that a1 �≤ di. Then y = di does the job, for
di = 0 ∨ di ≺ bi ∨ di = x by semimodularity, and di < a1 ∨ di ≤ x. �

Let us recall that finite, atomistic, semimodular lattices are geometric lattices
by definition. Using the ideas around Figure 1, it is easy to see that (x1, y1) ∈ Θ
implies that at leat 2m−2 elements of Bm are collapsed, i.e., L has at most
2m − 2m−2 = 6 · 2m−3 elements. This means that |L| > 6 · 2m−3 implies
J(L) = A(L) and |[xi]| = 1 (i = 1, . . . ,m), whence the above proof clearly
yields the following

Corollary 1 Let L be a finite semimodular lattice with |L| > 6 · 2m−3, where
m = |J(L)|. Then L is a geometric lattice, and for each atom f of L, |↑f | ≤
|L|/2.

If L has a Hasse diagram whose edges cross only at vertices then L is called
a planar lattice. Recently, Grätzer and Knapp [12] has given a useful struc-
ture theorem for finite planar semimodular lattices; this is what the present
paper relies on. Although this structure theorem is now generalized to all finite
semimodular lattices in [7], we have been able to treat the planar case only.

If a ‖ b, then S = {a, b, a ∧ b, a ∨ b} ⊆ L will be called a square of L. If,
in addition, a ∧ b ≺ a and a ∧ b ≺ b, then S is called a covering square. By
semimodularity, a ∨ b covers both a and b when S is a covering square. If each
covering square of L is an interval then L is said to be slim. A mapping is called
cover-preserving if it preserves the relation �. Let us recall

Lemma 1 (Grätzer and Knapp [12])

• Each finite planar slim semimodular lattice is a cover-preserving join-
homomorphic image of the direct product of two finite chains.

• Each finite planar semimodular lattice can be obtained from a slim pla-
nar semimodular lattice by inserting new, doubly irreducible elements into
some of its covering squares.
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Using the connection between Frankl’s original conjecture and its lattice
theoretic version, Roberts [16] yields that lattices with at most forty elements
satisfy Frankl’s conjecture. However, to explain why |L| ≥ 4 is assumed in our
main result below, we need only the obvious observation that lattices with less
than four elements satisfy Frankl’s conjecture.

Theorem 2 Let L be a finite planar semimodular lattice consisting of at least
four elements. Then L satisfies Frankl’s conjecture. Moreover, at least one of
the following two properties hold:

• either 1 ∈ J(L), and therefore |↑f | ≤ |L|/4 for f = 1,

• or there exist two distinct elements f1 and f2 in J(L) such that |↑fi| ≤
|L|/2 for i = 1, 2.

Proof Let L be a finite planar semimodular lattice with |L| ≥ 4. We will
assume that L is not a chain and 1 /∈ J(L), for otherwise the statement is
evident.

First we consider the case when L is slim. We will treat it as a join-semilattice
(L,∨). In virtue of Lemma 1, there are two chains, {0 < 1 < · · · < n} and
{0 < 1 < · · · < m}, and a join-congruence Θ of

D = {0 < 1 < · · · < n} × {0 < 1 < · · · < m}

such that, up to isomorphism, L = (L,∨) equals D/Θ. (We will not use the
cover-preserving property of the canonical L→ L/Θ homomorphism.) Since L
is not a chain, n ≥ 2 and m ≥ 2. We assume that n and m are chosen such
that m+n is minimal, and we prove the slim case via induction on m+n. The
smallest case, m = n = 2 is evident. So we assume that m+n > 4. For brevity,
let u = (n, 0), v = (0,m), 1 = (m,n), h = (n− 1,m), cf. Figure 2.

1=(n,m)=

0=(0,0)

u=(n,0) v=(0,m)

h=(n-1,m)

a b

c
c’

c’’

d’’
t=d’
d

w=(0,m-1)

Fig. 2

Now we claim that [u]Θ and [v]Θ belong to J(L) = J(D/Θ). Their role is
symmetric, so it suffices to deal with [u]Θ. Suppose, by way of contradiction,
that [u]Θ is not join-irreducible. Then there are a, b ∈ D such that [u]Θ =
[a]Θ∨ [b]Θ = [a∨ b]Θ but [a]Θ < [u]Θ and [b]Θ < [u]Θ, cf. Figure 2. (Although
Figure 2 does not reflect the full generality, Θ is at least as large as indicated
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by dotted lines.) Let c = a ∨ b. Since [a]Θ < [u]Θ and [b]Θ < [u]Θ, we
conclude that a, b, c ∈ ↓h. Let c ≺ c′ ≺ c′′ ≺ · · · denote the unique maximal
chain in the interval [c, c ∨ v] ⊆ ↓h, and let d = u ∨ c, d′ = u ∨ c′, d′′ =
u ∨ c′′, . . . be the corresponding chain in the interval [d, 1]. Now, computing
modulo Θ, for x ∈ [u, d] we have x = u ∨ x ≡ c ∨ x = d = u ∨ c ≡ c ∨ c = c.
Further, d′ = d ∨ c′ ≡ c ∨ c′ = c′, d′′ = d ∨ c′′ ≡ c ∨ c′′ = c′′, etc. This
means that each element of [u, 1] is congruent to some element in ↓h modulo Θ.
Therefore, by the Third Isomorphism Theorem (cf. e.g., Thm. 6.18 in Burris and
Sankappanavar [5]), (L,∨) is isomorphic to (↓h)/Ψ where Ψ is the restriction
of Θ to ↓h. However, this contradicts the minimality of m + n. We have seen
that [u]Θ and [v]Θ are join-irreducible. [u]Θ = [0]Θ is impossible, for otherwise
L would clearly be a chain Finally, [u]Θ and [v]Θ are distinct, for otherwise
[u]Θ = [u]Θ ∨ [v]Θ = [u ∨ v]Θ = [1]Θ, a contradiction.

Now, we claim that
(
(0, i− 1), (0, i)

)
/∈ Θ for i = 1, . . .m. (2)

By way of contradiction, suppose the opposite for some fixed i. Let Φ be the
semilattice congruence of D whose two-element blocks are the {(j, i− 1), (j, i)},
j = 0, 1, . . . , n, and all other blocks are singletons. Since

(
(j, i− 1), (j, i)

)
=
(
(j, 0) ∨ (0, i− 1), (j, 0) ∨ (0, i)

)
∈ Θ,

we have Φ ⊆ Θ. Hence the Second Isomorphism Theorem (cf. e.g., Thm. 6.15
in [5]) gives that (L,∨) is a homomorphic image of {0 < 1 < · · · < n} × {0 <
1 < · · · < m− 1}, which contradicts the minimality of m+ n.

Now, it follows from (2) that

|↓[v]Θ| ≥ m+ 1. (3)

If, for a ∈ D, [u]Θ ≤ [a]Θ then [a]Θ = [u ∨ a]Θ. This implies that

|↑[u]Θ| ≤ m+ 1. (4)

We claim that
↑[u]Θ is disjoint from ↓[v]Θ. (5)

This comes easily, for in the opposite case we would have

[1]Θ = [u ∨ v]Θ = [u]Θ ∨ [v]Θ = [v]Θ ∈ J(D/Θ) = J(L),

which has been excluded previously. Now (3), (4) and (5) settle the slim case.
Finally, according to Lemma 1, the general case is obtained from the slim

case via inserting new doubly irreducible elements into the interior (understood
in geometrical sense in the Hasse diagram) of covering squares. Since ↑[u]Θ and
↑[v]Θ are chains, they include no covering square. Hence no new element is
inserted into them. I.e., the size of ↑[u]Θ and that of ↑[v]Θ remain fixed while
the size of L increases. �
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