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Addition theorems, D-spaces and dually discrete spaces

Ofelia T. Alas, Vladimir V. Tkachuk, Richard G. Wilson

Abstract. A neighbourhood assignment in a space X is a family O = {Ox : x ∈ X} of
open subsets of X such that x ∈ Ox for any x ∈ X. A set Y ⊆ X is a kernel of O if
O(Y ) =

S
{Ox : x ∈ Y } = X. If every neighbourhood assignment in X has a closed and

discrete (respectively, discrete) kernel, then X is said to be a D-space (respectively a

dually discrete space). In this paper we show among other things that every GO-space is
dually discrete, every subparacompact scattered space and every continuous image of a
Lindelöf P -space is a D-space and we prove an addition theorem for metalindelöf spaces
which answers a question of Arhangel’skii and Buzyakova.

Keywords: neighbourhood assignment, D-space, dually discrete space, discrete kernel,
scattered space, paracompactness, GO-space

Classification: Primary 54D20; Secondary 54G99

1. Introduction

A neighbourhood assignment in a space X is a family O = {Ox : x ∈ X} of
open subsets of X such that x ∈ Ox for any x ∈ X . A set Y ⊆ X is a kernel of
O if O(Y ) =

⋃
{Ox : x ∈ Y } = X .

For any class (or property) P we define a dual class Pd which consists of spaces
X such that, for any neighbourhood assignment O in the space X there exists a
subspace Y ⊆ X such that O(Y ) = X and Y ∈ P ; the spaces from Pd are called
dually P . Thus a space is dually discrete if every neighbourhood assignment in
X has a discrete kernel and is a D-space if it has a closed and discrete kernel. It
is an immediate consequence of the definition, that if X is dually discrete, then
L(X) ≤ s(X) (where L(X) is the Lindelöf number of X and s(X) is the spread
of X ; definitions can be found in [12]).
The concept of a D-space was introduced in [9] and has attracted a great deal

of attention recently (see for example [4], [5] and [11]). Possibly the first mention
of dually discrete spaces can be found in [16] and their study was continued in
[3] and [7] and most recently [1]. On consulting these papers it is immediately
obvious that the class of dually discrete spaces is “very large” — in some sense
it is difficult to construct spaces which are not dually discrete. However, in [7],
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examples of (Hausdorff, some even Tychonoff) spaces which are not dually discrete
were constructed in ZFC but all the known examples depend on the existence of
spaces X in which hd(X) < hL(X) (where hd(X) denotes the hereditary density
of X and hL(X) the hereditary Lindelöf number of X).
All spaces are assumed to be T1 and all undefined notation and terminology is

taken from [12].

2. Addition theorems

In this section we consider the conditions under which the properties of being
a D-space, being dually discrete and being metalindelöf are preserved under finite
unions. The main result of this section (Theorem 2.11) answers a question posed
in [5].

Theorem 2.1. If (X, τ) is a T1-space and F ⊆ X is the union of a σ-locally finite
family of closed (in X)D-subspaces (respectively, dually discrete subspaces), then
(F, τ |F ) is a D-space (respectively, a dually discrete space).

Proof: We prove the theorem for D-subspaces, the proof for dually discrete
subspaces is virtually identical. So, assume that F =

⋃
{
⋃
Fn : n ∈ ω}, where

each Fn is a locally finite family of closed (in X), D-subspaces (in the relative
topology) and O = {Ox : x ∈ F} is a neighbourhood assignment in F . Note first
that for each n ∈ ω, Cn =

⋃
Fn is a D-space since for each C ∈ Fn we can choose

a closed and discrete set DC ⊆ C such that O(DC) ⊇ C. It is immediate that⋃
{DC : C ∈ Fn} is a closed discrete kernel of O.
To complete the proof it is clearly sufficient to prove that a countable union

of closed D-subspaces is a D-space. To this end, suppose that F =
⋃
{Cn :

n ∈ ω}, where each set Cn is a closed D-subspace of X and {Ox : x ∈ F} is a
neighbourhood assignment in F ; then since C0 is a D-space, it follows that there
is some closed and discrete set D0 ⊆ C0 such that

⋃
{Ox : x ∈ D0} ⊇ C0.

Having chosen closed discrete sets {D0, D1, . . . , Dn−1} so that

Dk ⊆ Ck \
⋃
{Ox : x ∈

⋃
{Dj : 0 ≤ j < k}} ⊆

⋃
{Ox : x ∈ Dk}

for each k ≤ n− 1, it follows that Cn \
⋃
{Ox : x ∈

⋃
{Dj : 0 ≤ j ≤ n − 1}} is a

closed subset of Cn and hence is a D-space. Thus we can choose a closed discrete
subset Dn ⊆ X such that

Dn ⊆ Cn \
⋃
{Ox : x ∈

⋃
{Dj : 0 ≤ j < n}} ⊆

⋃
{Ox : x ∈ Dn}.

Let D =
⋃
{Dk : k ∈ ω}; it is clear that

⋃
{Ox : x ∈ D} ⊇ F and we claim that

D is closed and discrete in F . To see this, suppose that z ∈ F and letm ∈ ω be the
minimal integer such that z ∈ O(Dm). Clearly z /∈ cl(

⋃
{Dk : 1 ≤ k ≤ m − 1}),

and since z ∈ O(Dm) and O(Dm) ∩Dk = ∅ for each k > m, it follows from the
fact that Dm is closed and discrete that z is not an accumulation point of D. �
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Corollary 2.2. If F is an Fσ-set in a D-space (respectively, a dually discrete
space) (X, τ), then (F, τ |F ) is a D-space (respectively, a dually discrete space).

Corollary 2.3. The product of a σ-compact space and a dually discrete space is
dually discrete.

Proof: It is an immediate consequence of Theorem 2.7 of [7] that the product of
a compact T1-space and a dually discrete T1-space is dually discrete. The result
now follows from Theorem 2.1. �

Theorem 2.4. If a space X is the union of two dually discrete subspaces Y and
Z where Z is closed in X , then X is dually discrete.

Proof: Let O = {Ox : x ∈ X} be a neighbourhood assignment in X . Then
OZ = {Ox ∩ Z : x ∈ Z} is a neighbourhood assignment in Z and hence has a
discrete kernel, DZ . Now W = Y \

⋃
{Ox : x ∈ DZ} is a closed subspace of the

dually discrete space Y and hence is dually discrete. Thus the neighbourhood
assignment in W , OW = {Ox ∩W : x ∈ W} has a discrete kernel DY , say and it
is straightforward to check that DY ∪DZ is a discrete kernel of O. �

Corollary 2.5. If a space X is the finite union of dually discrete spaces
{Z1, . . . , Zn} where, for each 1 ≤ j ≤ n− 1, the subspace Zj is closed, then X is
dually discrete.

We say that a topological space is adequate if every closed subspace with count-
able extent is Lindelöf. It is easy to see that a D-space is adequate.

Theorem 2.6. Let X = Y ∪Z be a space of countable extent. If Y is adequate
and Z is a D-space, then X is linearly Lindelöf.

Proof: Suppose to the contrary thatX is not linearly Lindelöf; then there is some
strictly increasing open cover {Uα : α ∈ κ} of uncountable regular cardinality
which has no countable subcover. Define f : X → κ by f(x) = min{α ∈ κ : x ∈
Uα} and a neighbourhood assignment O by Ox = Uf(x).

Since Z is a D-space, there is some closed (in Z) discrete set D ⊆ Z such that

⋃
{Ox : x ∈ D} ⊇ Z.

Now F = clX (D)\D is a (possibly empty) closed subset ofX which is contained
in Y . It follows that F has countable extent and since X is adequate, F is
Lindelöf. Thus there is a countable set S ⊆ X such that F ⊆

⋃
{Ox : x ∈ S};

now D \
⋃
{Ox : x ∈ S} is closed and discrete in X , hence is countable, and

so there is a countable set T ⊆ X such that clX(D) ⊆
⋃
{Ot : t ∈ T }. Let

γ = sup{f(t) : t ∈ T } < κ and z ∈ Z; then there is d ∈ D such that z ∈ Od and
t ∈ T such that d ∈ Ot. Hence f(d) ≤ f(t) ≤ γ and z ∈ Uf(d).

The set X \ Uγ is closed in X , is contained in Y and has countable extent, so
again, since Y is adequate,X\Uγ is Lindelöf; thus there is a countableQ ⊆ X such
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that X \Uγ ⊆
⋃
{Oq : q ∈ Q}. Let δ = sup{f(q) : q ∈ Q} and η = max{γ, δ}+ 1.

Since κ has uncountable cofinality, we have η < κ, but X =
⋃
{Uα : α < η} ⊆ Uη,

a contradiction. �

Recall that a space X is metalindelöf if every open cover of X has a point-
countable open refinement.
The following lemma and its corollaries, each having easy proofs, are part of

the folklore.

Lemma 2.7. For each open cover U of a topological space X , there is a closed
discrete set D ⊆ X such that

⋃
{St(d,U) : d ∈ D} = X .

Corollary 2.8. If X is a metalindelöf space then L(X) = e(X).

Corollary 2.9. A metalindelöf space of countable extent is Lindelöf, hence lin-

early Lindelöf.

Recall that a cover V = {Vα : α ∈ I} is a shrinking of a cover U = {Uα : α ∈ I}
if Vα ⊆ Uα for all α ∈ I (Vα = ∅ is not excluded).

In [14], Gruenhage proved that if a space X has countable extent and is a
finite union of D-spaces, then it is linearly Lindelöf. Below we prove a analogous
theorem, involving a finite union of metalindelöf subspaces, which allows us to
answer a question of Arhangel’skii and Buzyakova. First we need a simple lemma.

Lemma 2.10. If an open cover of a space X has a point-countable open refine-
ment, then it has a point-countable open shrinking.

Proof: Let U = {Uα : α ∈ I} be an open cover of X and C a point-countable
open refinement of U . For each C ∈ C, choose α(C) ∈ I so that C ⊆ Uα(C) and
define

Wα =
⋃
{C ∈ C : α(C) = α}.

Clearly Wα ⊆ Uα for each α ∈ I and
⋃
{Wα : α ∈ I} = X ; hence to complete

the proof we must show that W = {Wα : α ∈ I} is a point-countable family. To
this end, we fix x ∈ X and enumerate the countable set {C ∈ C : x ∈ C} as
{Cn : n ∈ ω}. It is then clear that x ∈ Wβ if and only if β ∈ {α(Cn) : n ∈ ω},
which completes the proof. �

Theorem 2.11. If a space X of countable extent is the finite union of metalin-
delöf spaces, then it is linearly Lindelöf.

Proof: Suppose that X is a space of countable extent which is a finite union
of metalindelöf subspaces. The proof is by induction on the number n of such
subspaces. It follows from Corollary 2.9 that the theorem is true if n = 1. So
suppose that the theorem is true for any union of n metalindelöf subspaces and
assume that X =

⋃
{Xk : 1 ≤ k ≤ n+1} where each subspace Xk is metalindelöf.
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We suppose to the contrary that X is not linearly Lindelöf; then there is some
uncountable regular cardinal κ and a strictly increasing open cover U = {Uα : α <
κ} which has no countable subcover. Without loss of generality we may assume
that the open cover V = {Uα∩Xn+1 : α ∈ κ} of Xn+1 has no countable subcover.
Since Xn+1 is metalindelöf, it follows from Lemma 2.10 that the open cover V
of Xn+1 has a point-countable open (in Xn+1) shrinking {Wα : α < κ}. For
each α ∈ κ we may then find open sets Yα in X such that Yα ∩Xn+1 =Wα and
Yα ⊆ Uα; let Y =

⋃
{Yα : α ∈ κ}. Then Y is an open subset of X which contains

Xn+1 and so X \ Y =
⋃
{Xk \ Y : 1 ≤ k ≤ n} is a closed subspace of a space of

countable extent which is the union of at most n metalindelöf subspaces and hence
by the induction hypothesis it is linearly Lindelöf. Now {Uα ∩ (X \ Y ) : α ∈ κ} is
a strictly increasing open cover of X \ Y and since κ is regular and uncountable,
for some λ < κ, Uλ ⊇ X \ Y .
We now consider the open cover F = {Uλ}∪{Yα : α ∈ κ} ofX . Fix x0 ∈ Xn+1;

since each point ofXn+1 is contained in at most countably many sets Yα, V has no
countable subcover and Yα ⊆ Uα for each α ∈ κ, it follows that St(x0,F) + Xn+1

and we may find x1 ∈ Xn+1 \ St(x0,F). Now suppose for some α < ω1 ≤ κ and
for each β < α we have chosen xβ ∈ Xn+1 \

⋃
{St(xγ ,F) : γ < β}, then since

{F ∈ F : xγ ∈ F for some γ < α} is countable, it follows thatXn+1\
⋃
{St(xγ ,F) :

γ < α} 6= ∅ and we may choose xα ∈ Xn+1 \
⋃
{St(xγ ,F) : γ < α}. Thus

we construct a closed (in Xn+1) discrete subset D = {xα : α ∈ ω1} of Xn+1

with the property that no countable subcollection of F covers D. Since X has
countable extent, D cannot be closed in X and so the set clX(D) \D is a closed
non-empty subspace of

⋃
{Xk : 1 ≤ k ≤ n} which by the induction hypothesis

must be linearly Lindelöf. Thus there is a countable subset G ⊆ F such that
clX (D)\D ⊆

⋃
G = U . Now D\U is a closed and discrete subset of X and hence

is countable. But then, D ⊆ clX (D) is contained in a countable subcollection
of F , which is a contradiction; thus X is linearly Lindelöf. �

The next result gives a positive answer to Question 21 of [5].

Corollary 2.12. If X has countable extent and is the union of finitely many

paracompact subspaces, then X is linearly Lindelöf.

Proof: A paracompact space is metalindelöf. �

3. Scattered spaces

Recall that a T1-space is scattered if every non-empty subspace has an isolated
point. Given a scattered T1-space X , for each ordinal number γ, the γ-th derived
set of X , Xγ , is defined recursively as follows: X0 = X , Xγ+1 is the derived set
of Xγ , and if γ is limit then Xγ =

⋂
{Xβ : β < γ}. The minimal ordinal µ such

that Xµ = ∅ is called the Cantor-Bendixson height of X (or more simply in the
sequel, the height of X) and will be denoted by ht(X). The family of subspaces
{Xγ : γ < ht(X)} is called the Cantor-Bendixson decomposition of X .
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It is known from [9] that every left-separated T1-space is aD-space. Since every
scattered space of finite height is left-separated, the following result is immediate
(and a direct proof is an easy exercise).

Theorem 3.1. Each scattered space of finite height is a D-space.

Corollary 3.2. The product of a dually discrete space and a scattered space of

finite height is dually discrete.

Proof: Suppose that Y is dually discrete and X is a scattered space of height
m ∈ ω. If m = 1, then X × Y is the topological union of dually discrete spaces
and hence is dually discrete. The proof proceeds by induction on the height m
of X . If the result is true for each scattered space X of height m − 1, then we
write X = (X \X1)∪X1. The set X \X1 is discrete and X1 is a scattered space
of height m − 1. Thus X × Y is the union of two dually discrete subspaces, one
of which, X1, is closed, and the result follows from Theorem 2.4. �

As is well-known, the space ω1 with its order topology is not a D-space and so
not every scattered T1-space is a D-space. Our next result gives a large class of
scattered spaces which are D-spaces.
Recall that a space is subparacompact if every open cover has a closed σ-discrete

refinement (we do not assume any separation axiom stronger than T1). It is well
known that every paracompact Hausdorff space is subparacompact.

Theorem 3.3. A subparacompact scattered space is a D-space.

Proof: Assume that X is a non-empty subparacompact scattered space; if
ht(X) = 1, then X being discrete, is a D-space. Proceeding inductively as-
sume that α is an ordinal and that any subparacompact space Y with ht(Y ) < α
is a D-space. Now suppose that a space X has height α and let {Xβ : β < α}
be the Cantor-Bendixson decomposition of X . Take an arbitrary neighbourhood
assignment O = {Ox : x ∈ X} in the space X .
If α is a successor then α = β + 1 and Xβ is a closed discrete subspace of X ;

let U = O(Xβ). The set F = X \U is closed in X and it follows from F ∩Xβ = ∅
that ht(F ) < α and hence F is a D-space by the induction hypothesis. Choose a
closed discrete set D ⊆ F such that O(D) ⊇ F . It is evident that D ∪ Xβ is a
closed discrete kernel of O so X is a D-space.
Next assume that α is a limit ordinal and hence

⋂
{Xβ : β < α} = ∅. For

any point x ∈ X there exists β < α such that x /∈ Xβ ; we can find an open
neighbourhood Ux of the point x such that Ux ∩ Xβ = ∅ and hence the height
of the space Ux is strictly less than α. Since X is subparacompact, there exists
a σ-discrete closed refinement of the cover {Ux : x ∈ X} which we denote by
K =

⋃
{Kn : n ∈ ω}, where for each n ∈ ω, Kn is a discrete family of closed sets.

It is clear that for each n ∈ ω and each K ∈ Kn, the height of the subspace K is
strictly less than α so the induction hypothesis implies that K is a D-space. It
remains only to apply Theorem 2.1 to conclude that X is a D-space. �
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Corollary 3.4. Each regular Lindelöf scattered space is a D-space.

Recall that F. Galvin [14] and R. Telgársky [17] introduced the point-open game
PO in which at the n-th move the first player I picks a point xn ∈ X while the
second player II replies by choosing an open set Un ⊆ X with xn ∈ Un. The game
is finished after ω moves and I is deemed to be the winner if

⋃
{Un : n ∈ ω} = X ;

otherwise player II wins the game {(xn, Un) : n ∈ ω}. A space X is called I-
favorable (II-favorable) for the point-open game if the first (second) player has a
winning strategy on X .

It is easy to see that any space which fails to be Lindelöf, is II-favorable for the
point-open game. Therefore every space which is not II-favorable (in particular
each I-favorable space) is Lindelöf.

The class of (regular) spaces which are I-favorable or II-favorable for the point-
open game has received a lot of attention recently. Telgársky proved in [17] that
a regular Lindelöf scattered space is I-favorable for the point-open game and it is
easy to see that not every I-favorable space is scattered. Therefore the following
result is stronger than Corollary 3.4.

Theorem 3.5. If a regular space X is not II-favorable for the point-open game
then X is a D-space. In particular, any I-favorable space is a D-space.

Proof: Given a neighbourhood assignment O = {Ox : x ∈ X} in the space X
define a strategy σ of the second player as follows: if x0 is the first move of I then
let U0 = σ(x0) = Ox0 . Assume that n ∈ ω and moves x0, U0, . . . , xn, Un have
been made in the point-open game on X . If I selects xn+1 for his move (n+ 1)
then let σ(x0, . . . , xn, xn+1) = U0 ∪ . . .∪ Un if xn+1 ∈ U0 ∪ . . .∪ Un; if not, then
let σ(x0, . . . , xn, xn+1) = Oxn+1

.

By our assumption the strategy σ is not winning for the second player so there
is a play {xi, Ui : i ∈ ω} on the space X in which II applies the strategy σ and
loses, that is,

⋃
n∈ω Un = X . Let A = {n ∈ ω : xn+1 ∈ U0 ∪ . . . ∪ Un} and

enumerate the set ω \ A as {ni : i < α} for some ordinal α ≤ ω in such a way
that i < j implies ni < nj . It takes a trivial induction to see that Uni

= Oxn
i

and xni+1
/∈ Oxn0

∪ . . . ∪ Oxn
i
for any i < α while

⋃
n∈ω Un =

⋃
i∈ω Oxn

i
= X .

It is immediate that D = {xni
: i < α} is a closed discrete kernel of O so X is a

D-space as promised. �

Corollary 3.6. Every continuous image of a regular Lindelöf P -space is a D-
space.

Proof: It is well-known (and easy to prove) that the property of not being II-
favorable for the first player in the point-open game is preserved by continuous
images. Since each Lindelöf P -space is not II-favorable for the point-open game
(see Theorem 6.10 of [18]), Theorem 3.5 applies. �
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Corollary 3.7. Every continuous image of a regular Lindelöf scattered space is

a D-space.

Proof: If X is a Lindelöf scattered space then let Y be the set X with the
topology generated by all Gδ-subsets of X . It is clear that X is a continuous
image of Y and Y is a P -space. By Proposition 1 of [19], the space Y is also
Lindelöf1, and so every continuous image of X is a continuous image of a Lindelöf
P -space; Corollary 3.6 now completes the proof. �

Question 3.8. Is every metacompact scattered Hausdorff space dually discrete

(or even a D-space)?

Recall that a submaximal space (respectively, nodec space) is a dense-in-itself
space in which every dense set is open (respectively, every nowhere dense set is
closed); again we assume no separation axiom beyond T1. Clearly a submaxi-
mal space is nodec. From Corollary 3.4 of [2], under V = L, every submaximal
Hausdorff space is strongly σ-discrete and hence from Theorem 2.1 every Haus-
dorff submaximal space is dually discrete. In fact an even stronger result is true
in ZFC.

Theorem 3.9. Every nodec space is a D-space.

Proof: Suppose that X is a nodec space and O = {Ox : x ∈ X} is a neighbour-
hood assignment in X . It was proved in Proposition 2.1 of [7] that every space
is dually scattered so we can find a scattered kernel F ⊆ X for the assignment
O. However, every scattered subspace of a dense-in-itself space is nowhere dense.
Since X is nodec, F is a closed and discrete kernel of O. �

The space Γ of [10] is a locally compact, scattered Hausdorff space of height
ω, which is not a D-space and so we are led to ask:

Question 3.10. Is Γ dually discrete? More generally, is every scattered Haus-
dorff space (or even T1-space) of countable height, dually discrete?

A related result is the following:

Theorem 3.11. A countably compact, scattered T1-space of countable height is
compact.

We omit the simple proof which is by induction on the scattering height.

4. Dual discreteness of generalized ordered spaces

Let (X, τ, <) be a GO-space and C its Dedekind compactification, that is to
say, the minimal ordered compactification of X . By the term left pseudogap of X ,

1The referee has pointed out to us that this result was known to Paul R. Meyer in 1966, but
was apparently never published.
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we mean a pair (A, B) of open subsets of X such that a < b for all a ∈ A and
b ∈ B, A∪B = X and A has no maximum element. A right pseudogap is defined
analogously. The pair (A, B) is called a gap of X if it is both a right and a left
pseudogap. If (∅, X) (respectively, (X, ∅)) is a gap then it is called the left end
gap (respectively, right end gap) of X .

Recall that a left pseudogap (A, B) of X is a left Q-pseudogap if for some
regular cardinal κ there is a strictly increasing transfinite sequence {dα : α < κ}
in A which is closed and discrete as a subspace of X and cofinal in A, that is
to say, supC(A) = supC(D). Right Q-pseudogaps are defined analogously. For
simplicity, we say that a left (respectively, right) pseudogap which is not a left
Q-pseudogap (respectively, not a right Q-pseudogap) is a left (respectively, right)
N -pseudogap.

We define an ordered compactification K of X as follows: For each non-end
gap (A, B) of X , add two points a∗, b∗ such that a < a∗ < b∗ < b for all a ∈ A
and b ∈ B and for each left pseudogap (A, B) which is not a gap (respectively,
right pseudogap (C, D) which is not a gap) add a point pA (respectively, pD)
such that a < pA < b for all a ∈ A and b ∈ B (such that c < pD < d for
all c ∈ C and d ∈ D). Also add a minimal point m if X has a left end gap
and a maximal point M if X has a right end gap. In the sequel, we identify
the points m, M, a∗, b∗, pA, pD ∈ K with the left and/or right pseudogaps of X .
In [15], Lutzer showed that a GO-space is paracompact if and only if each of its
pseudogaps is a Q-pseudogap.

We denote the set of left (respectively, right) Q-pseudogaps of X (considered
as subsets of K) by LQ (respectively RQ) and the set of left (respectively, right)
N -pseudogaps by LN (respectively RN ).

It was shown in [8] that a GO-space is aD-space if and only if it is paracompact
and in [7] that a GO-space of countable extent is dually discrete. It turns out
that the requirement of countable extent can be omitted; the following theorem
answers Problems 4.1 and 4.2 from [7].

Theorem 4.1. Each GO-space is dually discrete.

Proof: Suppose that X is a GO-space and K is the ordered compactification
of X as defined in the preceding paragraphs. We consider the subspace Y ⊆ K
defined by Y = X ∪ LN ∪ RN . We first show that every pseudogap of Y is
a Q-pseudogap and hence by Theorem E of [15], Y is paracompact. To this
end, suppose that p ∈ K \ Y is a pseudogap of Y and hence is a Q-pseudogap
of X ; we assume without loss of generality that p is a left Q-pseudogap of X .
Then for some regular cardinal κ, there is a closed (in X) and discrete, strictly
increasing transfinite sequence D = {dα : α < κ} ⊆ (←, p)K ∩ X , such that
p = supK(D). Since D is closed in X , it follows that for each limit ordinal λ < κ,
qλ = supK{dα : α < λ} /∈ X and hence is a pseudogap of X ; furthermore, qλ is a
Q-pseudogap of X since {dα : α < λ} is a strictly increasing transfinite sequence
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which is closed and discrete inX and hence qλ = supK{dα : α < λ} ∈ K\Y . Thus
{dα : α < κ} is also closed and discrete in Y , showing that p is a Q-pseudogap
of Y , completing the proof that Y is paracompact.
Let O = {Ox : x ∈ X} be an arbitrary neighbourhood assignment in X where,

without loss of generality, we assume that each set Ox is convex. We will extend
the family O to a neighbourhood assignment in Y . To this end, suppose that
y ∈ Y \X ; the point y corresponds to anN -pseudogap ofX and again without loss
of generality we assume that y is a left N -pseudogap and hence y /∈ clK((y,→)K).
We claim that there is a point ay ∈ (←, y)X and a discrete cofinal subset

Dy ⊆ (←, y)X such that (ay , z] ⊆ Oz for all z ∈ Dy. For if to the contrary, no
such ay and Dy exist then, since each member of O is convex, for any x ∈ (←, y)X
there is a point b ∈ (x, y)X such that (x, z) * Oz (that is Oz ⊆ (x,→)) for each
z ∈ (b, y)X .
Now, since y is a left N -pseudogap of X , χ(y, (←, y)X ∪ {y})) > ω and hence

no countable set is cofinal in (←, y)X ; thus for some cardinal κ we can construct
recursively a strictly increasing transfinite sequence B = {bα : α < κ} ⊆ (←, y)X
such that Oz ⊆ (bα,→)X for each α < κ for any z ∈ (bβ , y)X . Now since y is a
left N -pseudogap of X , there is no strictly increasing, transfinite sequence which
is closed and discrete subset of (←, y)K ∩X whose supremum in K is y. Thus the

set B must have a cofinal set of cluster points Bd in (←, y)K ∩X . Now if x ∈ Bd,
then since B is a strictly increasing sequence, x ∈ clX(→, x)X and hence there
are α < β < κ such that {bα, bβ} ⊆ Ox. However, by the recursive hypothesis,
Ox ⊆ (bα,→)X , which is a contradiction.
Analogously, if the point y is a right N -pseudogap, then we can choose a

discrete subspace Ey ⊆ (y,→)X and by ∈ (y,→)X such that y is the infimum of
Ey and [x, by) ⊆ Ox for each x ∈ Ey .
The proof now proceeds exactly as in Theorem 2.23 of [7] using the fact that

Y is paracompact and hence is a D-space (see [8]). �

5. Open problems

The problem of whether the union of two D-spaces is a D-space has been posed
previously. Neither is it known whether the union of two dually discrete spaces
is dually discrete. (If one of the subspaces is closed, then a positive answer is
provided by Theorem 2.4.)

Problem 5.1. Suppose that X = X0 ∪X1 and Xi is dually discrete for i = 0, 1.
Must X be dually discrete? What happens if both sets X0 and X1 are dense
in X?

If X is a Lindelöf P -space then any countable subset of X is closed and dis-
crete; this clearly implies that X is a D-space. The following problems involving
continuous images of Lindelöf spaces show how little is known of this topic and
point to possible future lines of research.
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Problem 5.2. Is any continuous image of a Lindelöf GO-space, dually discrete?

Must it be a D-space?

Problem 5.3. Is any continuous image of a Lindelöf LOTS, dually discrete?

Must it be a D-space?

Problem 5.4. Suppose that X is a Lindelöf space such that every second count-
able continuous image of X is countable. Must X be dually discrete? Must it be
a D-space?

Problem 5.5. Is it true that every Lindelöf space is a continuous image of a

Lindelöf GO-space?

Problem 5.6. Is it true that every Lindelöf space is a continuous image of a

Lindelöf LOTS?

Problem 5.7. Is it true that every compact space is a continuous image of a

Lindelöf GO-space?
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