
Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Ján Andres; Alberto Maria Bersani; Lenka Radová
Almost-periodic solutions in various metrics of higher-order differential equations
with a nonlinear restoring term

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 45 (2006), No.
1, 7--29

Persistent URL: http://dml.cz/dmlcz/133445

Terms of use:
© Palacký University Olomouc, Faculty of Science, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/133445
http://project.dml.cz


Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 45 (2006) 7–29

Almost-Periodic Solutions in Various Metrics
of Higher-Order Differential Equations
with a Nonlinear Restoring Term

Jan ANDRES 1 ∗, Alberto Maria BERSANI 2, Lenka RADOVÁ 3

1Department of Mathematical Analysis and Applications of Mathematics
Faculty of Science, Palacký University

Tomkova 40, 779 00 Olomouc, Czech Republic
e-mail: andres@inf.upol.cz

2Dipt. di Metodi e Modelli Matematici, Univ. “La Sapienza” di Roma
Via A. Scarpa 16, 00 161 Roma, Italy
e-mail: bersani@dmmm.uniroma1.it

3Dept. of Math., Faculty of Technology, Tomáš Baťa University
Nad stráněmi 4511, 762 72 Zlín, Czech Republic

e-mail: radova@ft.utb.cz

(Received November 18, 2005)

Abstract
Almost-periodic solutions in various metrics (Stepanov, Weyl, Besi-

covitch) of higher-order differential equations with a nonlinear Lipschitz-
continuous restoring term are investigated. The main emphasis is focused
on a Lipschitz constant which is the same as for uniformly almost-periodic
solutions treated in [A1] and much better than those from our investiga-
tions for differential systems in [A2], [A3], [AB], [ABL], [AK]. The upper
estimates of ε for ε-almost-periods of solutions and their derivatives are
also deduced under various restrictions imposed on the constant coeffi-
cients of the linear differential operator on the left-hand side of the given
equation. Besides the existence, uniqueness and localization of almost-
periodic solutions and their derivatives are established.
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1 Introduction

We shall consider the differential equation

y(n) +
n∑

j=1

ajy
(n−j) = f(y) + p(t), (1)

where aj ∈ R, j = 1, . . . , n, are real constants such that the real parts of the
roots of the characteristic polynomial associated with the linear operator on the
left-hand side of (1), namely

λn +
n∑

j=1

ajλ
n−j , (2)

are at least nonzero, i.e. Reλj �= 0, j = 1, . . . , n. It is well-known that the
related Routh–Hurwitz conditions are necessary and sufficient for Reλj < 0,
j = 1, . . . , n, i.e. in order polynomial (2) to be stable. In this case, all coeffi-
cients aj ∈ R in (1) must be positive, i.e. aj > 0, j = 1, . . . , n. One can also find
necessary and sufficient conditions in order all roots of (2) to be negative, but for
characteristic polynomials of a higher degree these conditions are rather cum-
bersome (see e.g. [AG, Chapter III.5]). Assume, furthermore, that the restoring
term f ∈ Lip(R,R) is a bounded Lipschitz-continuous function with constant
L < |an|, and that the forcing term p ∈ L1

loc(R,R) is an essentially bounded,
locally Lebesgue integrable function which will be successively supposed to be
almost-periodic (a.p.) in the sense of Stepanov, Weyl or Besicovitch.
The main aim of the present paper is to extend appropriately sufficient con-

ditions for the existence of uniformly almost-periodic solutions and their deriva-
tives, obtained for (1) in [A1] (cf. also [AG, Chapter III.10]), provided the forcing
term p is almost-periodic in a more general sense (Stepanov, Weyl, Besicovitch).
Although the existence criteria for such a.p. solutions and their derivatives can
be deduced from our earlier results for differential systems, namely for Stepanov
a.p. solutions in [AB], for Weyl a.p. solutions in [A2], [A3], and for Besicovitch
a.p. solutions in [ABL] (cf. also [AG, Chapter III.10]), the upper estimates for
Lipschitz constant L related to f would be very rough (cf. e.g. [AK]). Another
purpose therefore consists in obtaining much sharper inequality for L, namely
L < |an|. Since this is possible only if the roots of (2) are at least nonzero real
(otherwise, the desired estimates for L would explicitly depend on them), we
shall still assume that the coefficients aj , j = 1, . . . , n, yield nonzero real roots.
Higher-order differential equations of the type (1), where n > 2, have not

been treated w.r.t. the existence of a.p. solutions so often (see e.g. [Kh], [KBK],
[L]). The investigations of the other authors of more general than uniformly
a.p. solutions were also quite rare (see e.g. [BFSD1]–[BFSD3], [BFH], [DHS],
[DM], [H], [Ku], [LZ], [P], [ZL]). As far as we know, apart from our mentioned
papers [A2], [A3], [AB], [ABL] and [LZ], [P], [R], [ZL], almost-periodic solutions
in the generalized sense of (1), where n > 2, have not yet been studied with the
indicated respect.
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The paper is organized as follows. After some preliminaries, the main exis-
tence results are formulated. Roughly speaking, as much as we impose on the
coefficients aj , j = 1, . . . , n, on the left-hand side of (1), as good estimates of
ε for ε-almost-periods of a.p. solutions and their derivatives we obtain. More-
over, more transparent estimates of (entirely bounded) a.p. solutions allow us
to replace global boundedness assumption on f by restrictions localized only
on certain domains. This will be done, besides another, in concluding remarks,
jointly with extending our results to differential inclusions, on the basis of se-
lection theorems in [HP] and [D1]–[D3], [DS].

2 Some preliminaries

At first, we recall various types of almost-periodicity.

Definition 1 Let us introduce the following (pseudo-) metrics:
(Stepanov)

DSl
(f, g) := sup

a∈R

1
l

a+l∫

a

|f(t)− g(t)| dt,

(Weyl)

DW (f, g) := lim
l→∞

sup
a∈R

1
l

a+l∫

a

|f(t)− g(t)| dt = lim
l→∞

DSl
(f, g),

(Besicovitch)

DB(f, g) := lim sup
T→∞

1
2T

T∫

−T

|f(t)− g(t)| dt,

where f, g : R → R are measurable functions. Denoting by DG any of the
above (pseudo-) metrics, by the metric space (G,DG), we understand the related
quotient space in the sense that we identify such elements f1, f2, for which
DG(f1, f2) = 0.

Definition 2 A function f ∈ L1
loc(R,R) is said to be G-almost-periodic

(G-a.p.) if

∀ε > 0 ∃k > 0 ∀a ∈ R ∃τ ∈ [a, a+ k] : DG(f(t+ τ), f(t)) < ε.

The above τ is called an ε-almost-period in the respective sense.

Instead of DS1-a.p. or DW -a.p. or DB-a.p. function, we shall write S1-a.p.
or W -a.p. or B-a.p., respectively.
The following definition uses curiously the Stepanov metric for the almost-

periodicity in the sense of H. Weyl.
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Definition 3 A function f ∈ L1
loc(R,R) is said to be equi-Weyl-almost-periodic

(equi-W -a.p.) if

∀ε > 0 ∃k, l0(ε) > 0 ∀a ∈ R ∃τ ∈ [a, a+ k] :
DSl

(f(t+ τ), f(t)) < ε, ∀l ≥ l0(ε).

Remark 1 It is well-known (see e.g. [ABG], [L], [LZ]) that, without any loss
of generality, we can take l0 ≥ 1 in Definition 3.

Definition 4 A function f : R → R is called uniformly G-continuous if

∀ε > 0 ∃δ = δ(ε) > 0 : |h| < δ =⇒ DG(f(t+ h), f(t)) < ε.

If, in particular, the above implication holds for a continuous function f with
DG replaced by the sup-norm, then we simply speak about uniform continuity
of f .

In the following sections, the existence of almost-periodic solutions and their
derivatives in various metrics will be proved by three different techniques for
differential equation (1).

Hence, consider the differential equation (1), i.e.

y(n) +
n∑

j=1

ajy
(n−j) = f(y) + p(t),

where aj ∈ R, j = 1, . . . n, f ∈ Lip(R,R) and p ∈ L1
loc(R,R).

Assume, furthermore, that
(i) all roots λj , j = 1, . . . n, of the characteristic polynomial (2), i.e. of

λn +
n∑

j=1

ajλ
n−j ,

are nonzero and real;
(ii) f is bounded and Lipschitz on R, i.e. there exists L > 0 such that

|f(x) − f(y)| ≤ L|x− y|, ∀x, y ∈ R;

(iii) p is an essentially bounded Ḡ-a.p. function, where Ḡ means either S or
W or B or equi-W case;
(iv) there exists a positive constant D0 s.t.

supess
t∈R

|p(t)|+ sup
y∈R

|f(y)| ≤ D0.

In the entire text, by a solution y(·) of (1), we shall mean the one in the
sense of Carathéodory, i.e. such that y(n−1)(·) is locally absolutely continuous.
The following lemma guarantees the existence of a unique bounded solution

of (1), including its suitable representation for our application, and the same
for its derivatives.
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Lemma 1 Assume that all roots of the characteristic polynomial (2) are nonzero
and real (i.e. (i)). Under the assumption (iv), and (ii) with L < |an|, equation
(1) has exactly one (Carathéodory) entirely bounded solution y(·) given by the
formula

y(t) =

t∫

Λ1

t1∫

Λ2

. . .

tn−1∫

Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn [f(y(tn))+p(tn)] dtn . . . dt1,

where Λj = +∞ · λj, j = 1, . . . , n.
Denoting the right-hand side of the preceding formula by [1, . . . , n], the k-th

derivatives (k = 1, . . . , n− 1) of solution y(·) satisfy

y(k)(t) =
dk([1, . . . , n])

dtk
= [k + 1, . . . , n] +

k∑

c1=1

λc1 [c1, k + 1, . . . , n]

+
k∑

c1,c2=1
c1<c2

λc1λc2 [c1, c2, k + 1, . . . , n] + . . .

+
k∑

c1,...,cp=1
c1<...<cp

(
p∏

i=1

λci

)
[c1, . . . , cp, k + 1, . . . , n] + . . .+

(
k∏

i=1

λi

)
[1, . . . , n],

where

[c, . . . , n] =

t∫

Λc

tc∫

Λc+1

. . .

tn−1∫

Λn

eλct+(λc+1−λc)tc+...+(λn−λn−1)tn−1−λntn

× [f(y(tn)) + p(tn)] dtn . . . dtc+1 dtc.

Proof The complete proof can be found in [AG]. The existence of a bounded
solution is verified at page 554 (cf. also pp. 329–330). The representation formula
is given at p. 321 (Lemma 5.45) and the formula for the k-th derivative is derived
at pp. 324–325 (Lemma 5.61). The uniqueness is proved at p. 556. �

Remark 2 The solution y(·) in Lemma 1 satisfies

sup
t∈R

|y(t)| ≤ D0

|an|

(see [AG, p. 323]) and its k-th derivative (k = 1, . . . , n− 1) can be estimated by

a) sup
t∈R

|y(k)(t)| ≤ 2kD0

|an|

k∏

j=1

|αj |, when the characteristic polynomial has only

real nonzero roots (see [AG, Lemma 5.63 at pp. 325–326]);
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b) sup
t∈R

|y(k)(t)| ≤ 2kD0

|an−k|
, provided each of the shifted polynomials

λn−p +
n−p∑

j=1

ajλ
n−p−j , p = 0, . . . , n− 1,

admits real nonzero roots (see [AG, Lemma 5.70 at p. 327]);

c) sup
t∈R

|y(k)(t)| ≤ 2kakD0(
n
k

)
an

, whenever all roots of the characteristic polynomial

are negative (see [AG, Lemma 5.67 at p. 326]).
The meaning of constant D0 can be seen in (iv).
Moreover, the estimates for the k-th derivatives are independent of the per-

mutation of the roots (see [AG, p. 326]).

Remark 3 Observe that, under the assumptions (i), (iv), a bounded solution
of (1) with its derivatives, up to the (n− 1)-th order, are uniformly continuous,
and subsequently also uniformly G-continuous.

Remark 4 The existence and representation parts of Lemma 1 are true if only
the real parts of roots of (2) are assumed to be nonzero (cf. [AG, Chapter III.5]).
On the other hand, the related estimates for solutions y(·) and their derivatives
y(k)(·), k = 1, . . . , n−1, do not depend explicitly on the coefficients ak, but only
on the real parts of the roots of (2) (cf. again [AG, Chapter III.5]).

3 Existence of a.p. solutions: case of nonzero real roots

The following main theorem is stated under the most general assumptions, when
comparing with other main results of this paper.

Theorem 1 Let the above conditions (i)–(iv) be satisfied. If L < |an|, then
equation (1) admits a unique bounded Ḡ-a.p. solution with bounded Ḡ-a.p.
derivatives, up to the (n− 1)-th order.
Moreover, the ε-almost-period of p(·) implies the 1

|an|−L ε-almost-period of

the solution y(·) and the 2k|λ1...λk|
|an|−L ε-almost-period of the k-th derivative y(k)(·)

of the solution in the Ḡ-(pseudo-)metric, for k = 1, . . . , n− 1, where λ1, . . . , λn

are the roots of the characteristic polynomial λn +
∑n

j=1 ajλ
n−j .

Proof It follows from Lemma 1 that equation (1) admits a unique bounded
solution of the form as above. Using the appropriate representation of this
solution, one can obtain by means of (ii):

|y(t+ τ)− y(t)| ≤

≤
∣∣∣∣

t∫

Λ1

t1∫

Λ2

. . .

tn−1∫

Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn [ |f(y(tn + τ)) − f(y(tn))|



Almost-periodic solutions in various metrics . . . 13

+ |p(tn + τ)− p(tn)| ] dtn dtn−1 . . . dt1

∣∣∣∣

≤
∣∣∣∣

t∫

Λ1

t1∫

Λ2

. . .

tn−1∫

Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn (L|y(tn + τ) − y(tn)|

+ |p(tn + τ) − p(tn)| ) dtn dtn−1 . . . dt1

∣∣∣∣

=
∣∣∣∣(−

1
λn

) . . . (− 1
λ1

)
∣∣∣∣

1∫

0

1∫

0

. . .

1∫

0

L

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ)− y(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

n∑

j=1

ln sj

λj
+ t+ τ)− p(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dsn . . . ds2 ds1,

where the last equality can be obtained by virtue of successive substitutions
sj = eλj(tj−1−tj), for j = n, n− 1 . . . , 2, and s1 = eλ1(t−t1).
Now, we shall prove the Ḡ-almost-periodicity of solution y(·), when applying

assumption (iii). To employ all of the considered (pseudo-) metrics, we will need
the following estimate (for a < b, a, b ∈ R):

b∫

a

|y(t+ τ)− y(t)| dt ≤

≤ 1
|λn · . . . · λ1|

b∫

a

1∫

0

. . .

1∫

0

L

∣∣∣∣ y(−
n∑

j=1

ln sj

λj
+ t+ τ) − y(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

n∑

j=1

ln sj

λj
+ t+ τ)− p(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dsn . . . ds2 ds1 dt

=
L

|an|

1∫

0

. . .

1∫

0

b∫

a

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ)− y(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

+
1
|an|

1∫

0

. . .

1∫

0

b∫

a

∣∣∣∣p(−
n∑

j=1

ln sj

λj
+ t+ τ)− p(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1.

Using the Stepanov metric, we get (a := u, b := u+ 1):

sup
u∈R

u+1∫

u

| y(t+ τ)− y(t) | dt ≤
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≤ L

|an|
sup
u∈R

1∫

0

. . .

1∫

0

u+1∫

u

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ)− y(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

+
1
|an|

sup
u∈R

1∫

0

. . .

1∫

0

u+1∫

u

∣∣∣∣p(−
n∑

j=1

ln sj

λj
+ t+ τ)− p(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

<
L

|an|
sup
u∈R

u+1∫

u

|y(t+ τ) − y(t)| dt+ ε

|an|

1∫

0

. . .

1∫

0

dsn . . . ds1.

Hence,

sup
u∈R

u+1∫

u

|y(t+ τ) − y(t)| dt < ε

|an| − L
= ε̂.

Thus, under the assumption |an| > L, the ε̂-almost period of solution y(·)
corresponds to an ε-almost period of function p(·) (in the sense of Stepanov).
For the equi-Weyl case, we get (a := u, b := u+ l):

sup
u∈R

1
l

u+l∫

u

|y(t+ τ)− y(t)| dt ≤

≤ L

|an|
sup
u∈R

1∫

0

. . .

1∫

0

1
l

u+l∫

u

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ)− y(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

+
1
|an|

sup
u∈R

1∫

0

. . .

1∫

0

1
l

u+l∫

u

∣∣∣∣p(−
n∑

j=1

ln sj

λj
+ t+ τ)− p(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

<
L

|an|
sup
u∈R

1
l

u+l∫

u

|y(t+ τ) − y(t)| dt+ ε

|an|

1∫

0

. . .

1∫

0

dsn . . . ds1,

which implies

sup
u∈R

1
l

u+l∫

u

|y(t+ τ) − y(t)| dt < ε

|an| − L
= ε̂, ∀l ≥ l0.

By the above estimate, we can also obtain the following inequalities for the
W -almost-periodicity:

lim
l→∞

[
sup
u∈R

1
l

u+l∫

u

|y(t+ τ) − y(t)| dt
]
≤
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≤ L

|an|
lim
l→∞

sup
u∈R

1∫

0

. . .

1∫

0

1
l

u+l∫

u

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ)

− y(−
n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

+
1
|an|

lim
l→∞

sup
u∈R

1∫

0

. . .

1∫

0

1
l

u+l∫

u

∣∣∣∣p(−
n∑

j=1

ln sj

λj
+ t+ τ)

− p(−
n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

<
L

|an|
lim

l→∞
sup
u∈R

1
l

u+l∫

u

|y(t+ τ)− y(t)| dt+
ε

|an|

1∫

0

. . .

1∫

0

dsn . . . ds1.

Thus,

lim
l→∞

[
sup
u∈R

1
l

u+l∫

u

| y(t+ τ)− y(t) | dt
]
<

ε

|an| − L
= ε̂

holds for the W -almost-periodicity of y(·).
The proof for B-almost-periodicity is again based on the application of the

inequality derived above. Hence, (a := −T , b := T ):

lim sup
T→∞

1
2T

T∫

−T

|y(t+ τ)− y(t)| dt ≤

≤ L

|an|
lim sup
T→∞

1
2T

1∫

0

. . .

1∫

0

T∫

−T

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ)

− y(−
n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

+
1
|an|

lim sup
T→∞

1
2T

1∫

0

. . .

1∫

0

T∫

−T

∣∣∣∣p(−
n∑

j=1

ln sj

λj
+ t+ τ)

− p(−
n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

<
L

|an|
lim sup
T→∞

1
2T

T∫

−T

|y(t+ τ)− y(t)| dt+
ε

|an|

1∫

0

. . .

1∫

0

dsn . . . ds1.
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Repeating the procedure as in the preceding cases, one arrives at

lim sup
T→∞

1
2T

T∫

−T

|y(t+ τ)− y(t)| dt < ε

|an| − L
= ε̂.

We could see that the almost-periodicity of solution y(·) was verified in all
given (pseudo-)metrics, whenever L < |an|. Moreover, to ε-almost period of
p(·), there corresponds the ε

|an|−L -almost period of solution y(·) (in the related
pseudo-metric).
To prove the Ḡ-almost-periodicity of the derivatives y(k)(·), we use the for-

mula from Lemma 1. Hence, applying (ii) and making successive substitutions
as in the preceding part of the proof, we get

|y(k)(t+ τ)− y(k)(t)| ≤

≤
∣∣∣∣∣

t∫

Λk+1

tk+1∫

Λk+2

. . .

tn−1∫

Λn

eλk+1t+(λk+2−λk+1)tk+1+...+(λn−λn−1)tn−1−λntn

× [ |f(y(tn + τ)) − f(y(tn))|+ |p(tn + τ)− p(tn)| ] dtn . . . dtk+1

∣∣∣∣∣

+
k∑

j=1

∣∣∣∣∣λj

t∫

Λj

tj∫

Λk+1

. . .

tn−1∫

Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [ |f(y(tn + τ)) − f(y(tn))|+ |p(tn + τ)− p(tn)| ] dtn . . . dtj
∣∣∣∣∣

+
k∑

i,j=1
i<j

∣∣∣∣∣λiλj

t∫

Λi

ti∫

Λj

tj∫

Λk+1

. . .

tn−1∫

Λn

eλit+(λj−λi)ti+...+(λn−λn−1)tn−1−λntn

× [ |f(y(tn + τ))− f(y(tn))|+ |p(tn + τ) − p(tn)| ] dtn . . . dtj dti
∣∣∣∣∣+ . . .

+

∣∣∣∣∣

⎛
⎝

k∏

j=1

λj

⎞
⎠

t∫

Λ1

t1∫

Λ2

. . .

tn−1∫

Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [ |f(y(tn + τ)) − f(y(tn))|+ |p(tn + τ)− p(tn)| ] dtn . . . dt1
∣∣∣∣∣

≤
∣∣∣∣∣

t∫

Λk+1

tk+1∫

Λk+2

. . .

tn−1∫

Λn

eλk+1t+(λk+2−λk+1)tk+1+...+(λn−λn−1)tn−1−λntn
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× [L|y(tn + τ)− y(tn)|+ |p(tn + τ)− p(tn)| ] dtn . . . dtk+1

∣∣∣∣∣

+
k∑

j=1

∣∣∣∣∣λj

t∫

Λj

tj∫

Λk+1

. . .

tn−1∫

Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [L|y(tn + τ)− y(tn)|+ |p(tn + τ)− p(tn)| ] dtn . . . dtj
∣∣∣∣∣

+
k∑

i,j=1
i<j

∣∣∣∣∣λiλj

t∫

Λi

ti∫

Λj

tj∫

Λk+1

. . .

tn−1∫

Λn

eλit+(λj−λi)ti+...+(λn−λn−1)tn−1−λntn

× [L|y(tn + τ) − y(tn)|+ |p(tn + τ) − p(tn)| ] dtn . . . dtj dti
∣∣∣∣∣+ . . .

+

∣∣∣∣∣

⎛
⎝

k∏

j=1

λj

⎞
⎠

t∫

Λ1

t1∫

Λ2

. . .

tn−1∫

Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [L|y(tn + τ)− y(tn)|+ |p(tn + τ)− p(tn)| ] dtn . . . dt1
∣∣∣∣∣

=
1∣∣∣

n∏
i=k+1

(−λi)
∣∣∣

1∫

0

1∫

0

. . .

1∫

0

L

∣∣∣∣y(−
n∑

j=k+1

ln sj

λj
+ t+ τ)− y(−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

n∑

j=k+1

ln sj

λj
+ t+ τ) − p(−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣dsn . . . dsk+2 dsk+1

+
1∣∣∣

n∏
i=k+1

(−λi)
∣∣∣

k∑

i=1

1∫

0

1∫

0

. . .

1∫

0

L

∣∣∣∣y(−
ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t+ τ)

− y(− ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t+ τ)− p(− ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣ dsn . . . dsk+1 dsi

+ . . .+
1∣∣∣

n∏
i=k+1

(−λi)
∣∣∣

1∫

0

1∫

0

. . .

1∫

0

L

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ) − y(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣
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+
∣∣∣∣p(−

n∑

j=1

ln sj

λj
+ t+ τ)− p(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dsn . . . ds2 ds1.

Thus, for arbitrary a < b, the following inequality holds:

b∫

a

|y(k)(t+ τ)− y(k)(t)| dt ≤

≤ 1
n∏

i=k+1

|λi|

b∫

a

1∫

0

. . .

1∫

0

L

∣∣∣∣y(−
n∑

j=k+1

ln sj

λj
+ t+ τ)− y(−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

n∑

j=k+1

ln sj

λj
+ t+ τ) − p(−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣ dsn . . . dsk+1 dt

+
1

n∏
i=k+1

|λi|

k∑

i=1

b∫

a

1∫

0

1∫

0

. . .

1∫

0

L

∣∣∣∣y(−
ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t+ τ)

− y(− ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t+ τ)−p(− ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣ dsn . . . dsk+1 dsi dt

+ . . .+
1

n∏
i=k+1

|λi|

b∫

a

1∫

0

. . .

1∫

0

L

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ)− y(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

n∑

j=1

ln sj

λj
+ t+ τ) − p(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dsn . . . ds1 dt

=
1

n∏
i=k+1

|λi|

1∫

0

. . .

1∫

0

b∫

a

L

∣∣∣∣y(−
n∑

j=k+1

ln sj

λj
+ t+ τ)− y(−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

n∑

j=k+1

ln sj

λj
+ t+ τ) − p(−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . dsk+1

+
1

n∏
i=k+1

|λi|

k∑

i=1

1∫

0

1∫

0

. . .

1∫

0

b∫

a

L

∣∣∣∣y(−
ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t+ τ)
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− y(− ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t+ τ) − p(− ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣

× dt dsn . . . dsk+1 dsi

+ . . .+
1

n∏
i=k+1

|λi|

1∫

0

. . .

1∫

0

b∫

a

L

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ)− y(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

n∑

j=1

ln sj

λj
+ t+ τ)− p(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣dt dsn . . . ds1.

Now, the Ḡ-almost-periodicity of derivatives y(k)(·) will be verified for single
cases separately. Applying (iii) and employing to the correspondence between
the ε-almost-period of p(·) and the ε

|an|−L -almost-period of solution y(·) (in the
given pseudo-metric), one obtains e.g. in the Stepanov case (taking a := u,
b := u+ 1):

sup
u∈R

u+1∫

u

|y(k)(t+ τ)− y(k)(t)| dt ≤

≤ sup
u∈R

1
n∏

i=k+1

|λi|

( 1∫

0

. . .

1∫

0

u+1∫

u

L

∣∣∣∣y(−
n∑

j=k+1

ln sj

λj
+ t+ τ)− y(−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

n∑

j=k+1

ln sj

λj
+ t+ τ) − p(−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . dsk+1

+
k∑

i=1

1∫

0

1∫

0

. . .

1∫

0

u+1∫

u

L

∣∣∣∣y(−
ln si

λi
−

n∑

j=k+1

ln sj

λj
+t+τ)−y(− ln si

λi
−

n∑

j=k+1

ln sj

λj
+t)

∣∣∣∣

+
∣∣∣∣p(−

ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t+ τ) − p(− ln si

λi
−

n∑

j=k+1

ln sj

λj
+ t)

∣∣∣∣

× dt dsn . . . dsk+1 dsi

+ . . .+

1∫

0

. . .

1∫

0

u+1∫

u

L

∣∣∣∣y(−
n∑

j=1

ln sj

λj
+ t+ τ)− y(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣

+
∣∣∣∣p(−

n∑

j=1

ln sj

λj
+ t+ τ) − p(−

n∑

j=1

ln sj

λj
+ t)

∣∣∣∣ dt dsn . . . ds1

)
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<
1

n∏
i=k+1

|λi|
·
{

ε L

|an| − L
+ ε+

(
k

1

)[
ε L

|an| − L
+ ε

]
+
(
k

2

)[
ε L

|an| − L
+ ε

]

+ . . .+
(
k

k

)[
ε L

|an| − L
+ ε

]}
=

|an| ε
(|an| − L) ·

n∏
i=k+1

|λi|

k∑

j=0

(
k

j

)

=
2k|an| ε

(|an| − L)
n∏

i=k+1

|λi|
.

Following the similar way as above, we can prove quite analogously the equi-
W -almost-periodicity of derivatives (taking a := u, b := u+ l).
To verify the Weyl-almost-periodicity or the Besicovitch-almost-periodicity

of derivatives y(k)(·), we use the above integral estimate. Integrands contain
the Weyl-a.p. or Besicovitch-a.p. function p(·) and entirely bounded, W -a.p. or
B-a.p. solution y(·), respectively. Thus, we can verify by the similar manner as
above the Weyl-almost-periodicity (putting a := u, b := u + l) as well as the
Besicovitch-almost-periodicity (a := −T , b = T ) of derivatives.

After all, to ε-almost-period of function p(·), there corresponds the 2k|λ1...λk|
|an|−L ε-

almost-period of k-th derivative (k = 1, . . . , n− 1) of solution y(·), in the given
(pseudo-)metric, provided L < |an|. �

4 Existence of a.p. solutions: shifted polynomials
approach

It is not very convenient that the almost-periods of the derivatives of a Ḡ-a.p.
solution depended on the roots of the characteristic polynomial (2). The shifted
polynomials approach will allow us to avoid this handicap.

Theorem 2 Let the above conditions (i)–(iv) be satisfied. Assume, further-
more, that aj �= 0, for j = 1, . . . , n − 1, and that all shifted polynomials
λn−p +

∑n−p
j=1 ajλ

n−p−j , p = 0, . . . , n− 1, have real nonzero roots. If |an| > L,
then equation (1) admits a unique bounded Ḡ-a.p. solution with Ḡ-a.p. deriva-
tives, up to the (n− 1)-th order.

Moreover, the ε-almost-period of p(·) implies the 2k|an|
|an−k|(|an|−L) ε-almost-pe-

riod of the k-th derivative of the solution in the Ḡ-(pseudo-)metric, for k =
0, . . . , n− 1.

Proof The existence of a unique bounded solution y(·) of (1) follows from
Lemma 1. Its Ḡ-almost-periodicity can be proved exactly in the same way as
in the proof of Theorem 1. So, it remains to prove the Ḡ-almost-periodicity of
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derivatives y(k)(·). Putting y(t) into f and substituting φ = y′, one can write
(1) in the form

φ(n−1) +
n−1∑

j=1

ajφ
(n−j−1) = f(y(t))− any(t) + p(t),

with exactly one bounded solution (again, according to Lemma 1). Applying
the same procedure as at the beginning of the proof of Theorem 1, we can write
the following inequality:

|φ(t+ τ)− φ(t)| ≤

≤ 1

|λ̂n−1| . . . |λ̂1|

1∫

0

. . .

1∫

0

(L+ |an|)
∣∣∣∣y(−

n−1∑

j=1

ln sj

λ̂j

+ t+ τ)− y(−
n−1∑

j=1

ln sj

λ̂j

+ t)
∣∣∣∣

+
∣∣∣∣p(−

n−1∑

j=1

ln sj

λ̂j

+ t+ τ)− p(−
n−1∑

j=1

ln sj

λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1,

where λ̂j ∈ R, j = 1, . . . , n − 1, are nonzero roots of the corresponding char-
acteristic polynomial λn−1 +

∑n−1
j=1 ajλ

n−1−j . Thus, for arbitrary a < b, the
following estimate holds

b∫

a

|y′(t+ τ)− y′(t)| dt =

b∫

a

|φ(t+ τ)− φ(t)| dt ≤

≤ L+ |an|
|λ̂n−1| . . . |λ̂1|

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣y(−
n−1∑

j=1

ln sj

λ̂j

+ t+ τ)

− y(−
n−1∑

j=1

ln sj

λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt

+
1

|λ̂n−1| . . . |λ̂1|

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣p(−
n−1∑

j=1

ln sj

λ̂j

+ t+ τ)

− p(−
n−1∑

j=1

ln sj

λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt

=
L+ |an|
|an−1|

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣y(−
n−1∑

j=1

ln sj

λ̂j

+t+τ)−y(−
n−1∑

j=1

ln sj

λ̂j

+t)
∣∣∣∣ dsn−1 . . . ds1 dt

+
1

|an−1|

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣p(−
n−1∑

j=1

ln sj

λ̂j

+ t+ τ)− p(−
n−1∑

j=1

ln sj

λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt.



22 J. ANDRES, A. M. BERSANI, L. RADOVÁ

To prove the Ḡ-almost-periodicity of y′(·), denote by τ the ε-almost period
of p and, subsequently, the ε

|an|−L -almost period of y (in the Ḡ (pseudo-)metric).
Concretely, for the S-almost-periodicity of y′(·), we apply the preceding

inequality with a = u, b = u + 1 and the fact that τ is the Stepanov ε-almost
period of p as well as the Stepanov ε

|an|−L -almost period of y. Therefore,

sup
u∈R

u+1∫

u

|y′(t+ τ) − y′(t)| dt < L+ |an|
|an−1|

sup
u∈R

u+1∫

u

1∫

0

. . .

1∫

0

∣∣∣∣y(−
n−1∑

j=1

ln sj

λ̂j

+ t+ τ)

− y(−
n−1∑

j=1

ln sj

λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt+

ε

|an−1|

<
L+ |an|
|an−1|

· ε

|an| − L
+

ε

|an−1|
=

2|an|
|an−1| (|an| − L)

ε.

Repeating the procedure with the equi-Weyl pseudo-metric, we obtain for
a = u, b = u + l, where l ≥ l0, and for the equi-Weyl ε-almost period of p
denoted by τ (which is the ε

|an|−L -almost period of solution y) that

sup
u∈R

1
l

u+l∫

u

|y′(t+ τ)− y′(t)| dt <

<
L+ |an|
|an−1|

sup
u∈R

1
l

u+l∫

u

1∫

0

. . .

1∫

0

∣∣∣∣y(−
n−1∑

j=1

ln sj

λ̂j

+ t+ τ)

− y(−
n−1∑

j=1

ln sj

λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt+

ε

|an−1|

<
L+ |an|
|an−1|

· ε

|an| − L
+

ε

|an−1|
=

2|an|
|an−1| (|an| − L)

ε.

This inequality holds for ∀l ≥ l0, where l0 is connected with p.
The W -almost-periodicity of y′(·) will be proved in the same way. Denoting

by τ the Weyl ε-almost period of p, one can derive:

lim
l→+∞

sup
u∈R

1
l

u+l∫

u

|y′(t+ τ)− y′(t)| dt <

<
L+ |an|
|an−1|

lim
l→+∞

sup
u∈R

1
l

u+l∫

u

1∫

0

. . .

1∫

0

∣∣∣∣y(−
n−1∑

j=1

ln sj

λ̂j

+ t+ τ)

− y(−
n−1∑

j=1

ln sj

λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt+

ε

|an−1|
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<
L+ |an|
|an−1|

· ε

|an| − L
+

ε

|an−1|
=

2|an|
|an−1| (|an| − L)

ε.

Finally, let us concentrate on the Besicovitch case. Thanks to the above
integral estimate, we can verify the B-almost periodicity of the derivative y′(·):

lim sup
T→+∞

1
2T

+T∫

−T

|y′(t+ τ)− y′(t)| dt <

<
L+ |an|
|an−1|

lim sup
T→+∞

1
2T

+T∫

−T

1∫

0

. . .

1∫

0

∣∣∣∣y(−
n−1∑

j=1

ln sj

λ̂j

+ t+ τ)

− y(−
n−1∑

j=1

ln sj

λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt+

ε

|an−1|
<

2|an|
|an−1| (|an| − L)

ε.

Hence, to ε-almost-period of p, there corresponds the 2|an|
|an−1|(|an|−L) ε-almost-

period of y′, in the Ḡ-(pseudo-)metric.
Putting ψ = φ′, we arrive at the equation

ψ(n−2) +
n−2∑

j=1

ajψ
(n−j−2) = f(y(t))− any(t)− an−1y

′(t) + p(t).

In view of Lemma 1, this equation has exactly one entirely bounded solu-
tion. Proceeding by the similar way as above and denoting the roots of the

corresponding characteristic polynomial by
̂̂
λj , j = 1, . . . , n − 2, one gets the

estimate

|ψ(t+ τ)− ψ(t)| ≤ 1

|̂̂λn−2| . . . |̂̂λ1|

1∫

0

. . .

1∫

0

(L+ |an|)
∣∣∣∣y(−

n−2∑

j=1

ln sj

̂̂
λj

+ t+ τ)

− y(−
n−2∑

j=1

ln sj

̂̂
λj

+ t)
∣∣∣∣+ |an−1|

∣∣∣∣y′(−
n−2∑

j=1

ln sj

̂̂
λj

+ t+ τ) − y′(−
n−2∑

j=1

ln sj

̂̂
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(−

n−1∑

j=1

ln sj

̂̂
λj

+ t+ τ)− p(−
n−1∑

j=1

ln sj

̂̂
λj

+ t)
∣∣∣∣ dsn−2 . . . ds1,

which leads (for a < b) to

b∫

a

|y′′(t+ τ) − y′′(t)| dt =

b∫

a

|ψ(t+ τ)− ψ(t)| dt
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≤ L+ |an|
|an−2|

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣y(−
n−2∑

j=1

ln sj

̂̂
λj

+ t+ τ)− y(−
n−2∑

j=1

ln sj

̂̂
λj

+ t)
∣∣∣∣

× dsn−2 . . . ds1 dt

+
|an−1|
|an−2|

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣y′(−
n−2∑

j=1

ln sj

̂̂
λj

+ t+ τ)− y′(−
n−2∑

j=1

ln sj

̂̂
λj

+ t)
∣∣∣∣ dsn−2 . . . ds1 dt

+
1

|an−2|

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣p(−
n−2∑

j=1

ln sj

̂̂
λj

+ t+ τ)− p(−
n−2∑

j=1

ln sj

̂̂
λj

+ t)
∣∣∣∣ dsn−2 . . . ds1 dt.

Proceeding by the same way as in the case of y′(·), we can analyze all kinds of
(pseudo-)metrics separately. The Ḡ-almost-periodicity of y′′(·) can be verified by
means of the ε-almost-period of p (denoted by τ , as usual), which coincides with
the ε

|an|−L -almost period of solution y and the
2|an|

|an−1|(|an|−L) ε-almost-period of

y′, in the Ḡ-(pseudo-)metric. Repeating the procedure as above, we get that
the mentioned almost-period τ coincides with the 4|an|

|an−2|(|an|−L) ε-almost-period

of y′′, in the Ḡ-(pseudo-)metric.
By the same manner, we can verify the Ḡ-almost-periodicity of higher-order

derivatives y(k). The essential estimate takes now the form

b∫

a

|y(k)(t+ τ)− y(k)(t)| dt ≤

≤ L+ |an|
n−k∏
j=1

|λ̃j |

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣y(−
n−k∑

j=1

ln sj

λ̃j

+ t+ τ)− y(−
n−k∑

j=1

ln sj

λ̃j

+ t)
∣∣∣∣ dsn−k . . . ds1 dt

+
k−1∑

l=1

(
|an−l|

n−k∏
j=1

|λ̃j |

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣y(l)(−
n−k∑

j=1

ln sj

λ̃j

+ t+ τ)

− y(l)(−
n−k∑

j=1

ln sj

λ̃j

+ t)
∣∣∣∣ dsn−k . . . ds1 dt

)

+
1

n−k∏
j=1

|λ̃j |

b∫

a

1∫

0

. . .

1∫

0

∣∣∣∣p(−
n−k∑

j=1

ln sj

λ̃j

+ t+ τ) − p(−
n−k∑

j=1

ln sj

λ̃j

+ t)
∣∣∣∣

× dsn−k . . . ds1 dt,

for a < b, where λ̃j ∈ R denote the nonzero roots of the related shifted polyno-
mial (j = 1, . . . , n− k).
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Studying all cases separately, we obtain the Ḡ-almost-periodicity of y(k).
Moreover, the relationship between Ḡ-almost-periods of p and of derivatives
y(k) can be described as follows: to ε-almost-period of p, there corresponds

the 2k|an|
|an−k|(|an|−L) ε-almost-period of y

(k), in the Ḡ-(pseudo-)metric, for k =
0, . . . , n − 1, provided L < |an|, and |aj | �= 0, for j = 0, . . . , n. This completes
the proof. �

5 Existence of a.p. solutions: case of negative roots

Another way how to come to almost-periods of the derivatives not depending
on the roots of the characteristic polynomial λn +

∑n
j=1 ajλ

n−j is to assume
that all roots are negative. This implies that all coefficients aj , j = 1, . . . , n,
must be positive.

Theorem 3 Let the above conditions (i)–(iv) be satisfied. Assume additionally
that all roots of the characteristic polynomial (2) are negative. If L < an, then
there exists a unique bounded Ḡ-a.p. solution y(·) of equation (1) with Ḡ-a.p.
derivatives, up to the (n− 1)-th order.
Moreover, the ε-almost-period of p(·) implies the 2kak

( n
k )(an−L)

ε-almost-period

of the k-th derivative y(k)(·) of the solution y(·), in the Ḡ-(pseudo-)metric, for
k = 0, . . . , n− 1, where a0 := 1.

Proof According to Lemma 1, equation (1) admits exactly one bounded solu-
tion. Its representation formula can be now written in the form:

y(t) =

t∫

−∞

t1∫

−∞

. . .

tn−1∫

−∞

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [f(y(tn)) + p(tn)] dtn . . . dt1.

Analogously as in the proof of Theorem 1, we can prove the Ḡ-almost-
periodicity of solution y(·).
Proceeding by the same way as in the proof of Theorem 1, we can check the

Ḡ-almost-periodicity of derivatives y(k)(·), k = 1, . . . , n− 1. More precisely, we
can specify that the ε-almost-period of p(·) implies the 2k(−1)k λ1...λk

an−L ε-almost-
period of k-th derivative of solution y(·), k = 1, . . . , n− 1, in the Ḡ-sense. Due
to the independence of the preceding term under the permutation of roots (see
[AG, p. 326]), one has

(
n
k

)
choices of λi1 , . . . , λik

for n roots of the characteristic
polynomial (2). Let us sum up the following

(
n
k

)
inequalities:

sup
u∈R

u+1∫

u

|y(k)(t+ τ)− y(k)(t)| dt < 2k(−1)k λi1 . . . λik

an − L
ε,

for the S-metric,
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sup
u∈R

1
l

u+l∫

u

|y(k)(t+ τ)− y(k)(t)| dt < 2k(−1)k λi1 . . . λik

an − L
ε,

in the equi-Weyl case (for all l ≥ l0, where l0 is connected with p),

lim
l→+∞

sup
u∈R

1
l

u+l∫

u

|y(k)(t+ τ)− y(k)(t)| dt < 2k(−1)k λi1 . . . λik

an − L
ε,

for the Weyl pseudo-metric, and

lim sup
T→+∞

1
2T

T∫

−T

|y(k)(t+ τ)− y(k)(t)| dt < 2k(−1)k λi1 . . . λik

an − L
ε,

in the Besicovitch case.

Divide these sums by
(

n
k

)
. Now, application of the Vieta formula

n∑

i1,...,ik=1
i1<...<ik

(−1)k
k∏

j=1

λij = ak

leads to the desired simplification: every ε-almost-period of p(·) implies the
2kak

(n
k )(an−L)

ε-almost-period of y(k)(·), in the Ḡ-sense. �

6 Concluding remarks

First of all, one can readily check that all main theorems remain valid if, instead
of the boundedness of f , only the existence of a positive constant D0 > 0 is
assumed such that (cf. Remark 2)

max
|y|≤D0/|an|

|f(y)|+ supess
t∈R

|p(t)| ≤ D0.

The same is true for the Lipschitzianity of f : it is enough that

|f(x)− f(y)| ≤ L |x− y|

holds, with 0 < L < |an|, only for |x| ≤ D0
|an| , |y| ≤

D0
|an| .

Therefore, considering the pendulum-type equation

y′′ + ay′ + b sin y = p(t), (3)

where a, b are nonzero constants such that a2 ≥ 4|b| and p ∈ L1
loc(R,R) is G-

a.p., and following the arguments in [A1] (cf. [AG, pp. 556–557]), we can easily
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deduce that eguation (3) admits at least two G-a.p. solutions y1(·) and y2(·)
with G-a.p. derivatives such that

sup
t∈(−∞,∞)

|y1(t)| <
π

2
and sup

t∈(−∞,∞)

|y2(t)− π| < π

2
,

provided only
supess

t∈(−∞,∞)

|p(t)| < |b|.

Furthermore, since multivalued Lipschitz-continuous function with nonempty,
convex and compact values ϕ : R → 2R \ {∅}, i.e.

dH (ϕ(x), ϕ(y)) ≤ L |x− y|,

where dH stands for the Hausdorff metric and L ∈ R is a constant, possesses
a single-valued Lipschitz continuous selection f ⊂ ϕ with constant L0 such
that L0 := L(12

√
3/5 + 1) (see e.g. [HP, pp. 101–103]), and since Stepanov or

equi-Weyl a.p. multivalued function with nonempty, convex and compact values
P : R → 2R \ {∅} possesses a single-valued Stepanov or equi-Weyl a.p. selection
p ⊂ P , respectively (see [D1], [D2], [DS] resp. [D3]), the existence parts (without
uniqueness) of all main theorems can be extended to the differential inclusions

y(n) +
n∑

j=1

ajy
(n−j) ∈ ϕ(y) + P (t),

provided a positive constant D0 > 0 exists such that

max
|y|≤D0/|an|

|ϕ(y)|+ supess
t∈R

|P (t)| ≤ D0,

ϕ is Lipschitz-continuous, for |y| ≤ D0
|an| , with a constant L such that

L < |an|/(12
√

3/5 + 1),

and P is either Stepanov or equi-Weyl almost-periodic in a multivalued sense
(for the related definitions and more details, see e.g. [AG, Chapter III.10 and
Appendix A.1]).
Finally, all G-a.p. solutions y(·) and their derivatives, up to the order (n−1),

are in fact (see Remark 3) G-normal (a.p. in the sense of Bochner), i.e. the
families {y(k)(t + h) | h ∈ R}, h = 0, 1, . . . , n − 1, are G-precompact, because
these solutions and their derivatives are bounded and uniformly continuous; for
more details, see [AG, Chapter III.10] and [ABG]. Stepanov a.p. solutions are
even uniformly almost-periodic.
Some further remarks are in order.

Remark 5 Observe the similarity of the estimates for ε-almost-periods with
those for bounded solutions and their derivatives in Remark 2.
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Remark 6 Analogous theorems can be obtained when only assuming that the
real parts of the roots of the characteristic polynomial (2) are nonzero. On
the other hand, the explicit inequality L < |an| would be replaced by a rather
implicit condition L < |α1 . . . αn|, where αj = Reλj , j = 1, . . . , n, denote the
real parts of the roots λj of (2). Moreover, the related ε-almost-periods of a.p.
solutions and their derivatives would depend on αj , j = 1, . . . , n.

Remark 7 Similar theorems can be also deduced for a more general equation
than (1), namely

y(n) +
n∑

j=1

ajy
(n−j) =

n∑

j=1

fj

(
y(n−j)

)
+ p(t),

or inclusion (without uniqueness)

y(n) +
n∑

j=1

ajy
(n−j) ∈

n∑

j=1

ϕj

(
y(n−j)

)
+ P (t),

but the related calculations would be rather cumbersome. At least in the case
of uniformly a.p. solutions, this will be treated by ourselves elsewhere.
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