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Abstract

The measurability of the family, made up of the family of plane pairs
and the family of lines in 3-dimensional space A3, is stated and its density
is given.
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1 Introduction

A measure on a family of geometric objects can be introduced by assigning to
each object a point of an auxiliary space and considering a suitable measure
on that space. In general the dimension of the auxiliary space is equal to the
number of parameters on which the geometric objects depend. A basic problem
is to specify measures which are invariant with respect to a given group of
transformations which map the family onto itself.
This problem was first considered by Crofton [3] who specified the invariant

measure on the family of all straight lines in Euclidean 2-space E2. This was
extended to E3 by Deltheil [4] and Chern [1] first considered families of geometric
objects in projective space.
Santaló [9] calculated measures of certain families of varieties with respect

to three different groups and found that these were equal. Stoka [10] studied the
family of parabolas. He proved that a family is measurable if it is measurable
with respect to its maximal group of invariance

*This work has been subsidized by the M.U.R.S.T.
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144 Grazia RAGUSO, Luigia RELLA

However Cirlincione [2] found a measurable family of varieties even though
the family was not measurable with respect to the maximal group of invariance.
This proves that the Stoka’s condition is not necessary.
In Section 2 we provide background and definitions and in Section 3 we

prove that the family of varieties, where each variety is a pair consisting of two
hyperplanes and a straight line in 3-dimensional affine space A3 is measurable.

2 Background

Let Hn be an n-dimensional space with coordinates x1, x2, . . . , xn in which a
Lie group of transformations acts.
Let Gr be one of its subgroups defined by the equations

yi = fi(x1,x2, . . . , xn; a1, a2, . . . , ar) (i = 1, 2, . . . , n) (#)

where a1, a2, . . . , ar are basic parameters.

Definition 1 The function F (x1,x2, . . . , xn) is an integral invariant function of
the group (#), if

∫

Ax

F (x1, x2, . . . , xn) dx1dx2 . . . dxn =
∫

Ay

F (y1y2, . . . , yn) dy1dy2 . . . dyn)

for each measurable set of points Ax of the space Hn.

Theorem 1 The integral invariant functions of the group (#) are the solutions
of the following Deltheil’s system of partial differential equations:

n∑

i=1

∂

∂xi

[
ξi
h(x)F (x)

]
= 0 (h = 1, 2, . . . , r),

where ξi
h(x) are the coefficients of the infinitesimal transformations of the group

(#) (see [4], p. 28).

Definition 2 A measurable Lie group of transformations is a group which ad-
mits only one integral invariant function (up to a multiplicative constant).

Let G be a group which leaves globally invariant a family � of varietes in
Hn. To G there is associated a group H (isomorphic to G) of transformations
acting on the (auxiliary) space of parameters of the family.

Definition 3 A family � is measurable with respect to G if H is measurable in
the sense of Definition 2. If Φ is its integral invariant function, then the measure
of � with respect to the group G is given by

μG =
∫

Aα

Φ(α1, α2, . . . , αq) dα1dα2 . . . dαq,

where Aα is the set of points of the auxiliary space which corresponds to the
family �.
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Definition 4 A family � of varieties is measurable if the measures with respect
to every group of invariance of the family are equal, if they exist.

Theorem 2 (Stoka’s first condition) If the group H associated to the max-
imal group of invariance of � (where the only transformation, which leaves
invariant each element of the family, is the identity) is measurable, the family
is measurable.

Theorem 3 (Stoka’s second condition) If H is not measurable and there
are two measurable subgroups with different integral invariant functions, then �
is not measurable.

3 Measurability of the family �10

Theorem 4 The family of varieties,where each variety is consisted of two planes
and a straight line in 3-dimensional affine space A3, is measurable.

Let us consider the family of plane pairs and the family of lines in the affine
space A3 (suppose that planes and lines are in general position)

�10 :

⎧
⎪⎪⎨
⎪⎪⎩

b1x1 + b2x2 + b3x3 = 1,
c1x1 + c2x2 + c3x3 = 1,
x1 = l1x3 + q1

x2 = l2x3 + q2

which depend on 10 parameters b1, b2, b3, c1, c2, c3, l1, l2, q1, q2.
Let G12 be the affinity group given by the equations

G12 :

⎧
⎨
⎩

x1 = p11x
′
1 + p12x

′
2 + p13x

′
3 + α1

x2 = p21x
′
1 + p22x

′
2 + p23x

′
3 + α2

x3 = p31x
′
1 + p32x

′
2 + p33x

′
3 + α3

and let
∑3

i=1 biαi �= 1,
∑3

i=1 ciαi �= 1.
We put

X =

⎛
⎝

x1

x2

x3

⎞
⎠ , B =

⎛
⎝

b1

b2

b3

⎞
⎠ , C =

⎛
⎝

c1

c2

c3

⎞
⎠ ,

L =

⎛
⎝

l1
l2
1

⎞
⎠ , Q =

⎛
⎝

q1

q2

0

⎞
⎠ , X ′ =

⎛
⎝

x′1
x′2
x′3

⎞
⎠ ,

P = (pij) (i, j = 1, 2, 3) with detP �= 0, A =

⎛
⎝

α1

α2

α3

⎞
⎠
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so that we obtain

�10 : tB ·X = 1, tC ·X = 1, X = L · x3 + Q (1)

G12 : X = P ·X ′ + A

Now we see how the 10 parameters of the family �10 change by applying
any transformation T of G12.
With a similar meaning of B′, C′, L′, Q′ the new variety is given by the

equations
tB′ ·X ′ = 1, tC′ ·X ′ = 1 (2)

X ′ = L′ · x′3 + Q′. (3)

From (1) we have

tB ·X = tB · (P ·X ′ + A) = tB · P ·X ′ + tB · A = 1
tC ·X = tC · (P ·X ′ + A) = tC · P ·X ′ + tC ·A = 1

hence
tB · P ·X ′ = 1− tB ·A, tC · P ·X ′ = 1− tC · A.

Finally, dividing by 1− tB · A and 1− tC ·A respectively, we obtain

1
1− tB · A (tB · P )X ′ = 1,

1
1− tC · A (tC · P )X ′ = 1. (4)

In the same way we obtain

X = L · x3 + Q ⇒ P ·X ′ + A = L · (p31x
′
1 + p32x

′
2 + p33x

′
3 + α3) + Q

⇒ P ·X ′ = L · (p31x
′
1 + p32x

′
2 + p33x

′
3 + α3) + Q−A

i.e.
⎛
⎝

p11 p12 p13

p21 p22 p23

p31 p32 p33

⎞
⎠ ·

⎛
⎝

x′1
x′2
x′3

⎞
⎠ =

⎛
⎝

l1
l2
1

⎞
⎠ · (p31x

′
1 + p32x

′
2 + p33x

′
3 + α3)+

⎛
⎝

q1 − α1

q2 − α2

0− α3

⎞
⎠

or equivalently

p11x
′
1 + p12x

′
2 + p13x

′
3 = l1(p31x

′
1 + p32x

′
2 + p33x

′
3) + l1α3 + (q1 − α1)

p21x
′
1 + p22x

′
2 + p23x

′
3 = l2(p31x

′
1 + p32x

′
2 + p33x

′
3) + l2α3 + (q2 − α2)

p33x
′
3 = p33x

′
3 + α3 + (0− α3)

hence

(p11 − l1p31)x′1 + (p12 − l1p32)x′2 = (l1p33 − p13)x′3 + l1α3 + (q1 − α1)
(p21 − l2p31)x′1 + (p22 − l2p32)x′2 = (l2p33 − p23)x′3 + l2α3 + (q2 − α2)

p33x
′
3 = p33x

′
3
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Omitting the last identity and using the matrix form, we have
(

p11 − l1p31 p12 − l1p32

p21 − l2p31 p22 − l2p32

) (
x′1
x′2

)
=

(
l1p33 − p13

l2p33 − p23

)
x′3+

(
l1
l2

)
α3+

(
q1 − α1

q2 − α2

)

(5)
Putting

R =
(

p11 − l1p31 p12 − l1p32

p21 − l2p31 p22 − l2p32

)
,

we have

R−1 =
1
�

(
p22 − l2p32 −p12 + l1p32

−p21 + l2p31 p22 − l1p31

)

where

� = ‖R‖ = (p11 − l1p31)(p22 − l2p32)− (p12 − l2p32)(p21 − l2p31).

Then we can write (5) as
(

x′1
x′2

)
= R−1

(
l1p33 − p13

l2p33 − p23

)
x′3 + R−1

[(
l1
l2

)
α3 +

(
q1 − α1

q2 − α2

)]

or
(

x′1
x′2

)
=

1
�

(
p22 − l2p32 −p12 + l1p32

−p21 + l2p31 p11 − l1p31

)
·
(

l1p33 − p13

l2p33 − p23

)
x′3

+
1
�

(
p22 − l2p32 −p12 + l1p32

−p21 + l2p31 p11 − l1p31

)
·
(

l1α3 + q1 − α1

l2α3 + q2 − α2

)
(6)

By comparing (2) and (3) with (4) and (6) respectively, we have the con-
nections between the new parameters b′1, b

′
2, b

′
3, c

′
1, c

′
2, c

′
3, l

′
1, l

′
2, q

′
1, q

′
2 and the

initial ones:

b′1 =
3∑

i=1

bipi1 ·
1

1−∑3
i=1 biαi

b′2 =
3∑

i=1

bipi2 ·
1

1−∑3
i=1 biαi

b′3 =
3∑

i=1

bipi3 ·
1

1−∑3
i=1 biαi

c′1 =
3∑

i=1

cipi1 ·
1

1−∑3
i=1 ciαi

c′2 =
3∑

i=1

cipi2 ·
1

1−∑3
i=1 ciαi

c′3 =
3∑

i=1

cipi3 ·
1

1−∑3
i=1 ciαi

(7)

l′1 =
1
� [(p22 − l2p32)(l1p33 − p13) + (−p12 + l1p32)(l2p33 − p23)]

l′2 =
1
� [(−p21 + l2p31)(l1p33 − p13) + (p11 − l1p31)(l2p33 − p23)]

q′1 =
1
� [(p22 − l2p32)(l1α3 + q1 − α1) + (−p12 + l1p32)(l2α3 + q2 − α2)]

q′2 =
1
� [(−p21 + l2p31)(l1α3 + q1 − α1) + (p11 − l1p31)(l2α3 + q2 − α2)]
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In the 10-dimensional parameter space A10, (7) are the equations of group
H12 which is associated to G12 (operating in 3-dimensional space A3).
Also group H12 depends on twelve parameters p11, p21, p31, p12, p22, p32,

p13, p23, p33, α1, α2, α3 and the unit o ∈ H12 (as for G12) corresponds to the
values of the parameters

pij =
{

1 if i = j
0 if i �= j

and αi = 0 (i, j = 1, 2, 3).

Now we construct the matrix whose elements are the coefficients of the in-
finitesimal transfomations of H12 and we note that the columns of this matrix
are the derivates of b′1, b

′
2, b

′
3, c

′
1, c

′
2, c

′
3, l

′
1, l

′
2, q

′
1, q

′
2 with respect to parameters

pij , i, j = 1, 2, 3 and αi, i = 1, 2, 3:
(

∂b′
1

∂p11

)
o

= b1,
(

∂b′
2

∂p11

)
o

= 0,
(

∂b′
3

∂p11

)
o

= 0,
(

∂b′
1

∂p21

)
o

= b2,
(

∂b′
2

∂p21

)
o

= 0,
(

∂b′
3

∂p21

)
o

= 0,
(

∂b′
1

∂p31

)
o

= b3,
(

∂b′
2

∂p31

)
o

= 0,
(

∂b′
3

∂p31

)
o

= 0,
(

∂b′
1

∂p12

)
o

= 0,
(

∂b′
2

∂p12

)
o

= b1,
(

∂b′
3

∂p12

)
o

= 0,
(

∂b′
1

∂p22

)
o

= 0,
(

∂b′
2

∂p22

)
o

= b2,
(

∂b′
3

∂p22

)
o

= 0,
(

∂b′
1

∂p32

)
o

= 0,
(

∂b′
2

∂p32

)
o

= b3,
(

∂b′
3

∂p32

)
o

= 0,
(

∂b′
1

∂p13

)
o

= 0,
(

∂b′
2

∂p13

)
o

= 0,
(

∂b′
3

∂p13

)
o

= b1,
(

∂b′
1

∂p23

)
o

= 0,
(

∂b′
2

∂p23

)
o

= 0,
(

∂b′
3

∂p23

)
o

= b2,
(

∂b′
1

∂p33

)
o

= 0,
(

∂b′
2

∂p33

)
o

= 0,
(

∂b′
3

∂p33

)
o

= b3,
(

∂b′
1

∂α1

)
o

= b2
1,

(
∂b′

2
∂α1

)
o

= b2b1,
(

∂b′
3

∂α1

)
o

= b3b1,
(

∂b′
1

∂α2

)
o

= b1b2,
(

∂b′
2

∂α2

)
o

= b2
2,

(
∂b′

3
∂α2

)
o

= b3b2,
(

∂b′
1

∂α3

)
o

= b1b3,
(

∂b′
2

∂α3

)
o

= b2b3,
(

∂b′
3

∂α3

)
o

= b2
3,

(
∂c′

1
∂p11

)
o

= c1,
(

∂c′
2

∂p11

)
o

= 0,
(

∂c′
3

∂p11

)
o

= 0,
(

∂c′
1

∂p21

)
o

= c2,
(

∂c′
2

∂p21

)
o

= 0,
(

∂c′
3

∂p21

)
o

= 0,
(

∂c′
1

∂p31

)
o

= c3,
(

∂c′
2

∂p31

)
o

= 0,
(

∂c′
3

∂p31

)
o

= 0,
(

∂c′
1

∂p12

)
o

= 0,
(

∂c′
2

∂p12

)
o

= c1,
(

∂c′
3

∂p12

)
o

= 0,
(

∂c′
1

∂p22

)
o

= 0,
(

∂c′
2

∂p22

)
o

= c2,
(

∂c′
3

∂p22

)
o

= 0,
(

∂c′
1

∂p32

)
o

= 0,
(

∂c′
2

∂p32

)
o

= c3,
(

∂c′
3

∂p32

)
o

= 0,
(

∂c′
1

∂p13

)
o

= 0,
(

∂c′
2

∂p13

)
o

= 0,
(

∂c′
3

∂p13

)
o

= c1,
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(
ϑc′

1
∂p23

)
o

= 0,
(

∂c′
2

∂p23

)
o

= 0,
(

∂c′
3

∂p23

)
o

= c2,
(

∂c′
1

∂p33

)
o

= 0,
(

∂c′
2

∂p33

)
o

= 0,
(

∂c′
3

∂p33

)
o

= c3,
(

∂c′
1

∂α1

)
o

= c2
1,

(
∂c′

2
∂α1

)
o

= c2c1,
(

∂c′
3

∂α1

)
o

= c3c1,
(

c′
1

∂α2

)
o

= c1c2,
(

∂c′
2

∂α2

)
o

= c2
2,

(
∂c′

3
∂α2

)
o

= c3c2,
(

∂c′
1

∂α3

)
o

= c1c3,
(

∂c′
2

∂α3

)
o

= c2c3,
(

∂c′
3

∂α3

)
o

= c2
3,

(
∂l′1

∂p11

)
o

= −l1,
(

∂l′2
∂p11

)
o

= 0,
(

∂q′
1

∂p11

)
o

= −q1,
(

∂q′
2

∂p11

)
o

= 0,
(

∂l′1
∂p21

)
o

= 0,
(

∂l′2
∂p21

)
o

= −l1,
(

∂q′
1

∂p21

)
o

= 0,
(

∂q′
2

∂p21

)
o

= −q1,
(

∂l′1
∂p31

)
o

= l21,
(

∂l′2
∂p31

)
o

= l1l2,
(

∂q′
1

∂p31

)
o

= l1q1,
(

∂q′
2

∂p31

)
o

= l2q1,
(

∂l′1
∂p12

)
o

= −l2,
(

∂l′2
∂p12

)
o

= 0,
(

∂q′
1

∂p12

)
o

= −q2,
(

∂q′
2

∂p12

)
o

= 0,
(

∂l′1
∂p22

)
o

= 0,
(

∂l′2
∂p22

)
o

= −l2,
(

∂q′
1

∂p22

)
o

= 0,
(

∂q′
2

∂p22

)
o

= −q2,
(

∂l′1
∂p32

)
o

= l1l2,
(

∂l′2
∂p32

)
o

= l22,
(

∂q′
1

∂p32

)
o

= l1q2,
(

∂q′
2

∂p32

)
o

= l2q2,
(

∂l′1
∂p13

)
o

= −1,
(

∂l′2
∂p13

)
o

= 0,
(

∂q′
1

∂p13

)
o

= 0,
(

∂q′
2

∂p13

)
o

= 0,
(

∂l′1
∂p23

)
o

= 0,
(

∂l′2
∂p23

)
o

= −1,
(

∂q′
1

∂p23

)
o

= 0,
(

∂q′
2

∂p23

)
o

= 0,
(

∂l′1
∂p33

)
o

= l1,
(

∂l′2
∂p33

)
o

= l2,
(

∂q′
1

∂p33

)
o

= 0,
(

∂q′
2

∂p33

)
o

= 0,
(

∂l′1
∂α1

)
o

= 0,
(

∂l′2
∂α1

)
o

= 0,
(

∂q′
1

∂α1

)
o

= −1,
(

∂q′
2

∂α1

)
o

= 0,
(

∂l′1
∂α2

)
o

= 0,
(

∂l′2
∂α2

)
o

= 0,
(

∂q′
1

∂α2

)
o

= 0,
(

∂q′
2

∂α2

)
o

= −1,
(

∂l′1
∂α3

)
o

= 0,
(

∂l′2
∂α3

)
o

= 0,
(

∂q′
1

∂α3

)
o

= l1,
(

∂q′
2

∂α3

)
o

= l2.

So, the matrix of the coefficients of the infinitesimal transformations of H12

is given by

ζij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 0 c1 0 0 −l1 0 −q1 0
b2 0 0 c2 0 0 0 −l1 0 −q1

b3 0 0 c3 0 0 l21 l1l2 l1q1 l2q1

0 b1 0 0 c1 0 −l2 0 −q2 0
0 b2 0 0 c2 0 0 −l2 0 −q2

0 b3 0 0 c3 0 l1l2 l22 l1q2 l2q2

0 0 b1 0 0 c1 −1 0 0 0
0 0 b2 0 0 c2 0 −1 0 0
0 0 b3 0 0 c3 l1 l2 0 0
b2
1 b2b1 b3b1 c2

1 c2c1 c3c1 0 0 −1 0
b1b2 b2

2 b3b2 c1c2 c2
2 c3c2 0 0 0 −1

b1b3 b2b3 b2
3 c1c3 c2c3 c2

3 0 0 l1 l2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)
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Our aim is to find functions Φ(b1, b2, b3, c1, c2, c3, l1, l2, q1, q2) which satisfy
the following (Deltheil) system:

b1
∂Φ
∂b1

+ c1
∂Φ
∂c1

+ (−l1) ∂Φ
∂l1

+ (−q1) ∂Φ
∂q1

= 0

b2
ϑΦ
ϑb1

+ c2
ϑΦ
ϑc1

+ (−l1) ∂Φ
∂l2

+ (−q1) ∂Φ
∂q2

= 0

b3
∂Φ
∂b1

+ c3
∂Φ
∂c1

+ l21
∂Φ
∂l1

+ l1l2
∂Φ
∂l2

+ l1q1
∂Φ
∂q1

+ l2q1
∂Φ
∂q2

= −4l1Φ

b1
∂Φ
∂b2

+ c1
∂Φ
ϑc2

+ (−l2) ∂Φ
∂l1

+ (−q2) ∂Φ
∂q1

= 0

b2
∂Φ
∂b2

+ c2
∂Φ
∂c2

+ (−l2) ∂Φ
∂l2

+ (−q2) ∂Φ
∂q2

= 0

b3
∂Φ
∂b2

+ c3
∂Φ
∂c2

+ l1l2
∂Φ
∂l1

+ l22
∂Φ
∂l2

+ l1q2
∂Φ
∂q1

+ l2q2
∂Φ
∂q2

= −4l2Φ

b1
∂Φ
∂b3

+ c1
∂Φ
∂c3

+ (− ∂Φ
∂l1

) = 0 (9)

b2
∂Φ
∂b3

+ c2
∂Φ
∂c3

+ (− ∂Φ
∂l2

) = 0

b3
∂Φ
∂b3

+ c3
∂Φ
∂c3

+ l1
∂Φ
∂l1

+ l2
∂Φ
∂l2

= −4Φ

b2
1

∂Φ
∂b1

+ b1b2
∂Φ
∂b2

+ b1b3
∂Φ
∂b3

+ c2
1

∂Φ
∂c1

+ c1c2
∂Φ
∂c2

+ c1c3
∂Φ
∂c3

+ (− ∂Φ
∂q1

) = −4(b1 + c1)Φ

b1b2
∂Φ
∂b1

+ b2
2

∂Φ
∂b2

+ b2b3
∂Φ
∂b3

+ c1c2
∂Φ
∂c1

+ c2
2

∂Φ
∂c2

+ c2c3
∂Φ
∂c3

+ (− ∂Φ
∂q2

) = −4(b2 + c2)Φ

b1b3
∂Φ
∂b1

+b2b3
∂Φ
∂b2

+b2
3

∂Φ
∂b3

+c1c3
∂Φ
∂c1

+c2c3
∂Φ
∂c2

+c2
3

∂Φ
∂c3

+l1
∂Φ
∂q1

+l2
∂Φ
∂q2

= −4(b3+c3)Φ

System (9) has Φ = 0 as the trivial solution, obviously. Then by dividing
any equation of (12) by Φ, it becomes a (linear non-homogeneous) system of 12
algebraic equations with ten unknown quantities:

∂ ln Φ
∂b1

,
∂ ln Φ
∂b2

,
∂ ln Φ
∂b3

,
∂ ln Φ
∂c1

,
∂ ln Φ
∂c2

,
∂ ln Φ
∂c3

,
∂ ln Φ
∂l1

,
∂ ln Φ
∂l2

,
∂ ln Φ
∂q1

,
∂ ln Φ
∂q2

.

The incomplete and complete matrix (respectively) of the previous system are
given by:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 0 c1 0 0 −l1 0 −q1 0
b2 0 0 c2 0 0 0 −l1 0 −q1

b3 0 0 c3 0 0 l21 l1l2 l1q1 l2q1

0 b1 0 0 c1 0 −l2 0 −q2 0
0 b2 0 0 c2 0 0 −l2 0 −q2

0 b3 0 0 c3 0 l1l2 l22 l1q2 l2q2

0 0 b1 0 0 c1 −1 0 0 0
0 0 b2 0 0 c2 0 −1 0 0
0 0 b3 0 0 c3 l1 l2 0 0
b2
1 b2b1 b3b1 c2

1 c2c1 c3c1 0 0 −1 0
b2b1 b2

2 b3b2 c2c1 c2
2 c3c2 0 0 0 −1

b3b1 b3b2 b2
3 c3c1 c3c2 c2

3 0 0 l1 l2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 0 c1 0 0 −l1 0 −q1 0 0
b2 0 0 c2 0 0 0 −l1 0 −q1 0
b3 0 0 c3 0 0 l21 l1l2 l1q1 l2q1 −4l1
0 b1 0 0 c1 0 −l2 0 −q2 0 0
0 b2 0 0 c2 0 0 −l2 0 −q2 0
0 b3 0 0 c3 0 l1l2 l22 l1q2 l2q2 −4l2
0 0 b1 0 0 c1 −1 0 0 0 0
0 0 b2 0 0 c2 0 −1 0 0 0
0 0 b3 0 0 c3 l1 l2 0 0 −4
b2
1 b2b1 b3b1 c2

1 c2c1 c3c1 0 0 −1 0 −4(b1 + c1)
b2b1 b2

2 b3b2 c2c1 c2
2 c3c2 0 0 0 −1 −4(b2 + c2)

b3b1 b3b2 b2
3 c3c1 c3c2 c2

3 0 0 l1 l2 −4(b3 + c3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We consider the 10 × 10 submatrix of the incomplete matrix which is ob-
tained by deleting the ninth and the twelfth rows. Its determinant is not zero.
Therefore, the incomplete matrix has rank 10. As that submatrix is also con-
tained in the complete matrix, adding first the ninth row and then the twelfth
row ( always considering the last column, obviously), we obtain two 11 × 11
submatrices.Their determinants are both zero; therefore the complete matrix
has rank 10.
We conclude that system (9) is solvable, so there exsists only one not trivial

solution given by the function

Φ = k(σ2ρ1 − σ1ρ2)−4 with k ∈ R∗

where σ1 = b1q1 + b2q2 − 1, ρ2 = c1q1 + c2q2 − 1, σ1 = l1b1 + l2b2 + b3,
σ2 = l1c1 + l2c2 + c3.
We leave out the calculus.
So group H12 associated to G12 is measurable by Theorem 2. Hence family

�10 is measurable and its density is given by

dΦ = (σ2ρ1 − σ1ρ2)−4db1 ∧ db2 ∧ db3 ∧ dc1 ∧ dc2 ∧ dc3 ∧ dl1 ∧ dl2 ∧ dq.
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