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DYNAMICS OF DIANALYTIC TRANSFORMATIONS
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Abstract. This paper is an introduction to dynamics of dianalytic self-maps of nonori-
entable Klein surfaces. The main theorem asserts that dianalytic dynamics on Klein surfaces
can be canonically reduced to dynamics of some classes of analytic self-maps on their ori-
entable double covers. A complete list of those maps is given in the case where the respective
Klein surfaces are the real projective plane, the pointed real projective plane and the Klein
bottle.
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1. Klein surfaces

Let X be a Riemann surface. A symmetry (in the sense of Klein) of X is any fixed

point free antianalytic involution h of X . Although some other types of symmetries
play an important role in the theory of Riemann surfaces (see [1]), we will deal in

this paper only with symmetries in the sense of Klein. The couple (X,h) is called a
symmetric Riemann surface.

Let S be a surface. For p ∈ S, a chart at p is is a couple (U,ϕ) consisting of a
neighborhood U of p and a homeomorphism

ϕ : U → V ⊆ � + := {z ∈ � ; Im z > 0}.

A dianalytic atlas on S is a family of charts Υ = {(Uα, ϕα), α ∈ I} such that⋃
α∈I

Uα = S and for every couple (Uα, ϕα), (Uβ , ϕβ) ∈ Υ the transfer function ϕβ ◦

ϕ−1
α is either conformal, or the complex conjugate of a conformal mapping on each
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connected component of its domain. In the last case, it will be called an anticonformal

mapping of the respective component.

Two dianalytic atlases Υ1 and Υ2 of S are called dianalytically compatible if
Υ1 ∪Υ2 is a dianalytic atlas of S. We call a maximal dianalytic atlas Υ a dianalytic
structure on S and the couple (S,Υ) is called a Klein surface. Klein surfaces can
be orientable or nonorientable, bordered or border free surfaces. The category of
Klein surfaces contains as a subcategory that of Riemann surfaces, considered here

as bordered or border free. See [2] and [3] for the morphisms of Klein surfaces and
[7] for their groups of automorphisms.

The following theorem (see [5]) has its origins in Klein’s work.

Theorem 1.1. If (X,h) is a symmetric Riemann surface and 〈h〉 is the two
element group generated by h, then the canonical projection π : X → X/ 〈h〉 induces
on X/ 〈h〉 a structure of nonorientable Klein surface, with respect to which π is a
morphism of Klein surfaces.

Conversely, if S is a nonorientable Klein surface, there is a symmetric Riemann
surface (X,h) such that S is dianalytically equivalent to X/ 〈h〉.
X is called the orientable double cover of S and is uniquely determined up to a

conformal mapping.

Theorem 1.2. If (X,h) is the orientable double cover of a nonorientable Klein
surface S, then any dianalytic mapping f : S → S can be lifted to a unique analytic

mapping F : X → X that commutes with h and satisfies the equality π ◦ F = f ◦ π.
���������

. Let (D, π1) be the universal covering of S and let G be the covering
group of D over S. It is known (see [5]) that G is a disjoint union G = G1 ∪ gG1,

where G1 is the subgroup in G of all conformal transformations and g ∈ G \ G1 is
anticonformal. Moreover, G1 is the covering group of D over X and h = hg : X → X

is the fixed point free antianalytic involution of X defined by h (ẑ) = ĝ(z), where ẑ
is the orbit of a point z ∈ D under the action of G1 and X has been identified with

D/G1. If we denote by π2 the canonical projection of D onto X , it is obvious that
π1 = π ◦ π2.

Let z0 be an arbitrary point of D. For every w ∈ D over f(π1(z0)) we define a
lift fw of f in the following way (compare [12], p. 145). If γ is a path in D from
z0 to z, then fw(z) is by definition the end-point of the path γw obtained by lifting

f ◦ π1 ◦ γ from w. If γ′ is another path in D from z0 to z then, since D is simply
connected, γ and γ′ are homotopic, hence f ◦ π1 ◦ γ and f ◦ π1 ◦ γ′ are homotopic,
and by the Monodromy Theorem γw and γ′w are homotopic. Consequently, fw is well
defined and we have π1 ◦ fw = f ◦ π1. Since π and f are dianalytic functions and D
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is an orientable surface, by the Uniqueness Theorem of analytic functions, fw must

be either an analytic or an antianalytic mapping. Moreover, if w′ ≡ w′′ (mod G1),
then π1(fw′(z)) = π1(fw′′(z)) and therefore we can define F : X → X by the formula
F ([z]1) = π1 ◦ fw(z), where [z]1 is the equivalence class of z modulo G1 and X is

identified with D/G1. It can be easily seen that π ◦F = f ◦π and therefore F is a lift
of f over X . Since π ◦h = π, we also have π ◦h◦F = f ◦π, therefore h◦F is another
lift of f overX . The mappings π, h and f being dianalytic, so should be F and h◦F ,
and since X is orientable, each one of them must be either analytic, or antianalytic.

Obviously, if F is analytic, then h ◦F is antianalytic and vice-versa. Supposing that
F is the analytic one, we need only to show that F commutes with h. This will be

obvious if we can show that h ◦ F and F ◦ h are both lifts of f . Indeed, since X
is the double cover of S, and there is an analytic lift of f over X , there cannot be

two antianalytic lifts of f over X . and therefore we must have h ◦ F = F ◦ h. The
equalities

π ◦ F = f ◦ π and π ◦ h = π

show that

π ◦ (F ◦ h) = (π ◦ F ) ◦ h = (f ◦ π) ◦ h = f ◦ (π ◦ h) = f ◦ π

and

π ◦ (h ◦ F ) = (π ◦ h) ◦ F = π ◦ F = f ◦ π,

which implies that indeed both h ◦ F and F ◦ h are lifts of f to X . �

Theorem 1.3. If (X,h) is the orientable double cover of a nonorientable Klein
surface S, and F : X → X is a continuous mapping that commutes with h, then

there is a unique continuous mapping f : S → S such that π ◦ F = f ◦ π. If F is an
analytic mapping, then f is dianalytic.

���������
. Let us define f : S → S by f(z̃) = ζ̃ , where z̃ = {z, h(z)}, ζ̃ = {ζ, h(ζ)}

and ζ = F (z). Then

π(F (z)) = π(ζ) = ζ̃ = f(z̃) = f(π(z)).

The uniqueness and the continuity of f follow from the fact that for every set V

where π is injective f(z̃) = π|V ◦ F ◦ π−1
|V (z̃) and all the functions on the right hand

side of this equality are continuous. If F is an analytic mapping, then f is dianalytic

in every set f(V ) such that π is injective in V. By consequence f is dianalytic in S.
�
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Theorems 1.2 and 1.3 show that the equality π ◦ F = f ◦ π establishes a one to
one correspondence between dianalytic mappings f : S → S and analytic mappings
F : X → X that commute with h. When studying dynamics on Riemann surfaces
particular classes of functions F are considered. The question arises of what would

be the corresponding classes of functions f . We will give in this paper a partial
answer to this question.

2. Dianalytic dynamics

Let f : S → S be a dianalytic self-map of a Klein surface, and let f ◦n be its

n-th iterate. The orbit of a point z̃ = {z, h(z)} ∈ S is the set {f ◦n(z̃)}∞n=0, where
f◦0(z̃) = z̃, and for n > 1, f◦n(z̃) = f ◦f◦(n−1)(z̃). The limit set of the orbit of z̃ is de-
noted by ωf (z̃). For the corresponding analytic self-map F : X → X of the orientable
double cover of X , we have the orbit sets of z and h(z), namely {F ◦n(z)}∞n=0 and,

{F ◦n(h(z))}∞n=0 respectively, and their limit sets ωF (z) and ωF (h(z)), respectively.
The following propositions have elementary proofs that will be omitted.

Proposition 2.1. If F : X → X commutes with h, then for every n > 1, F ◦n

commutes with h. Moreover, if the dianalytic self-map f of S corresponds to the

analytic map F : X → X , then f◦n corresponds to F ◦n, i.e.π ◦ F ◦n = f◦n ◦ π.

Proposition 2.2. If z̃0 = (z0, h(z0)) is a fixed point of f , then z0 and h(z0) are
fixed points for F.

Proposition 2.3. If F commutes with h and z0 is a fixed point of F , then h(z0)
is also a fixed point of F and z̃0 = π(z0) = π(h(z0)) is a fixed point of f .

Proposition 2.4. If z̃ = {z, h(z)}, then π(ωF (z)) = π(ωF (h(z)) = ωf (z̃).
A point z̃0 ∈ S is said to be periodic of order p if f◦p(z̃0) = z̃0 and f◦j(z̃0) 6= z̃0

for j < p. The set {z̃n = fn(z̃0)}p−1
n=0 is called a cycle.

The following proposition gives a correspondence between cycles on S relative to

f and cycles on X relative to F.

Proposition 2.5. If z̃0 is a periodic point of order p for f , then z0 and h(z0) are
periodic of order p for F. Vice-versa, if z0 is periodic of order p for F , then h(z0) is
also periodic of order p for F and z̃0 = {z̃0, h(z̃0} is periodic of order p for f .

The concept of multiplier plays an important role in the study of dynamics on
Riemann surfaces. Namely, for a cycle {zn = F ◦n(z̃0)}p−1

n=0 the multiplier is the
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complex number

λ = F ′(z0) . . . F ′(zp−1) = (F ◦p)′(z0),

where the derivatives are taken by using local coordinates at zn. Obviously, λ has

an invariant meaning, that is it does not depend on a particular choice of local
coordinates. Since we are dealing here with dianalytic maps, it would make sense

to replace the operator d/dz appearing in the definition of the multiplier by ∂/∂z+
∂/∂z = ∂/∂x, which reduces to ∂/∂z = d/dz in the analytic case, and to ∂/∂z in
the antianalytic case. Then the multiplier of a cycle {z̃n = f◦n(z̃0)}p−1

n=0 would be:

λ =
∂f

∂x
(z̃0)

∂f

∂x
(z̃1) . . .

∂f

∂x
(z̃p−1).

Sometimes, in order to study dianalytic dynamics on a nonorientable Klein surface,
the use of its orientable double cover and of analytic dynamics on it might be more

economical. This last surface can be spherical, Euclidean, or hyperbolic, according as
its universal covering surface is � , � or � + . A specific metric has been associated with

each one of these cases, that allows one to define the normality in the sense of Montel
of the families of iterates of analytic self-maps and to describe the corresponding

Fatou and Julia sets. Only the spherical metric is h-invariant, so that it can be
projected on the corresponding nonorientable Klein surface. In this case the canonical

projection is an isometry with respect to the spherical metric and its projection, and
the normality of any family of iterates is preserved by projection. Therefore the

Fatou and the Julia sets of f on S are projections of the Fatou and Julia sets of
F on X, respectively. On the other hand, it is well known that this is the most
interesting case (see [13], [14]), since it offers an unlimited variety of situations. In

the other two cases there is not an obvious relationship between these sets. Indeed,
the Euclidean metric and its symmetric component are not equivalent metrics (see

[6]) and consequently we might expect that, when related to these metrics, some
normal families of functions on X do not project into normal families of functions

on S. We do not know for the moment if this is true or false, but we are convinced
of the fact that a parallel study of dynamics of f on S and that of dynamics of F on

X is worthwhile.

3. Dianalytic self-maps of the real projective plane

The real projective plane P 2 can be realized factorizing the Riemann sphere � by
the group 〈h〉 generated by the fixed point free antianalytic involution h : z → −1/z.
Here h(0) = ∞ and h(∞) = 0. There is a unique dianalytic structure on P 2 making

the canonical projection π : � → P 2 a dianalytic function. Thus, P 2 endowed with
that dianalytic structure becomes a nonorientable Klein surface.
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We are interested in studying iterations of dianalytic transformations f : P 2 →
P 2. As seen in the previous sections, there is a one to one correspondence between
these transformations and the analytic self-maps of the Riemann sphere (= rational
functions) which commute with h. Therefore the dianalytic dynamics of the real

projective plane can be completely described in terms of the analytic dynamics of
these rational functions.

Theorem 3.1. Dianalytic transformations f : P 2 → P 2 are of the form:

f(z̃) =
�
F (z) or f(z̃) =

�
F (z) where z̃ = {z, h(z)}

and

F (z) = eiθ a0z
2n+1 + a1z

2n + . . .+ a2n+1

−a2n+1z2n+1 + a2nz2n − . . .+ a0
, |a0|+ |a2n+1| 6= 0.

���������
. The equality π ◦ F = f ◦ π implies indeed that for z̃ = {z, h(z)}, we

have f(z̃) =
�
F (z), or f(z̃) =

�
F (z), where F is an analytic transformation of � .

Consequently

F (z) =
a0z

p + a1z
p−1 + . . .+ ap

b0 zq + b1zq−1 + . . .+ bq
, where a0 6= 0, b0 6= 0

and F commutes with h, i.e.F (−1/z) = −1/F (z). This last identity implies that

− b̄0z
q + b̄1z

q−1 + . . .+ b̄q
a0zp + a1zp−1 + . . .+ ap

=





apz
q − ap−1z

q−1 + . . .+ (−1)pa0z
q−p

bqzq − bq−1zq−1 + . . .+ (−1)qb0
, if q > p,

apz
p − ap−1z

p−1 + . . .+ (−1)pa0

bqzp − bq−1zp−1 + . . .+ (−1)qb0zp−q
, if q < p.

Since a0 6= 0 and b0 6= 0, we have necessarily

bq = bq−1 = . . . = bp+1 = 0, bp 6= 0, when q > p

and

ap = ap−1 = . . . = aq+1 = 0, aq 6= 0, when q < p.

Moreover, if q > p, there is a constant k such that, for j = 1, 2, . . . , p

(−1)jap−j = −kb̄j and (−1)q+jbj = kap−j .

These two equalities imply that |k|2 = (−1)q+1, and therefore q must be an odd
number and k = eiθ, θ ∈ � .
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Analogously, if q < p, then there should exist a constant k such that

(−1)p+jaj = −kb̄q−j and (−1)jbjq−j = kaj

for j = 1, 2, . . . , q.
These equalities imply this time that p is an odd number and k = eiθ, θ ∈ � .

Putting together these results we obtain that indeed F should be a rational func-
tion of odd degree, whose coefficients of the numerator and denominator satisfy the

indicated relationships.
We notice that separately a0 and a2n+1 can cancel, and therefore the two polyno-

mials producing F might not have necessarily the same degree. However, if we want
the denominator to be the constant a0, then the numerator takes the particular form

eiθz2n+1 and therefore F (z) = eiθz2n+1, for a real θ. This implies that only special
facts related to the dynamics of polynomials in � might admit extensions to P 2. �

Corollary 3.2. Dianalytic automorphisms of P 2 are of the form:

g(z̃) =
�
G(z), or g(z̃) =

�
G(z)

where:

G(z) = eiθ a z + b

− b̄ z + a
, where |a|+ |b| 6= 0.

Indeed, G should be a Möbius transformation, whose coefficients satisfy this ob-
vious relationship.

4. Dianalytic self-maps of the pointed real projective plane P 2
∗

According to Theorem 1.2, every dianalytic self-mapping f : P 2
∗ → P 2

∗ has exactly

two lifts F and F ◦ h to its orientable double cover � ∗ , one analytic and the other
one antianalytic. Vice-versa, every analytic or antianalytic self-map F of � ∗ , that
commutes with h, generates by projection such a dianalytic f . For dymamics of F
see, for example, [8]. These mappings satisfy:

(1) F
(
−1
z

)
= − 1

F (z)
and π ◦ F = f ◦ π,

where π : C∗ → P ∗2 is the canonical projection z → z̃ = {z ; − 1
z}.

It is known (see, for example [11]) that the analytic transformations F : � ∗ → � ∗
are those of the form

(2) F (z) = zn exp
[
ϕ(z) + ψ

(1
z

)]
,
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where ϕ and ψ are entire functions that fix zero and n is an integer. Using this result

we can prove:

Theorem 4.1. Dianalytic transformations f : P 2
∗ → P 2

∗ are of the form

(3) f(z̃) = χ̃ with χ = F (z) or F (z)

where

(4) F (z) = eiθz2k+1, with θ ∈ � and k ∈ Z,

or

(5) F (z) =
1
z

exp
[ ∞∑

n=1

anz
n +

∞∑

n=1

(−1)n+1an

zn

]
.

Here the series
∞∑

n=1
anz

n converges in � and for at least one n we have an 6= 0.

���������
. The relationship (1) implies (3), therefore we only have to check (4)

and (5).

If ϕ(z) + ψ(1/z) = const., then (2) implies F (z) = azn with a ∈ � and n ∈ � . In
this case (1) means

(−1)n a

zn
= − 1

azn ,

hence |a| = (−1)n+1, which implies that a = eiθ, θ ∈ � , and n = 2k + 1, k ∈ � .
Consequently, in this case F is of the form (4).

If ϕ(z) + ψ(1/z) is not a constant, let us denote

G(z) = ϕ(z) + ψ
(1
z

)
.

Then

F (z) = zneG(z) and F
(
−1
z

)
= (−1)nz−neG(− 1

z ).

Therefore
(−1)nz−neG(− 1

z ) = − 1
zn

e−G(z),

which implies that

exp
[
G(z) +G

(
−1
z

)]
= (−1)n+1.

Thus

Re
[
G(z) +G

(
−1
z

)]
= 0 and Im

[
G(z) +G

(
−1
z

)]
= (n+ 1)π.
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Consequently

G(z) +G
(
−1
z

)
= (n+ 1)πi,

meaning that

ϕ(z) + ψ
(1
z

)
+ ϕ

(
−1
z

)
+ ψ(−z) = (n+ 1)πi.

The equality

lim
z→0

[ϕ(z) + ψ(−z)] = 0

and the previous equation implies

lim
u→∞

[ϕ(−u) + ψ(u)] = (n+ 1)πi.

Thus the analytic function

z → ϕ(−z) + ψ(z)

is bounded in � and according to Liouville’s Theorem, it is a constant. Since ϕ(0) =
ψ(0) = 0, we must have n = −1 and consequently ϕ(z) = −ψ(−z) for every z ∈ � .
If

ϕ(z) =
∞∑

n=1

anz
n and ψ(z) =

∞∑

n=1

bnz
n,

then this equation implies that

∞∑

n=1

anz
n =

∞∑

n=1

(−1)n+1bnz
n.

Therefore bn = (−1)n+1an, which implies (5), and the theorem is completely proved.

 !#"%$'&)(+*
. For F : � → � defined by F (z) = eiθz2k+1, θ ∈ � , k ∈ � − {0}, the

Julia set is the unit circle, as can be seen by an easy computation. Correspondingly,

for f : P 2 → P 2 defined by f(z̃) =
�
F (z), the Julia set is {z̃| ; |z| = 1}.
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5. The case of a Klein bottle

The list of dianalytic self-maps of a Klein bottle can be obtained by a technique

similar to that used in the previous sections, here the double orientable surface
being a torus. Namely, every Klein bottle endowed with a dianalytic structure is

(dianalytically isomorphic with) an orbit space � /G, where G = {S;V } is the group
of analytic and antianalytic transformations of � generated by S(z) = z + 1/2 and
V (z) = z + iβ, β > 1.
The groupG1 = {S2;V }, where S2(z) = z+1 represents the subgroup of conformal

elements of G. The orbit of zero with respect to G1 is the lattice Σ = Z ⊕ (iβ)Z. It
is more convenient to use the standard notation � /Σ for the torus � /G1 . If z ∈ � ,
we will denote by ẑ the G1-orbit of z and by z̃ the G-orbit of z. Thus:

ẑ = z + Σ := {z + ζ : ζ ∈ Σ} and z̃ = ẑ ∪ Ŝ(z) = {ẑ; Ŝ(z)}.

Let us denote, as in the previous sections, by π2 : � → � /G the universal covering
of the Klein bottle � /G, by π1 : � → � /Σ the universal covering of its orientable
double cover, and by π : � /Σ → � /G the canonical projection of the Riemann
surface � /Σ onto the nonorientable Klein surface � /G. Obviously, π1 = π ◦ π2. The
antianalytic involution h : � /Σ → � /Σ (Compare Theorem 1.1 and [4]) is given by

h(ẑ) = Ŝ(z) =
,
z + 1/2.

In a more general setting, it is known (see [10]) that every compact Riemann surface

of genus one is analytically equivalent to a torus � /Στ , where Im τ > 0 and Στ =
Z ⊕ τZ. Two tori � /Στ and � /Σµ are analytically equivalent if and only if τ and µ

are equivalent with respect to the modular group

M =
{
z → az + b

cz + d
; a, b, c, d ∈ Z, ad− bc = 1

}
.

The set

A =
{
τ ; −1

2
< Re τ 6 −1

2
, Im τ > 0, |τ | > 1

}
∪

{
eiθ ; −π

3
6 θ 6 −π

2

}

is a fundamental set for M . Thus A gives a parametrization of the entire family of
analytically non-isomorphic tori. Among these tori there are very “few” which are

symmetric tori, i.e. which are double covers of Klein bottles, namely only those of
the form � /Στ with τ = iβ, β > 1. We shall give next the complete list of dianalytic
transformations of Klein bottles (compare [4]).
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Theorem 6.1. The dianalytic self-maps of the Klein bottle � /G are of the form:

(6) f(z̃) = ς̃ with ς = αz + a or αz + a,

where

α ∈ � , a ∈ � , αΣ ⊆ Σ and 1
2α+ 2i Im(a) ∈ Σ + 1

2 .

The map f is injective if and only if αΣ = Σ.
���������

. If the lift G to � of f ◦ π1, such that G(0) = a, is analytic, then
G(z) = αz + a, where α and a satisfy (6). (Compare [4], Theorem 4 and [9] p. 26.)

Then, for G1 = G ◦ S we have:

G1(z) = αz + 1
2α+ a

for every z ∈ � and this represents the unique antianalytic lift of f ◦π1, that satisfies
G1(0) = 1

2α+ a, with α and a satisfying (6).

The maps Fk : � /Σ → � /Σ given by F1(ẑ) := η̂ with η = αz + a and F2(ẑ) := ξ̂

with ξ = αz + S(a) are well defined (Σ = Σ!) and F1 is analytic, while F2 is

antianalytic. Both of them are liftings of f ◦ π, with f(0̃) = ã. Moreover,

(F2 ◦ h)(ẑ) = F2(Ŝ(z)) = η̂,

since αS(z) + S(a) = αz + a + ( 1
2α + S(a) − a) and 1

2α + S(a) − a ∈ Σ. Thus
F2 ◦ h = F1. Similar arguments can be used in the case where the lift G of f ◦ π1 is

antianalytic. Since π−1(ã) = {â; Ŝ(a)}, F1 and F2 are the only lifts to � /Σ of f ◦π,
and the theorem is completely proved.

Now the dynamics of dianalytic self-maps of the Klein bottle � /G are canonically
reduced to the dynamics of the analytic/antianalytic self-maps of the tori � /Σ (com-
pare [13], Section 6). �
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