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H-CONVEX GRAPHS
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(Received May 13, 1999)

Abstract. For two vertices u and v in a connected graph G, the set I(u, v) consists of all
those vertices lying on a u − v geodesic in G. For a set S of vertices of G, the union of all
sets I(u, v) for u, v ∈ S is denoted by I(S). A set S is convex if I(S) = S. The convexity
number con(G) is the maximum cardinality of a proper convex set in G. A convex set S is
maximum if |S| = con(G). The cardinality of a maximum convex set in a graph G is the
convexity number of G. For a nontrivial connected graph H , a connected graph G is an
H-convex graph if G contains a maximum convex set S whose induced subgraph is 〈S〉 = H .
It is shown that for every positive integer k, there exist k pairwise nonisomorphic graphs
H1, H2, . . . , Hk of the same order and a graph G that is Hi-convex for all i (1 � i � k).
Also, for every connected graph H of order k � 3 with convexity number 2, it is shown that
there exists an H-convex graph of order n for all n � k+1. More generally, it is shown that
for every nontrivial connected graph H , there exists a positive integer N and an H-convex
graph of order n for every integer n � N .
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1. Introduction

For two vertices u and v in a connected graph G, the distance d(u, v) between u

and v is the length of a shortest u−v path in G. A u−v path of length d(u, v) is also

referred to as a u−v geodesic. The interval I(u, v) consists of all those vertices lying
on a u − v geodesic in G. For a set S of vertices of G, the union of all sets I(u, v)
for u, v ∈ S is denoted by I(S). Hence x ∈ I(S) if and only if x lies on some u − v

geodesic, where u, v ∈ S. The intervals I(u, v) were studied and characterized by
Nebeský [13, 14] and were also investigated extensively in the book by Mulder [12],
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where it was shown that these sets provide an important tool for studying metric

properties of connected graphs. A set S of vertices of G with I(S) = V (G) is called
a geodetic set of G, and the cardinality of a minimum geodetic set is the geodetic
number of G. The geodetic number of a graph was studied in [2]; while the geodetic

number of an oriented graph was studied in [5].

A set S of vertices in a graph G is convex if I(S) = S. Certainly, V (G) is convex.
The convex hull [S] of a set S of vertices of G is the smallest convex set containing

S. So S is a convex set in G if and only if [S] = S. The smallest cardinality of a
set S whose convex hull is V (G) is called the hull number of G. The hull number of

a graph was introduced by Everett and Seidman [9] and investigated further in [3],
[7], and [11].

Convexity in graphs is discussed in the book by Buckley and Harary [1] and studied

by Harary and Niemenen [10] and in [8]. For a nontrivial connected graph G, the
convexity number con(G) was defined in [4] as the maximum cardinality of a proper

convex set of G, that is,

con(G) = max {|S| : S is a convex set of G and S �= V (G)} .

A convex set S in G with |S| = con(G) is called a maximum convex set. A nontrivial
connected graph G of order n with con(G) = k is called a (k, n) graph. The convexity

number was also studied in [6] and [8].

As an illustration of these concepts, we consider the graph G of Figure 1. Let
S1 = {u, v, z}, S2 = {u, v, z, s}, and S3 = {u, v, z, s, y, t}. Since [S1] = S2 �= S1,

[S2] = S2, and [S3] = S3, it follows that S1 is not a convex set, while S2 and S3
are convex sets. However, S2 is not a maximum convex set as 4 = |S2| < |S3| = 6.
Moreover, it is routine to verify that there is no proper convex set in G containing
more than six vertices of G and so con(G) = 6. Therefore, G is a (6, 8) graph.

y

vz

t

s

u

w
x

G : �
y

vz

t

s

u

H : �
Figure 1. Maximum convex sets

If S is a convex set in a connected graph G, then the subgraph 〈S〉 induced by S

is connected. A goal of this paper is to study the structure of 〈S〉 for a maximum
convex set S in G. For a nontrivial connected graphH , a connected graph G is called
an H-convex graph if G contains a maximum convex set S such that 〈S〉 = H . (We
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write G1 = G2 to indicate that the graphs G1 and G2 are isomorphic.) For example,

the graph G of Figure 1 is an H-convex graph for the graph H of Figure 1 since S3
is a maximum convex set in G and 〈S3〉 = H . A single graph G can be an H-convex
graph for many graphs H , as we now see.

Theorem 1.1. For each positive integer k, there exist k pairwise nonisomorphic

graphs H1, H2, . . . , Hk of the same order and a graph G that is Hi-convex for all i

(1 � i � k).

�����. For k pairwise nonisomorphic graphs Fi (1 � i � k) of the same order,
say p, let Hi = K2 + Fi, where V (K2) = {ui, vi}. We claim that the graphs Hi

(1 � i � k) are pairwise nonisomorphic graphs. To show this, assume, to the
contrary, that H1 and H2, say, are isomorphic, and let f be an isomorphism from

V (H1) to V (H2).
If {f(u1), f(v1)} = {u2, v2}, then the restriction of f to V (F1) induces an isomor-

phism from V (F1) to V (F2), a contradiction. If {f(u1), f(v1)} contains exactly one
vertex of V (F2), say f(u1) = u2 and f(v1) ∈ V (F2), then the fact that u1v1 /∈ E(H1)

and u2f(v1) ∈ E(H2) implies that f is not an isomorphism, again a contradiction.
Hence {f(u1), f(v1)} ⊆ V (F2). Then f(u) = u2 and f(v) = v2, where u, v ∈ V (F1),

and f(u1) = w and f(v1) = z, where w, z ∈ V (F2). So uv /∈ E(H1) and wz /∈ E(H2).
Since degH1 u = degH2 u2 = p and degH1 v = degH2 v2 = p, it follows that u and v

are adjacent to every vertex in V (H1) − {u, v}. Similarly, w and z are adjacent to
every vertex in V (H2)− {w, z}.
Define a mapping g from V (H1) to V (H2) by g(u1) = u2, g(v1) = v2, g(u) = w,

g(v) = z, and g(t) = f(t) for all t ∈ V (H1) − {u1, v1, u, v}. It is routine to verify
that g is an isomorphism from V (H1) to V (H2). Then the restriction of g to V (F1)
induces an isomorphism from V (F1) to V (F2), which is impossible. Therefore, the

graphs Hi (1 � i � k) are pairwise nonisomorphic, as claimed.
Let G be the graph obtained from the complete bipartite graphKk,k, whose partite

sets are V1 = {x1, x2, . . . , xk} and V2 = {y1, y2, . . . , yk}, by replacing the edge xiyi

by Hi for each i with 1 � i � k, where ui is identified with xi and vi is identified
with yi. (The graph G is shown in Figure 2 for k = 3.) The graph G has the desired

properties. �

A vertex v in a graph G is called an extreme vertex if the subgraph induced by
its neighborhood N(v) is complete. Connected graphs of order n � 3 containing an
extreme vertex are precisely those having convexity number n − 1. The following
theorem appeared in [4].

Theorem A. Let G be a noncomplete connected graph of order n. Then

con(G) = n − 1 if and only if G contains an extreme vertex.
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y1 y2 y3

H1 H2 H3

x1 x2 x3

Figure 2. An Hi-convex graph (i = 1, 2, 3)

Theorem A implies that if H is a connected graph of order k, then the graph G

of order k + 1 obtained by adding a pendant edge to H is an H-convex graph.

2. The cartesian product of graphs

We now consider the relationship between con(H) and con(H × K2) for a con-
nected graph H . Let H × K2 be formed from two copies H1 and H2 of H , where

corresponding vertices of H1 and H2 are adjacent. Let Si ⊆ V (Hi) for i = 1, 2. Then
S2 is called the projection of S1 onto H2 if S2 is the set of vertices in H2 correspond-

ing to the vertices of H1 that are in S1. We begin with a lemma concerning convex
sets in H × K2.

Lemma 2.1. For a nontrivial connected graph H , let H×K2 be formed from two

copies H1 and H2 of H , where corresponding vertices of H1 and H2 are adjacent.

Then every convex set of H × K2 is either

(1) a convex set in H1,

(2) a convex set in H2, or

(3) S1 ∪ S2, where S1 is convex in H1 and S2 is the projection of S1 onto H2.

�����. Let S be a convex set in H × K2. If S ⊆ V (Hi), i = 1, 2, then S is a

convex set of Hi, implying that (1) or (2) holds. Otherwise, Si = S ∩ V (Hi) �= ∅,
i = 1, 2, and S = S1 ∪ S2. Assume, to the contrary, that S2 is not the projection of

S1 onto H2. Then there exist corresponding vertices x ∈ V1 and x′ ∈ V2 such that
exactly one of these belongs to S1∪S2, say x /∈ S1 and x′ ∈ S2. Let y ∈ S1 and let P

be an x−y geodesic in H1. Then the x′−y path Q beginning at x′ and followed by P

is a geodesic, implying that V (Q) ⊆ S1 ∪ S2. So x ∈ S1, a contradiction. Therefore,

(3) holds. �

Theorem 2.2. If H is a connected graph of order at least 2, then

con(H × K2) = max{|V (H)|, 2 con(H)}.
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�����. Let S be a maximum convex set in H × K2, where H × K2 is formed

from two copies H1 and H2 of H . If S ∩ V (Hi) = ∅ for some i (i = 1, 2), say
S ∩ V (H2) = ∅, then S = V (H1) since S is a maximum convex set. Hence |S| =
con(H × K2) = |V (H1)| = |V (H)|. Otherwise, Si = S ∩ V (Hi) �= ∅ for i = 1, 2,

and S = S1 ∪ S2, where by Lemma 2.1, S2 is the projection of S1 onto H2. Again,
since S is a maximum convex set in H ×K2, it follows that Si is a maximum convex

set in Hi for i = 1, 2. Thus |S| = con(H × K2) = |S1 ∪ S2| = 2 con(G). Therefore,
con(H × K2) = max{|V (H)|, 2 con(H)}. �

As an illustration of Theorem 2.2, for H = P4, C4, K2,3, the graphs H × K2 are
shown of Figure 3. Now |V (P4)| = 4 and con(P4) = 3, so con(P4×K2) = 2 con(P4) =

6. Also, |V (C4)| = 4 and con(C4) = 2, so con(C4 × K2) = |V (C4)| = 2 con(C4) = 4.
Moreover, |V (K2,3)| = 5 and con(K2,3) = 2, so con(K2,3 × K2) = |V (K2,3)| = 5. A
maximum convex set is indicated in each graph in Figure 3.� � �

P4 × K2 C4 × K2 K2,3 × K2

Figure 3. The graphs P4 × K2, C4 × K2, and K2,3 ×K2

The following corollaries are immediate consequences of Theorem 2.2.

Corollary 2.3. IfH is a nontrivial connected graph of order k with con(H) � k/2,

then there exists an H-convex graph of order 2k.

Corollary 2.4. If H is a nontrivial connected graph, then for n � 2,

con(H × Qn−1) = 2
n−2max{|V (H)|, 2 con(H)}.

In particular, for n � 2, con(Qn) = 2n−1.

�����. We proceed by induction on n. If n = 2, then H × Q1 = H × K2 and
the result is trivial. Assume that con(H×Qk−1) = 2k−2max{|V (H)|, 2 con(H)} for
some k � 2. Since H × Qk = (H × Qk−1) × K2, it follows by Theorem 2.2 and the
induction hypothesis that

con(H × Qk) = max{|V (H × Qk−1)|, 2 con(H × Qk−1)}
= max{2k−1|V (H)|, 2[2k−2max{|V (H)|, 2 con(H)}]}
= 2k−1max{|V (H)|, max{|V (H)|, 2 con(H)}}
= 2k−1max{|V (H)|, 2 con(H)}.

213



Therefore, con(H×Qn−1) = 2n−2max{|V (H)|, 2 con(H)}. ForH = K2, H×Qn−1 =

Qn and H × K2 = C4. Thus con(Qn) = 2n−2 con(C4) = 2n−2 · 2 = 2n−1. �

Corollary 2.5. For n � 2, Qn+1 is a Qn-convex graph. Indeed, Qn is the unique

graph H such that Qn+1 is H-convex.

By an argument similar to that employed in the proof of Theorem 2.2, we have
the following result.

Theorem 2.6. If H is a connected graph of order at least 2, then

con(H × Kn) = max{(n − 1)|V (H)|, n con(H)}.

3. H-convex graphs of large order

We have seen that if H is a connected graph of order k, then there exists an H-

convex graph of order k+1. If H is complete, however, then there exists an H-convex
graph of order n for all n � k + 1.

Theorem 3.1. For k � 2, there exists a Kk-convex graph of order n for all

n � k + 1.

�����. For vertices x and y in the complete graph Kk+1, let F = Kk+1 − xy.

Clearly, F is a Kk-convex graph of order k + 1. Thus we may assume that n �
k + 2. Let G be the graph obtained from F by adding n − k − 1 (� 1) new vertices
v1, v2, . . . , vn−k−1 and the 2(n − k − 1) edges xvi and yvi, 1 � i � n − k − 1. The
graph G is shown in Figure 4. Let S = V (F )− {x}. Since 〈S〉 = Kk, it follows that

S is convex. It remains to show that S is a maximum convex set in G.

y

x

vn−k−1

v2
v1

G : �
Figure 4. A Kk-convex graph of order n

Let S′ be a convex set of G with |S′| = con(G) � k. Since I(x, y) = V (G), it

follows that S′ contains at most one of x and y. Let X = {v1, v2, . . . , vn−k−1}. We
claim that S′ ∩ X = ∅. Assume, to the contrary, that this is not the case. First
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assume that S′ contains two vertices of X , say v1, v2 ∈ S′. Then x, y ∈ I(v1, v2) and

so I(S′) = V (G), a contradiction. Hence S′ contains exactly one vertex of X , say
v1. Since k � 3, it follows that S′ contains at least two distinct vertices u, v ∈ V (F ).
We may assume, without loss of generality, that u �= x, y as S′ contains at most one

of x and y. Since x and y lie on a u− v1 geodesic, it follows that x, y ∈ I(u, v1) and
so I(u, v) = V (G), again a contradiction. Hence S′ ∩X = ∅, as claimed. Because S′

contains at most one of x and y, con(G) = |S′| � k and so con(G) = k. �

We next show that for every connected graph H of order k with convexity number
2, there exists an H-convex graph of order n for all n � k + 1. First note that if

u, v, w is a path of length 2 in a connected graph G of order at least 4, then {u, v, w}
is convex if either uw ∈ E(G) or v is the unique vertex mutually adjacent to u and

w. We summarize this observation below.

Lemma 3.2. If G is a connected graph of order n � 4 with con(G) = 2, then
every path of length 2 lies on a 4-cycle in G but on no 3-cycle.

The converse of Lemma 3.2 is not true since, for example, every path of length 2

in the n-cube Qn, n � 3, lies on a 4-cycle but on no 3-cycle, while con(Qn) = 2n−1.

Theorem 3.3. For every connected graph H of order k � 3 with convexity num-
ber 2, there exists an H-convex graph of order n for all n � k + 1.

�����. If k = 3, then H = K3 or H = P3. If H = K3, then there exists an
H-convex graph of order n for all n � k+1 by Theorem 3.1. For H = P3, the cycles

C5 and C6 are P3-convex graphs of orders 5 and 6, respectively, so we may assume
that n � 7. Let G be an elementary subdivision of K3,n−4 (shown in Figure 5).

Since S = {u1, v1, w} is a maximum convex set of G and 〈S〉 = P3, it follows that G

is a P3-convex graph of order n.

v1 v2 vn−4

w

u1 u2 u3

G : �
Figure 5. A P3-convex graph of order n

Assume next that k = 4. Since con(H) = 2, it follows that H contains neither

triangles nor extreme vertices. This implies that H = C4. For each n � 5, a
C4-convex graph of order n is shown in Figure 6.

We now assume that k � 5. Since there always exists an H-convex graph of order
k + 1, we assume that n � k + 2. Again, H contains no triangles. If n = k + 2,
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(4, 5)
�

(4, 6)
�

(4, 7)
	

(4, n), n � 8



Figure 6. C4-convex graphs

then the graph G obtained from H by adding two new vertices x, y and the edges
ux, xy, yv, where uv ∈ E(H), has the desired properties. So we may assume that

n = k + l, where l � 3. Let x, z, y be a path of length 2 in H . Thus xy /∈ E(H).
Let F = K2,l−1 whose partite sets are V1 = {u1, u2} and V2 = {v1 = z, v2, . . . , vl−1}
such that V (H)∩V (F ) = {z}. The graph G is constructed from H and F by adding
the edges (1) yvi (2 � i � l − 1) and (2) xuj for j = 1, 2. Thus yvi ∈ E(G) for

1 � i � l − 1 and xvi ∈ E(G) if and only if i = 1. The graphs H and G are shown
in Figure 7. The order of G is k+ l = n. Since S = V (H) is convex and 〈S〉 = H , it

remains to show that S is a maximum convex set in G.

y

x

z

H : � y

x

u2

u1

vl−1

vl−2

v3

v2

z = v1

G :

H F

Æ
Figure 7. Graphs H and G

First we make an observation. For any two nonadjacent vertices z′, z′′ of F , it
follows that u1, u2 ∈ [{z′, z′′}], implying that {x, y, z = v1} ⊆ [{z′, z′′}]. Since
con(H) = 2, it follows that V (H) ⊆ [{x, y, z}] and so [{z′, z′′}] = V (G). Hence if S0
is a set of vertices containing two nonadjacent vertices of F , then [S0] = V (G). Thus

there is no maximum convex set in G containing two nonadjacent vertices of F .
Assume, to the contrary, that there exists a convex set S′ in G, where k + 1 �

|S′| < n. Then S′ ∩ (V (G) − S) = S′ ∩ (V (F ) − {z}) �= ∅. Assume first that z ∈ S′.
Then S′ contains exactly one of u1 and u2, say u1, and, in fact, S′ = S ∪{u1}. Since
d(y, u1) = 2, it follows that {v2, v3, . . . , vl−1} ⊆ [{u1, y}] ⊆ S′, and so S′ = V (G), a
contradiction. Hence z /∈ S′. Since S′ does not contain two nonadjacent vertices of F ,

it follows that S′ contains exactly two (necessarily adjacent) vertices of V (F )− {z}
and that V (H) − {z} ⊆ S′. Hence y ∈ S′ and S′ contains either u1 or u2, say
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u1. Again, {v2, v3, . . . , vl−1} ⊆ [{u1, y}] ⊆ S′ and once again S′ = V (G), which is

impossible. �

Since the complete bipartite graphs Kr,s, where 2 � r � s, have convexity number

2, we have the following corollary.

Corollary 3.4. For 2 � r � s, there exists a Kr,s-convex graph of order n for all

n � r + s+ 1.

We have seen that for some graphs H of order k � 2, there exist H-convex graphs

of order n for all n � k+1. However, there are graphsH such thatH-convex graphs of
order n exist for some integers n � k+1 but not for all such integers n. For example,

for each tree T of order k � 4, there is no T -convex graph of order k + 2. To see
this, first let T = Pk, where k � 4, and assume, to the contrary, that there exists a
connected graph G of order k + 2 with con(G) = k and having a maximum convex
set S = {v1, v2, . . . , vk} such that E(〈S〉) = {v1v2, v2v3, . . . , vk−1vk}. Necessarily, G
contains no complete vertices. Let V (G) − S = {x, y}. Since G contains no end-
vertices, v1 and vk are adjacent to at least one of x and y. If v1 and vk are both

adjacent to one of x and y, say x, then x lies on a v1 − vk geodesic in G and so S

is not convex. So we may assume that v1x, vky ∈ E(G) and v1y, vkx /∈ E(G). If

xy ∈ E(G), then x and y lie on the v1 − vk geodesic v1, x, y, vk, which is impossible.
Hence xy /∈ E(G). Since x is not an extreme vertex, vix /∈ E(G) for some i with

3 � i � k − 1. But then x lies on a v1 − vi geodesic, a contradiction. Therefore,
there is no Pk-convex graph of order k + 2.
Assume now that T �= Pk. Thus T has at least three end-vertices. Assume, to the

contrary, that there exists a connected graph G of order k + 2 with con(G) = k and
G contains a maximum convex set S such that 〈S〉 = T , where V (G) − S = {x, y}.
Necessarily, at least one of x and y is adjacent to at least two end-vertices of T , which
is impossible. In fact, this argument implies that if T is a tree of order k with p

end-vertices, then there exists no T -convex graph of order n with k+2 � n � k+p−1.
From what we have seen, there exist connected graphs H of order k � 2 such that

for many integers n � k+1, no H-convex graph of order n exist. However, any such
integers n with this property must be finite in number, as we now show.

Theorem 3.5. For every nontrivial connected graph H , there exists a positive

integer N and an H-convex graph of order n for every integer n � N .

�����. If H is a complete graph, then the result follows by Theorem 3.1. So we
may assume that H is not complete and that W = {w1, w2, . . . , wp} is a minimum
geodetic set in H . Since H is not complete, W contains some pairs of nonadjacent
vertices. We first construct a graph Fq for each integer q � 3. Let P and Q be two
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copies of the path Pq of order q, where P : x1, x2, . . . , xq and Q : y1, y2, . . . , yq. Then

the graph Fq is obtained from P and Q by adding the edges xiyi+1 and yixi+1 for
1 � i � q − 1. The graph F4 is shown in Figure 8.

y1 y2 y3 y4

x1 x2 x3 x4

F4 : �
Figure 8. The graph F4

We next construct a graph F by adding a copy of Fq, for some q � 3, for each
pair wi, wj , 1 � i < j � p, of nonadjacent vertices of W as well as certain edges

between this pair of vertices and Fq. If d(wi, wj) = 2, then we add a copy Fij of F3
to H , where V (Fij) = {xij(1), xij(2), xij(3)} ∪ {yij(1), yij(2), yij(3)}, and the edges
wixij(1), wiyij(1), wjxij(3)}, wjyij(3) (see Figure 9 (a)). If d(wi, wj) = lij � 3,
then we add a copy Fij of Flij to H , where V (Fij) = {xij(1), xij(2), . . . , xij(lij)}
∪ {yij(1), yij(2), . . . , yij(lij)}, and the edges wixij(1), wiyij(1), wjxij(lij), wjyij(lij)
(see Figure 9 (b) for the case lij = 4). The resulting graph is F . Let

Y =
⋃

{yij (	lij/2
 − 1) , yij (	lij/2
) , yij (	lij/2
+ 1)}

where the union is taken over all pairs i, j with 1 � i < j � p for which wiwj /∈ E(G).

Then Y is a subset of V (F ). Define N = 2+ |V (F )| and let n be an integer such that
n � N . Then n = k + |V (F )| for some integer k � 2. We next construct a graph G

from F by adding k new vertices u1, u2, . . . , uk and the edges uiy for all y ∈ Y and
1 � i � k. Thus G has order n. Observe that if G contains four mutually adjacent

vertices, then these four vertices must belong to H .

yij(1) yij(3)

wi wj

xij(1) xij(3)

yij(1) yij(4)

wi wj

xij(1) xij(4)�
Figure 9. Constructing the graph G

Next we show that G is anH-convex graph. Let S = V (H) and S = V (G)−V (H).
Let u, v ∈ S. Observe that every u − v geodesic in G contains only vertices of H .

Hence S is convex in G and 〈S〉 = H . It remains to show that S is a maximum
convex set in G.

First we make some observations. Let U = {u1, u2, . . . , uk}. If ui, uj ∈ U and
ui �= uj, then [{ui, uj}] = V (G). For any two nonadjacent vertices z′, z′′ of S,
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U ⊆ [{z′, z′′}], implying that [{z′, z′′}] = V (G). Also, if z ∈ S, then [S∪{z}] = V (G).

Hence if S0 is a set of vertices containing either (1) two nonadjacent vertices of S or
(2) S ∪ {z} for some z ∈ S, then [S0] = V (G).
Assume, to the contrary, that there exists a proper convex set S′ of G with |S′| �

|S|+1. Then S′ contains at least one and at most three vertices of S since no vertices
of S belong to a subgraph isomorphic to K4. By the observations above, we have

two cases.
Case 1. (S − {x}) ∪ {z1, z2} ⊆ S′, where x ∈ S, z1, z2 ∈ S, and z1z2 ∈ E(G).

Since W is a geodetic set of H , it follows that x lies on a wa −wb geodesic P ′ in H ,
where wa, wb ∈ W and 1 � a < b � p. If z1, z2 ∈ V (Fab), then [(V (P ′) − {x}) ∪
{z1, z2}] = V (G). Since (V (P ′) − {x}) ∪ {z1, z2} ⊆ S′, it follows that S′ = V (G),
a contradiction. Thus at least one of z1 and z2 does not belong to V (Fab), say

z1 /∈ V (Fab). Assume first that z1 ∈ V (Fst), where {s, t} �= {a, b}. Then ws, wt ∈ S′

and [{ws, wt, z1}] = V (G). Otherwise, z1 ∈ U . Then [{wi, wj , z1}] = V (G) for

every two nonadjacent vertices wi, wj ∈ W . This implies that S′ = V (G), again a
contradiction.

Case 2. (S − {x, x′}) ∪ {z1, z2, z3} ⊆ S′, where x, x′ ∈ S, z1, z2, z3 ∈ S, and
〈{z1, z2, z3}〉 = K3. This implies that at least one of z1, z2, z3 belongs to U , say

z1 = u1. Since [(V (H)− {x, x′}) ∪ {u1}] = V (G) and (V (H)− {x, x′}) ∪ {u1} ⊆ S′,
it follows that S′ = V (G), which is impossible.

Therefore, G is H-convex. �
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