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Abstract. In this paper we prove that the collection of all weakly distributive lattice
ordered groups is a radical class and that it fails to be a torsion class.
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The notion of weak σ-distributivity was applied by Riečan and Neubrunn in the

monograph [10] toMV -algebras and to lattice ordered groups; in Chapter 9 of [10] it
was systematically used in developing the probability theory in MV -algebras. For a

Dedekind complete Riesz space the notion of weak σ-distributivity has been applied
by A.Boccuto [2].

It is well known that each MV -algebra A can be constructed by means of an
appropriately chosen abelian lattice ordered group G with a strong unit (this result
is due to Mundici [9]). In [10] it was proved that A is weakly σ-distributive if and

only if G is weakly σ-distributive.

For the notions of a radical class and a torsion class of a lattice ordered groups

cf., e.g., [1], [3], [5], [8]. Radical classes of MV -algebras were dealt with in [7].

In the present paper we prove that the collection of all weakly σ-distributive lattice
ordered groups is a radical class and that it fails to be a torsion class. Consequently,

it fails to be a variety.
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1. σ-complete lattice ordered groups

Let L be a lattice. If x ∈ L and (xn)n∈N is a sequence in L such that xn � xn+1

for each n ∈ N and ∧

n∈N

xn = x,

then we write xn ↘ x.

For lattice ordered groups we use the standard notation.

1.1. Definition. (Cf. [10], 9.4.4 and 9.4.5.) A lattice ordered group G is called

weakly σ-distributive if it satisfies the following conditions:

(i) G is σ-complete.
(ii) Whenever (aij)i,j is a bounded double sequence in G such that aij ↘ 0 for
each i ∈ N (where j →∞), then

∧

ϕ∈NN

∞∨

i=1

aiϕ(i) = 0.

We denote by W the class of all lattice ordered groups which are weakly σ-
distributive.

Let G be the class of all lattice ordered groups. For G ∈ G let c(G) be the system

of all convex �-subgroups of G; this system is partially ordered by the set-theoretical
inclusion. Then c(G) is a complete lattice. The lattice operations in c(G) will be

denoted by
c∨
and

c∧
. If {Hi}i∈I is a nonempty subsystem of c(G), then

∧

i∈I

Hi =
⋂

i∈I

Hi.

Further,
∨
i∈I

Hi is the subgroup of the group H (where we do not consider the lattice

operations) which is generated by the set
⋃
i∈I

Hi.

1.2. Definition. A nonempty class X ⊆ G which is closed with respect to
isomorphisms is called a radical class if it satisfies the following conditions:

1) If G1 ∈ X and G2 ∈ c(G1), then G2 ∈ X .

2) If H ∈ G and ∅ �= {Gi}i∈I ⊆ c(H) ∩X , then
c∨

i∈I

Gi ∈ X .

A radical class which is closed with respect to homomorphisms is called a torsion
class.
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In view of 1.2, for each radical class X and each G ∈ G there exists the largest
element of the set {Gi ∈ c(G) : Gi belongs to X}; we denote it by X(G). It is said
to be the radical of G with respect to X .

1.3. Definition. Let G be a σ-complete lattice ordered group. We denote by
B(G) the set of all elements b ∈ G such that the following conditions are valid:

(i) b > 0.
(ii) There exists a bounded double sequence (aij)i,j in G such that aij ↘ 0 for
each i ∈ N (where j →∞) and

∧

ϕ∈NN

∞∨

i=1

aiϕ(i) = b.

1.4. Lemma. Let G be a σ-complete lattice ordered group. Then the following

conditions are equivalent:

(i) G is weakly σ-distributive.

(ii) B(G) = ∅.

�����. In view of 1.1 we have (i)⇒(ii). Suppose that (ii) holds. By way of
contradiction, assume that G is not weakly distributive. Then there exists a bounded

double sequence (aij)i,j in G such that aij ↘ 0 for each i ∈ N (where j → ∞) and
the relation

(1)
∧

ϕ∈NN

c∨

i=1

aiϕ(i) = 0

fails to be valid.

Since G is σ-complete, for each ϕ ∈ NN there exists an element xϕ in G such that

xϕ =
∞∨

i=1

aiϕ(i).

For each i, j ∈ N we have aij � 0, whence xϕ � 0 for each ϕ ∈ NN . Since the

relation (1) does not hold, there exists z ∈ G such that xϕ � z for each ϕ ∈ NN and
z � 0. Denote y = z ∨ 0. Then

0 < y � xϕ for each ϕ ∈ NN .
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Put a′ij = aij ∧ y for each i, j ∈ N . Then a′ij ↘ 0 for each i ∈ I (where y → ∞).
Further, for each ϕ ∈ NN we have

y = y ∧ xϕ = y ∧
∞∨

i=1

aiϕ(i) =
∞∨

i=1

(y ∧ aiϕ(i)) =
∞∨

i=1

a′iϕ(i).

Thus we obtain
∧

ϕ∈NN

∞∨

i=1

a′iϕ(i) = y,

which contradicts the assumption (ii) in 1.1. �

1.5. Lemma. Let G be as in 1.4. Suppose that b ∈ B(G) and b1 ∈ G, 0 < b1 � b.

Then b1 ∈ B(G).

�����. In view of 1.3 we have

b1 = b1 ∧ b = b1 ∧
( ∧

ϕ∈NN

∞∨

i=1

aiϕ(i)

)
=

∧

ϕ∈NN

∞∨

i=1

(b1 ∧ aiϕ(i)).

Put b1 ∧ aij = a′ij for each i, j ∈ N . Then the double sequence (a′ij)ij is bounded in
G and a′ij ↘ 0 for each i ∈ N (where j →∞). Hence b1 ∈ B. �

From the definition of W we immediately obtain

1.6. Lemma. W satisfies condition 1) from 1.2.

1.7. Lemma. W satisfies condition 2) from 1.2.

�����. Let H ∈ G and ∅ �= {Gi}i∈I ⊆ c(H) ∩W . Put

c∨

i∈I

Gi = K.

By way of contradiction, suppose that K does not belong to W . It is clear that

K is σ-complete. Thus in view of 1.4, B(K) �= ∅. Choose b ∈ B(K).
It is well-known that for each element k ∈ K+ there exist n ∈ N , i1, i2, . . . , in ∈ I

and xn ∈ G+i1 , x2 ∈ G+i2 , . . . , xn ∈ G+in
such that

k = x1 + x2 + . . .+ xn.

Put k = b. Since b > 0, at least one of the elements x1, x2, . . . , xn is strictly positive.

Let xi > 0 for some i ∈ {1, 2, . . . , n}. In view of 1.5 we have xi ∈ B(G). This yields
xi ∈ B(Gi), a contradiction. �
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In view of 1.6 and 1.7 we have

1.8. Proposition. W is a radical class of lattice ordered groups.

1.9. �����	
. Let us denote by R+ the set of all non-negative reals and let
F be the set of all real functions defined on the set R+. The partial order and the

operation + on F are defined coordinate-wise. Then F is a complete lattice ordered
group. Moreover, F is completely distributive. Hence, in particular, F is weakly

σ-distributive. Thus F belongs to W . Let H be the system of all f ∈ F such that
the set

{x ∈ R+ : f(x) �= 0}

is finite. Then H is an �-ideal of F . It is easy to verify that the factor lattice ordered

group F/H fails to be archimedean, hence it is not σ-complete. ThusW is not closed
with respect to homomorphisms. Consequently, it fails to be a torsion class.

Radical classes which satisfy some additional conditions were investigated in [11].
In connection with W let us mention two such properties. First, it is obvious that

the class W is closed with respect to direct products.
For a subset X of a lattice ordered group G the polar Xδ of X in G is defined by

Xδ =
{
g ∈ G : |g| ∧ |x| = 0 for each x ∈ X

}
.

We say that a class C of lattice ordered groups is closed with respect to double
polars if, whenever G ∈ G and H ∈ c(G) ∩ C, then Hδδ ∈ C.

1.10. Proposition. The class W is closed with respect to double polars.

�����. Let G ∈ G and H ∈ c(G)∩W . Put Hδδ = K. By way of contradiction,
assume that K does not belong toW . Thus in view of 1.4, B(K) �= ∅. Let b ∈ B(K).

Then b > 0. If h ∧ b = 0 for each h ∈ H+, then b ∈ Hδ; since Hδ ∩ Hδδ = {0},
we would obtain b = 0, which is impossible. Therefore there is h ∈ H+ such that

h ∧ b > 0. Thus in view of 1.5, h ∧ b ∈ B(K). Consequently, h ∧ b ∈ B(H) and
therefore B(H) �= ∅. In view of 1.4 we arrived at a contradiction. �

1.11. Corollary. (W (G))δδ =W (G) for each lattice ordered group G.

1.12. Corollary. Let G be a strongly projectable lattice ordered group. Then

W (G) is a direct factor of G.

The assertion of 1.12 is valid, in particular, for each complete lattice ordered group.
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2. A modification of weak σ-distributivity

In this section we deal with a modification of the notion of weak σ-distributivity;

this can be applied also to lattice ordered groups which are not σ-complete.

Let L be a lattice. We say that L satisfies the condition (α) if, whenever (aij)i,j
is a bounded double sequence in L such that

(a) aij � ai,j+1 for each i, j ∈ N ;

(b) all the joins and meets in the expressions

(∗)
∞∨

i=1

∞∧

j=1

aij ,
∧

ϕ∈NN

∞∨

i=1

aiϕ(i)

exist in L, then the expressions in (∗) are equal.
It is obvious that σ-distributivity of L implies that condition (α) is valid for L.

2.1. Proposition. Let G be a σ-complete lattice ordered group. Then G is

weakly σ-distributive if and only if it satisfies condition (α).

�����. i) Assume that G is weakly σ-distributive. Let (aij)i,j be a bounded

double sequence in G such that conditions (a) and (b) are satisfied. Put

u =
∞∨

i=1

∞∧

j=1

aij , v =
∧

ϕ∈NN

∞∨

i=1

aiϕ(i).

Denote a′ij = (aij ∨ u) ∧ v. Since G is infinitely distributive, we get

(1) u =
∞∨

i=1

∞∧

j=1

a′ij , v =
∧

ϕ∈NN

∞∨

i=1

a′iϕ(i).

Also, for each i, j ∈ N the relations a′ij � a′i,j+1 and a′ij ∈ [u, v] are valid. Thus

∞∧

j=1

a′ij � u for each i ∈ N.

Hence by the first of the relations (1) we get

(2)
∞∧

j=1

a′ij = u.
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Further, we denote a′′ij = a′ij − u for all i, j ∈ N . Then a′′ij � a′′i,j+1 for all i, j ∈ N ,

whence according to (2)

a′′ij ↘ 0 (as j →∞) for each i ∈ I.

Since G is weakly σ-distributive, we obtain

∧

ϕ∈NN

∞∨

i=1

a′′iϕ(i) = 0.

This yields

u =
∧

ϕ∈NN

∞∨

i=1

(a′′iϕ(i) + u) =
∧

ϕ∈NN

∞∨

i=1

a′iϕ(i) = v.

Therefore G satisfies condition (α).
ii) Conversely, assume that condition (α) is valid for G. Let (aij)i,j be a bounded

double sequence in G such that, for each i ∈ N , we have aij ↘ 0 (where j → ∞).
Thus ∞∨

i=1

∞∧

j=1

aij = 0.

Since G is σ-complete, in view of condition (α) we obtain

∧

ϕ∈NN

∞∨

i=1

aiϕ(i) = 0,

whence G is weakly σ-distributive. �

We denote by W1 the class of all lattice ordered groups G such that G satisfies

condition (α).
In view of 2.1 we have W ⊆ W1. The following example shows that W �=W1.

Let Q be the additive group of all rationals with the natural linear order. Then
Q is a completely distributive lattice ordered group, whence Q ∈ W1. Since Q fails

to be σ-complete, it does not belong to W .
We obviously have

2.2. Lemma. Let L be a lattice. Suppose that condition (α) is not valid for
L. Then there exists a bounded double sequence (aij)i,j in L such that assumptions

(a), (b) of (α) are satisfied and there are u, v ∈ L with

u < v, u =
∞∨

i=1

∞∧

j=1

aij , v =
∧

ϕ∈NN

∞∨

i=1

aiϕ(i).
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2.3. Corollary. Let L be as in 2.2. Assume that L is infinitely distributive.

Then there are u, v ∈ L, u < v such that condition (α) is not satisfied for the interval
[u, v] of L.

�����. It suffices to consider the double sequence (a′ij)i,j , where a′ij = (aij ∨
u) ∧ v for each i, j ∈ N . �

2.4. Lemma. Let L, u and v be as in 2.3. Assume that u1, v1 ∈ L, u � u1 <

v1 � v. Then the interval [u1, v1] does not satisfy condition (α).

�����. Let (a′ij)i,j be as in the proof of 2.3. Now it suffices to take into account
the double sequence (a′′ij)i,j , where

a′′ij = (a
′
ij ∨ u1) ∧ v1

for each i, j ∈ N . �

Since each lattice ordered group G is infinitely distributive, from 2.3, 2.4 and by
using a translation we obtain

2.5. Corollary. Let G be a lattice ordered group which does not satisfy condi-

tion (α). Then there is v ∈ G with 0 < v such that, whenever v1 ∈ G, 0 < v1 � v,

then the interval [0, v1] of G does not satisfy condition (α).

Now by an analogous argument as in the proofs of 1.6 and 1.7 and by applying

2.5 we infer

2.6. Proposition. W1 is a radical class of lattice ordered groups.

Also, similarly as in the case of W , the class W1 is closed with respect to direct
products and with respect to double polars.

We conclude by the following remarks on MV -algebras.
Let A be an MV -algebra with the underlying set A. We apply the notation from

[5]. There exists an abelian lattice ordered group G with a strong unit u such that
A = A0(G, u) (cf.Mundici [9]). In particular, A is the interval [0, u] of G. Hence

we can consider the lattice operations ∨ and ∧ on A; thus we can apply the notion
of weak σ-distributivity and the condition (α) for the case when instead of a lattice

ordered group we have an MV -algebra. We denote by Wm and Wm
1 the classes of

allMV -algebras which satisfy the condition of weak σ-distributivity or the condition

(α), respectively. The notion of a radical class of MV -algebras was introduced and
studied in [7].

In [10], (9.4.5) it was proved that A is weakly σ-distributive if and only if G

is weakly σ-distributive. By a similar argument we can show that A satisfies the
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condition (α) if and only if G satisfies this condition. Thus we obtain from 1.8, 2.6

and from [7], Lemma 3.4 that bothWm andWm
1 are radical classes ofMV -algebras.
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