Mathematic Bohemica

Ján Jakubík
 On iterated limits of subsets of a convergence ℓ-group

Mathematic Bohemica, Vol. 126 (2001), No. 1, 53-61

Persistent URL: http: //dml.cz/dmlcz/133921

Terms of use:

(C) Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml. cz

ON ITERATED LIMITS OF SUBSETS OF A CONVERGENCE ℓ-GROUP

JÁn Jakubík, Košice

(Received February 12, 1999)

Abstract. In this paper we deal with the relation

$$
\lim _{\alpha} \lim _{\alpha} X=\lim _{\alpha} X
$$

for a subset X of G, where G is an ℓ-group and α is a sequential convergence on G.
Keywords: convergence ℓ-group, disjoint subset, direct product, lexico extension
MSC 2000: 06F15, 22C05

For a convergence ℓ-group (shorter: cl-group) we apply the same notation and definitions as in [4] with the distinction that now we do not assume the commutativity of the group operation.

Let (G, α) be a cl-group (where G is an ℓ-group and α is a convergence on G). For $X \subseteq G$ the symbol $\lim _{\alpha} X$ has the usual meaning. X will be said to be regular with respect to (G, α) if the relation

$$
\lim _{\alpha} \lim _{\alpha} X=\lim _{\alpha} X
$$

is valid.
An ℓ-group G will be called absolutely regular, if whenever (G, α) is a convergence ℓ-group and H is an ℓ-subgroup of G, then H is regular with respect to (G, α).

We denote by F the class of all ℓ-groups K such that each disjoint subset of K is finite; such ℓ-groups were studied in [1] (cf. also [2] and [6]).

[^0]In the present paper we prove that each ℓ-group belonging to F is absolutely regular.

This generalizes a result from [5] concerning ℓ-groups which can be represented as direct products of a finite number of linearly ordered groups.

1. Preliminaries

In the whole paper G is an ℓ-group; the group operation is written additively, but we do not assume commutativity of this operation.

For the notion of convergence $\alpha \in \operatorname{conv} G$ we apply the same definition as in [4] with the distinction that to the conditions for α used in [4] we add the following one:
$(*) \alpha$ is a normal subset of $\left(G^{N}\right)^{+}$(i.e., if $s \in\left(G^{N}\right)^{+}$, then $\left.s+\alpha=\alpha+s\right)$.
The corresponding convergence ℓ-group will be denoted by (G, α).
If X is a nonempty subset of G, then by $\lim _{\alpha} X$ we denote the set of all $g \in G$ such that there exists a sequence $\left(x_{n}\right) \in X$ with $x_{n} \rightarrow_{\alpha} g$.

It is easy to verify that
(i) if X is an ℓ-subgroup of G, then $\lim _{\alpha} X$ is an ℓ-subgroup of G as well;
(ii) if X is convex in G, then the same holds for $\lim _{\alpha} X$.

We shall often apply the following rule:
If $x_{n} \rightarrow_{\alpha} g$ and $x_{n} \leqslant g$ for each $n \in N$, then $\bigvee_{n \in N} x_{n}=g$ (and dually).
A subset Y of G is called disjoint if $Y \subseteq G^{+}$and $y_{1} \wedge y_{2}=0$ whenever y_{1} and y_{2} are distinct elements of G.

The direct product of ℓ-groups $G_{1}, G_{2}, \ldots, G_{k}$ is defined in the usual way; it will be denoted by $G_{1} \times G_{2} \times \ldots \times G_{n}$.

If H is a convex ℓ-subgroup of G such that $g>h$ for each $g \in G^{+} \backslash H$ and each $h \in H$, then G is said to be a lexico extension of H; we express this fact by writing $G=\langle H\rangle$. For the properties of the lexico extension cf., e.g., [2].

2. Auxiliary results

Let (G, α) be a cl-group.
2.1. Lemma. Let $\left(x_{n}\right)$ be a sequence in $G, x_{n} \leqslant x_{n+1}$ for each $n \in N, g \in G$, $x_{n} \rightarrow_{\alpha} g$. Then $\bigvee_{n \in N} x_{n}=g$.

Proof. If there exists a subsequence $\left(x_{n}^{1}\right)$ of $\left(x_{n}\right)$ such that $x_{n}^{1} \leqslant g$ for each $n \in N$, then $\bigvee_{n \in N} x_{n}^{1}=g$, and hence we have also $\bigvee_{n \in N} x_{n}=g$. If such a subsequence
$\left(x_{n}^{1}\right)$ does not exist, then there is a subsequence $\left(x_{n}^{2}\right)$ of $\left(x_{n}\right)$ such that for each $n \in N$, either $x_{n}^{2}>g$ or x_{n}^{2} is incomparable with g. Hence $x_{n}^{2} \vee g>g$ for each $n \in N$. Thus we obtain

$$
\begin{equation*}
x_{n}^{2} \vee g \rightarrow_{\alpha} g \tag{1}
\end{equation*}
$$

and

$$
g<x_{1}^{2} \vee g \leqslant x_{n}^{2} \vee g \quad \text { for each } n \in N
$$

so that the relation $\left(*_{1}\right)$ cannot be valid.
2.2. Lemma. Let H be an ℓ-subgroup of the ℓ-group G. Suppose that H can be represented as a lexico extension $H=\langle A\rangle$ with $A \neq\{0\}$. Then

$$
\lim _{\alpha} H=\bigcup_{h \in H} \lim _{\alpha}(h+A) .
$$

Moreover, if $h_{1}, h_{2} \in H$ and $h_{1} \notin h_{2}+A$, then

$$
\lim _{\alpha}\left(h_{1}+A\right) \cap \lim _{\alpha}\left(h_{2}+A\right)=\emptyset .
$$

Proof. For $h \in H$ we put $\bar{h}=h+A$. If $h_{1}, h_{2} \in H$ and $h_{1} \notin h_{2}+A$, then from the properties of the lexico extension we infer that either
(i) $h_{1}^{\prime}<h_{2}^{\prime}$ for each $h_{1}^{\prime} \in h_{1}+A$ and each $h_{2}^{\prime} \in h_{2}+A$, or
(ii) $h_{2}^{\prime}<h_{1}^{\prime}$ for each $h_{1}^{\prime} \in h_{1}+A$ and each $h_{2}^{\prime} \in h_{2}+A$.

Let $g \in G$ and suppose that there exists a sequence $\left(h_{n}\right)$ in H such that $h_{n} \rightarrow_{\alpha} g$.
a) First suppose that there exist $h_{1} \in H$ and a subsequence $\left(h_{n}^{\prime}\right)$ of $\left(h_{n}\right)$ such that $h_{n}^{\prime} \in h_{1}+A$ for each $n \in N$. Then $h_{n}^{\prime} \rightarrow_{\alpha} g$, whence $g \in \lim _{\alpha}\left(h_{1}+A\right)$.
b) Now suppose that the assumption from a) is not valid. Then there exists a subsequence $\left(h_{n}^{\prime}\right)$ of $\left(h_{n}\right)$ such that, whenever $n(1)$ and $n(2)$ are distinct positive integers, then

$$
h_{n(1)}^{\prime}+A \neq h_{n(2)}^{\prime}+A .
$$

Thus in view of the relations (i) and (ii) above, if $n(1)$ and $n(2)$ are distinct, then either $h_{n(1)}^{\prime}<h_{n(2)}^{\prime}$ or $h_{n(1)}^{\prime}>h_{n(2)}^{\prime}$. This implies that there exists a subsequence $\left(h_{n}^{\prime \prime}\right)$ of $\left(h_{n}^{\prime}\right)$ such that either

$$
h_{n}^{\prime \prime}<h_{n+1}^{\prime \prime} \quad \text { for each } n \in N
$$

or

$$
h_{n}^{\prime \prime}>h_{n+1}^{\prime \prime} \quad \text { for each } n \in N .
$$

Suppose that the first case occurs (in the second case we apply a dual argument). We have $h_{n}^{\prime \prime} \rightarrow_{\alpha} g$ and thus according to 2.1 the relation

$$
\bigvee_{n \in N} h_{n}^{\prime \prime}=g
$$

is valid.
If there exists $n(1) \in N$ such that $h_{n(1)}^{\prime \prime}+A=g+A$, then $h_{n(1)+1}^{\prime \prime}>g$, which is a contradiction. Hence

$$
h_{n(1)}^{\prime \prime}+A \neq g+A \quad \text { for each } n(1) \in N .
$$

Since $A \neq\{0\}$, there exists $a \in A$ with $a>0$. Then

$$
h_{n}^{\prime \prime}<g-a \text { for each } n \in N,
$$

which is imposible. Thus we have verified that the condition from a) must be valid. Therefore

$$
\bigcup_{h \in H} \lim _{\alpha}(h+A) \subseteq \lim _{\alpha} H \subseteq \bigcup_{h \in H} \lim _{\alpha}(h+A),
$$

which proves the first assertion of the lemma.
c) Let g be as above; we have shown that there is $h_{1} \in H$ such that $g \in \lim _{\alpha}\left(h_{1}+A\right)$. Let $h_{2} \in H, h_{1} \notin h_{2}+A$. By way of contradiction, suppose that $g \in \lim _{\alpha}^{\alpha}\left(h_{2}+A\right)$. Hence there exists a sequence $\left(h_{n}^{2}\right)$ in $h_{2}+A$ such that $h_{n}^{2} \rightarrow_{\alpha} g$. At the same time, there exists a sequence $\left(h_{n}^{1}\right)$ in $h_{1}+A$ such that $h_{n}^{1} \rightarrow_{\alpha} g$. Let a be as above. If (i) is valid, then

$$
h_{n}^{1}+a<h_{n}^{2} \quad \text { for each } n \in N,
$$

thus $g+a \leqslant g$, which is a contradiction. In the case when (ii) is valid we proceed dually.
2.3. Lemma. Let H be as in 2.2. Then $\lim _{\alpha} H=\left\langle\lim _{\alpha} A\right\rangle$.

Proof. We obviously have $\lim _{\alpha} A \subseteq \lim _{\alpha} H$ and thus $\lim _{\alpha} A$ is an ℓ-subgroup of $\lim _{\alpha} H$. Let $h_{1}, h_{2} \in \lim _{\alpha} A, h \in \lim _{\alpha}^{\alpha} H, h_{1}^{\alpha} \leqslant h \leqslant h_{2}$. Then there exist sequences $\left(\stackrel{\alpha}{h_{n}^{1}}\right),\left(h_{n}^{2}\right)$ in A and $\left(h_{n}^{\alpha}\right)$ in H such that

$$
h_{n}^{1} \rightarrow_{\alpha} h_{1}, \quad h_{n}^{2} \rightarrow_{\alpha} h_{2}, \quad h_{n}^{\prime} \rightarrow_{\alpha} h .
$$

Put $\left(h_{n}^{\prime} \vee h_{n}^{1}\right) \wedge h_{n}^{2}=h_{n}^{\prime \prime}$. Then $h_{n}^{\prime \prime} \in A$ for each $n \in N$ and

$$
h_{n}^{\prime \prime} \rightarrow_{\alpha}\left(h \vee h_{1}\right) \wedge h_{2}=h,
$$

whence $h \in \lim _{\alpha} A$. Thus $\lim _{\alpha} A$ is a convex subset of $\lim _{\alpha} H$.
Let $h \in\left(\lim _{\alpha} H\right)^{+} \backslash \lim _{\alpha} A$. In view of 2.2 there exist $h^{1} \in H$ and a sequence $\left(h_{n}\right)$ in $h^{1}+A$ such that $h_{n} \rightarrow_{\alpha} h$. Moreover, h^{1} does not belong to A. Since $h \in G^{+}$, without loss of generality we can suppose that all h_{n} belong to G^{+}. Further, 2.2 yields that there is a subsequence $\left(h_{n}^{1}\right)$ of $\left(h_{n}\right)$ such that for each $n \in N$ the relation $h_{n}^{1} \notin A$ is valid. Thus $h_{n}^{1}>a$ for each $a \in A$. Therefore $h \geqslant a$; since $h \notin A$ we obtain that $h>a$ for each $a \in A$.

If $a^{\prime} \in \lim _{\alpha} A$, then there exists a sequence $\left(a_{n}\right)$ in A with $a_{n} \rightarrow_{\alpha} a^{\prime}$. Thus $h>a_{n}$ for each $n \in N$, hence $h \geqslant a^{\prime}$. Since $h \notin \lim _{\alpha} A$ we get $h>a^{\prime}$ for each $a^{\prime} \in \lim _{\alpha} A$. Therefore $\lim _{\alpha} H=\left\langle\lim _{\alpha} A\right\rangle$.
2.4. Corollary. If H is as in 2.2 and if A is regular with respect to (G, α), then H is regular with respect to (G, α).
2.5. Corollary. Let H be and ℓ-group, $H=\langle A\rangle, A \neq\{0\}$ and suppose that A is absolutely regular. Then H is absolutely regular.
2.6. Proposition. Let A be an ℓ-group which can be represented as a direct product of a finite number of linearly ordered groups. Suppose that $A \neq\{0\}$ and $H=\langle A\rangle$. Then H is absolutely regular.

Proof. This is a consequence of 2.6 and of Theorem 3.6, [3].
2.7. Lemma. Let H be an ℓ-subgroup of G such that
(i) H can be represented as a direct product $H_{1} \times H_{2} \times \ldots \times H_{k}$;
(ii) there are ℓ-subgroups A_{i} of H_{i} such that $H_{i}=\left\langle A_{i}\right\rangle, H_{i} \neq A_{i} \neq\{0\}(i=$ $1,2, \ldots, k)$.
Then $\lim _{\alpha} H=\lim _{\alpha} H_{1} \times \ldots \times \lim _{\alpha} H_{k}$.
Proof. Let $i \in\{1,2, \ldots, k\}$. In view of 2.3 ,

$$
\lim _{\alpha} H_{i}=\left\langle\lim _{\alpha} A_{i}\right\rangle .
$$

Now we proceed by induction with respect to k. For $k=1$ the assertion is trivial. Let $k>1$. Consider an element $g \in \lim _{\alpha} H$ with $g>0$. Then there exists a sequence $\left(z_{n}\right)$ in H such that $z_{n} \rightarrow_{\alpha} g$ and $z_{n}>0$ for each $n \in N$.
a) First we prove that g cannot be an upper bound of the set H. In fact, if $g \geqslant h$ for each $h \in H$, then $g \geqslant z_{n}$ for each $n \in N$, whence $g=\bigvee_{n \in N} z_{n}$ and thus $g=\sup H$. There exists $h_{0} \in H$ with $h_{0}>0$. Then $h+h_{0} \in H$ for each $h \in H$, yielding that $h+h_{0} \leqslant g$. Hence $h \leqslant g-h_{0}<g$ for each $h \in H$, which is a contradiction.
b) For $h \in H$ and $i \in I$ we denote by $h\left(H_{i}\right)$ the component of h in H_{i}. If $h \geqslant 0$, then

$$
h=h\left(H_{1}\right)+h\left(H_{2}\right)+\ldots+h\left(H_{n}\right)=h\left(H_{1}\right) \vee h\left(H_{2}\right) \vee \ldots \vee h\left(H_{n}\right) .
$$

Thus in view of a) there exists $i_{0} \in\{1,2, \ldots, k\}$ such that g fails to be an upper bound of the set $H_{i_{0}}$. Without loss of generality we can suppose that $i_{0}=k$. Therefore there exists $x_{0} \in H_{k}^{+}$such that $x_{0} \not \equiv g$.

We have

$$
z_{n} \wedge x_{0}=\left(z_{n}\left(H_{1}\right) \vee z_{n}\left(H_{2}\right) \vee \ldots \vee z_{n}\left(H_{k}\right)\right) \wedge x_{0}=z_{n}\left(H_{k}\right) \wedge x_{0} \in H_{k}
$$

(since $z_{n}\left(H_{i}\right) \wedge x_{0}=0$ for $\left.i=1,2, \ldots, k-1\right)$. Then

$$
z_{n}\left(H_{k}\right) \wedge x_{0} \rightarrow g \wedge x_{0}
$$

whence $g \wedge x_{0} \in \lim _{\alpha} H_{k} \subseteq \lim _{\alpha} H$.
For each $h^{k} \in H_{k}$ we denote $\overline{h^{k}}=h^{k}+A_{k}$. Further we put

$$
\bar{H}_{k}=\left\{\overline{h^{k}}: h^{k} \in H_{k}\right\} .
$$

If $\overline{h_{1}^{k}}$ and $\overline{h_{2}^{k}}$ are distinct elements of \bar{H}_{k} and $h_{1}^{k}<h_{2}^{k}$, then we put $\overline{h_{1}^{k}}<\overline{h_{2}^{k}}$. In this way \bar{H}_{k} turns out to be a linearly ordered set.

Consider the sequence $\left(\overline{z_{n}\left(H_{k}\right)}\right)$. If there existed a subsequence $\left(\bar{y}_{n}\right)$ of $\left(\overline{z_{n}\left(H_{k}\right)}\right)$ such that $\bar{y}_{n}>\bar{x}_{0}$ for each $n \in N$, then we would have $g \geqslant x_{0}$, which is a contradiction. Hence there is a subsequence $\left(\bar{y}_{n}\right)$ of $\left(\overline{z_{n}\left(H_{k}\right)}\right)$ such that $\bar{y}_{n} \leqslant \bar{x}_{0}$ for each $n \in N$.

Since $H_{k} \neq A_{k}$ there exists $x_{0}^{\prime} \in H_{k}$ such that $\bar{x}_{0}<\overline{x_{0}^{\prime}}$. We can replace \bar{x}_{0} by $\overline{x_{0}^{\prime}}$ and then the previous considerations remain valid. Moreover, $\bar{y}_{n}<\overline{x_{n}^{\prime}}$ for each $n \in N$. We have $y_{n}=z_{n}^{1}\left(H_{k}\right)$, where $\left(z_{n}^{1}\right)$ is a subsequence of $\left(z_{n}\right)$. Thus

$$
z_{n}^{1}\left(H_{k}\right)<x_{0}^{\prime} \quad \text { for each } n \in N,
$$

and $z_{n}^{1}\left(H_{k}\right) \wedge x_{0}^{\prime} \rightarrow_{\alpha} g \wedge x_{0}^{\prime}$. Hence $z_{n}^{1}\left(H_{k}\right) \rightarrow_{\alpha} g \wedge x_{0}^{\prime}$. This yields that

$$
z_{n}^{\prime}-z_{n}^{\prime}\left(H_{k}\right) \rightarrow_{\alpha} g-\left(g \wedge x_{0}^{\prime}\right)
$$

Since

$$
z_{n}^{\prime}-z_{n}^{\prime}\left(H_{k}\right)=z_{n}^{\prime}\left(H_{1}\right)+z_{n}^{\prime}\left(H_{2}\right)+\ldots+z_{n}^{\prime}\left(H_{k-1}\right) \in H_{1} \times \ldots \times H_{k-1}
$$

in view of the induction hypothesis we obtain

$$
g-\left(g \wedge x_{0}^{\prime}\right) \in \lim _{\alpha} H_{1} \times \lim _{\alpha} H_{2} \times \ldots \times \lim _{\alpha} H_{k-1}
$$

Denote

$$
\lim _{\alpha} H_{1} \times \lim _{\alpha} H_{2} \times \ldots \times \lim _{\alpha} H_{k-1}=Y_{k-1} .
$$

It is easy to verify that if $y_{k-1} \in\left(Y_{k-1}\right)^{+}$and $y_{k} \in\left(\lim _{\alpha} H_{k}\right)^{+}$, then

$$
y_{k-1} \wedge y_{k}=0
$$

Further, we obviously have

$$
0 \in\left(Y_{k-1}\right)^{+} \cap\left(\lim H_{k}\right)^{+} .
$$

Let Y be the sublattice of the lattice G^{+}generated by the set

$$
\left(Y_{k-1}\right)^{+} \cup\left(\lim H_{k}\right)^{+}
$$

Since the lattice G^{+}is distributive, we obtain

$$
Y=\left\{y_{k-1} \vee y_{k}: y_{k-1} \in\left(Y_{k-1}\right)^{+} \text {and } y_{k} \in\left(\lim H_{k}\right)^{+}\right\} .
$$

Thus in view of Lemma 3.4 in [5] we get

$$
\begin{equation*}
Y=\left(Y_{k-1}\right)^{+} \times Y_{k}^{+}, \tag{1}
\end{equation*}
$$

where Y_{k}^{+}is the underlying lattice of the lattice ordered semigroup $\left(\lim _{\alpha} H_{k}\right)^{+}$.
For $A, B \subseteq G$ we put

$$
A-B=\{a-b: a \in A \text { and } b \in B\}
$$

Clearly

$$
\lim _{\alpha} H_{k}=Y_{k}^{+}-Y_{k}^{+} .
$$

Therefore according to (1) and by applying Theorem 2.9 in [3] we obtain

$$
\begin{aligned}
\lim _{\alpha} H=Y-Y & =\left(\left(Y_{k-1}\right)^{+}-\left(Y_{k-1}\right)^{+}\right) \times\left(Y_{k}^{+}-Y_{k}^{+}\right)=Y_{k-1} \times \lim _{\alpha} H_{k} \\
& =\lim _{\alpha} H_{1} \times \lim _{\alpha} H_{2} \times \ldots \times \lim _{\alpha} H_{k-1} \times \lim _{\alpha} H_{k} .
\end{aligned}
$$

2.8. Lemma. Let H and $H_{1}, H_{2}, \ldots, H_{k}$ be as in 2.7. Further suppose that all $A_{i}(i=1,2, \ldots, k)$ are regular with respect to (G, α). Then $\lim H$ can be represented in the form

$$
\lim _{\alpha} H=\left\langle\lim _{\alpha} A_{1}\right\rangle \times\left\langle\lim _{\alpha} A_{2}\right\rangle \times \ldots \times\left\langle\lim _{\alpha} A_{k}\right\rangle
$$

and all $\lim _{\alpha} A_{i}(i=1,2, \ldots, k)$ are regular with respect to (G, α).
Proof. The first assertion is a consequence of 2.7 and 2.3 ; the latter is obvious.
2.9. Lemma. Let H and $H_{1}, H_{2}, \ldots, H_{k}$ be as in 2.8. Then H is regular with respect to (G, α).

Proof. In view of 2.3, 2.7 and 2.8 we have

$$
\begin{aligned}
\lim _{\alpha} \lim _{\alpha} H & =\lim _{\alpha}\left\langle\lim _{\alpha} A_{1}\right\rangle \times \ldots \times \lim _{\alpha}\left\langle\lim _{\alpha} A_{k}\right\rangle \\
& =\left\langle\lim _{\alpha} \lim _{\alpha} A_{1}\right\rangle \times \ldots \times\left\langle\lim _{\alpha} \lim _{\alpha} A_{k}\right\rangle \\
& =\left\langle\lim _{\alpha} A_{1}\right\rangle \times \ldots \times\left\langle\lim _{\alpha} A_{k}\right\rangle=\lim _{\alpha} H .
\end{aligned}
$$

2.10. Corollary. Let H and $H_{i}(i=1,2, \ldots, k)$ be ℓ-groups such that the conditions (i) and (ii) from 2.7 are valid. Further suppose that all $A_{i}(i=1,2, \ldots, k)$ are absolutely regular. Then H is absolutely regular.

3. On ℓ-GROUPS BELONGING TO F

In this section we assume that H is an ℓ-group belonging to the class F and that $H \neq\{0\}$.

It follows from the results of [1] concerning the structure of ℓ-groups belonging to the class F that there exist a positive integer n and finite systems $F_{1}, F_{2}, \ldots, F_{n}$ of convex nonzero subgroups of H such that
(i) $F_{1}=\left\{A_{1}^{1}, A_{2}^{1}, \ldots, A_{n(1)}^{1}\right\}$, all ℓ-groups $A_{i}^{1}(i=1, \ldots, n(1))$ are linearly ordered and $A_{i(1)}^{1} \cap A_{i(2)}^{1}=\{0\}$ whenever $i(1), i(2)$ are distinct elements of the set $\{1,2, \ldots, n(1)\}$.
(ii) If $k>1$, then $F_{k}=\left\{A_{1}^{k}, A_{2}^{k}, \ldots, A_{n(k)}^{k}\right\}$ such that
(ii $\left.1_{1}\right) A_{i(1)}^{k} \cap A_{i(2)}^{k}=\{0\}$ whenever $i(1), i(2)$ are distinct elements of the set $\{1,2, \ldots, n(k)\}$;
(ii 2_{2}) if $i \in\{1,2, \ldots, n(k)\}$, then either A_{i}^{k} is equal to an element of F_{k-1}, or there are $B_{1}, B_{2}, \ldots, B_{t(i)} \in F_{k-1}$ such that $t(i) \geqslant 2$ and $A_{i}^{k}=$ $\left\langle B_{1} \times B_{2} \times \ldots \times B_{t(i)}\right\rangle$.
(iii) $F_{n}=\{H\}$.
3.1. Lemma. Let us apply the above notation and let $k \in\{1,2, \ldots, n\}$. Then all ℓ-groups of the system F_{k} are absolutely regular.

Proof. We proceed by induction with respect to k. For $k=1$, this is a consequence of Theorem 3.6 in [5]. Suppose that $k>1$ and that the assertion is valid for $k-1$. Then 2.10 yields that the elements of F_{k} are absolutely regular.

As a corollary we obtain
3.2. Theorem. Each ℓ-group belonging to F is absolutely regular.

If an ℓ-group H is a direct product of a finite number of linearly ordered groups, then H belongs to F. Hence 3.2 generalizes Theorem 3.6 from [5].

References

[1] P. Conrad: The structure of a lattice ordered group with a finite number of disjoint elements. Michigan Math. J. 7 (1960), 171-180.
[2] P. Conrad: Lattice Ordered Groups. Lecture Notes, Tulane University, 1970.
[3] J. Jakubik: Direct decompositions of partially ordered groups, II. Czechoslovak Math. J. 11 (1961), 490-515. (In Russian.)
[4] J. Jakubik: Sequential convergences in ℓ-groups without Urysohn's axiom. Czechoslovak Math. J. 42 (1992), 101-116.
[5] J. Jakubik: Closed convex ℓ-subgroups and radical classes of convergence ℓ-groups. Math. Bohem. 122 (1997), 301-315.
[6] V. M. Kopytov, N. Ya. Medvedev: The Theory of Lattice Ordered Groups. Kluwer Academic Publishers, Dordrecht-Boston-London, 1994.

Author's address: Ján Jakubik, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia.

[^0]: Supported by grant VEGA 2/5125/99.

