
Mathematica Bohemica

Bohdan Zelinka
Infinite paths in locally finite graphs and in their spanning trees

Mathematica Bohemica, Vol. 128 (2003), No. 1, 71–76

Persistent URL: http://dml.cz/dmlcz/133936

Terms of use:
© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/133936
http://dml.cz


128 (2003) MATHEMATICA BOHEMICA No. 1, 71–76

INFINITE PATHS IN LOCALLY FINITE GRAPHS

AND IN THEIR SPANNING TREES

� � � ��� � �	��
� � ���
, Liberec

(Received August 16, 2001)

To the memory of Jiří Sedláček

Abstract. The paper concerns infinite paths (in particular, the maximum number of
pairwise vertex-disjoint ones) in locally finite graphs and in spanning trees of such graphs.
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A graph G is called locally finite if every vertex of G has a finite degree. Obviously
every finite graph is also locally finite. We will treat locally finite graphs which

themselves are infinite.

Let G be a connected infinite locally finite graph. It is well-known that the vertex

set of G is countable and G contains at least one infinite path.

There are two types of infinite paths. A one-way infinite path is an infinite con-

nected graph which has one vertex of degree one (initial vertex) and in which all other
vertices are of degree two. A two-way infinite path is an infinite connected graph

which is regular of degree two. A general symbol for a one-way (or two-way) infinite
path will be W1 (or W2 respectively). A finite path having length n (i.e. having n

edges and n + 1 vertices) will be denoted by Pn.

We will use also the symbol of the block graph of a given graph G. Let G be a

graph, let A(G) be the set of all cutvertices (articulations) of G, let B(G) be the set
of all blocks of G. The block graph BG(G) of G is the bipartite graph with vertex
sets A(G), B(G) such that a ∈ A(G) is adjacent to b ∈ B(G) in BG(G) if and only
if a is an articulation of G belonging to the block b.
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Let G be a connected infinite locally finite graph. We will study the numerical

invariant IW (G) which denotes the maximum number of pairwise vertex-disjoint
one-way infinite paths in G. Evidently IW (G) > 1 and it may be even infinite
(countable).

Proposition 1. Let G be an infinite locally finite connected graph. Then

IW (G) = 1 if and only if G contains no two-way infinite path.
���	�����

. A two-way infinite path is the union of two edge-disjoint one-way infinite

paths and thus evidently it is also the union of two vertex-disjoint ones with one edge
added. �

As usual, a circuit in a graph G is a subgraph of G which is finite, connected and

regular of degree 2.
We recall the definition of a block of a graph which will be used here similarly

as in the case of finite graphs. Let ◦ be a binary relation on the set E(G) of edges
of G such that e1 ◦ e2 if and only if either e1 = e2, or there exists a circuit in G

which contains both e1 and e2. The relation ◦ is an equivalence relation on E(G).
A subgraph B of G whose edge is one class ◦ and whose vertex set is the set of all
end vertices of these edges is a block of G.

Now we shall study a special type of infinite graphs, namely the graph consisting of
infinitely many blocks, each of which is finite. We will call them finite-block graphs,

shortly FB-graphs.

Theorem 1. Let G be an infinite locally finite FB-graph. The graph G contains

no two-way infinite path if and only if its block graph BG(G) contains no two-way
infinite path.
���	�����

. Suppose that G contains a two-way infinite path W2. Then there exists

a two-way infinite sequence . . . , B−2 . . . , B−2, B−1, B0, B1, B2, . . . of G such that the
intersection ofW2 with Bn for each integer n is a finite path Dn and each path Dn is

immediately followed by Dn+1 in W2. Now we denote each block Bn by bn and the
articulation between bn and bn+1 by an; we have a two-way infinite path in BG(G)
with the vertices

. . . , a−2, b−1, a−1, b0, a0, b1, a1, b2, . . .

On the other hand, let W ′
2 be a two-way infinite path in BG(G) with the vertices

. . . , b′−2, a
′
−2, b

′
−1, a

′
−1, b

′
0, a

′
0, b

′
1, a

′
1, . . .

Each block b′n is a connected graph, therefore there exists a finite path D′
k in it

connecting a′n−1 with a′n. The union of the paths D′
n is a two-way infinite path W2

in G. �
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Figure 1

An example of an FB-graph without a two-way infinite path is in Fig. 1.

Proposition 2. Let G be a connected infinite locally finite graph. Then each

edge of G belongs to a one-way infinite path in G.

���	�����
. Let e be an edge of G, let W1 be a one-way infinite path in G. As G is

connected, there exists a finite path D in G containing e and a vertex of W1. The

union of D and W1 is the required path. �

Theorem 2. Let G be a connected infinite locally finite graph. Let B be a block

of G. Then either all edges of B belong to two-way infinite paths in G, or none does.

���	�����
. Consider the relation ◦ and let e be an edge of B. Let B contain an edge

f belonging to a two-way infinite path W2 in G. Then e ◦ f . If e = f , the assertion

is true. Otherwise there exists a circuit D in B which contains both e and f . Let
D0 be a finite path in D which is a subpath of D, contains e and is edge-disjoint

with W2. If e belonged to W2, then the assertion would be true. Let u, v be the end
vertices of D0. If we omit the subpath of W2 connecting u and v and replace it by

D0, we obtain a two-way infinite path in G containing e. �
���������	�

. Let again G be a connected infinite locally finite graph. The subgraph

of G formed by all edges which belong to two-way infinite paths is connected. On
the other hand, all other edges may be deleted without changing the structure of

two-way infinite paths.

Now we turn our attention to spanning trees.

Theorem 3. Let G be a connected infinite locally finite graph. Then there exists

a spanning tree T of G such that IW (T ) = IW (G).
���	�����

. Let IW (G) = p. Let D1, . . . , Dp be pairwise vertex-disjoint one-way

infinite paths in G. The tree T will be constructed in several steps. In the first
step we have the forest F0 whose connected components are D1, . . . , Dp and isolated

vertices. In the second step a tree T0 is obtained from F0 in such a way that for any
path Dk with k > 2 a finite path connecting a vertex of Dk with a vertex of D1 is

chosen and added to the forest. If some circuits occur, edges are deleted where it
is necessary. At the end of this step a tree T0 is obtained. Further trees T1, T2, . . .
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are formed in such a way that a connected component of F0 distinct from the trees

Ti already constructed is chosen and one of its vertices is connected by a finite path
with a vertex of Ti with maximal i from those which have been already constructed.
The last tree from such trees is then required to fullfil |V (Ti)| = |V (G)|. �

There may exist a spanning tree T of G such that IW (T ) < IW (G). In particular,
this occurs with graphs which have a one-way Hamiltonian or a two-way Hamiltonian
path. A two-way Hamiltonian path is an analogue of a Hamiltonian circuit; it is

regular of degree 2 (and obviously infinite). A one-way infinite Hamiltonian path is
an analogue of a finite Hamiltonian path; it has one vertex of degree 1 and all others

of degree 2.
 !"���$#&%'�

1. For any positive integer k the direct product Pk×W1 has a one-way

infinite Hamiltonian path, while IW (Pk ×W1) = k + 1.
 !"���$#&%'�

2. The direct product W1 × W1 has a one-way infinite Hamiltonian
path, while IW (W1 ×W1) is infinite.

Both paths mentioned are seen in Fig. 2 and in Fig. 3.

Figure 2 Figure 3

Using the ideas of proof of Theorem 1, the following two theorems may be proved.

Theorem 4. Let G be a connected infinite locally finite FB-graph. The graph

G contains a two-way infinite Hamiltonian path H2 if and only if its block graph

BG(G) contains a two-way infinite path H ′
2 with a sequence of vertices

. . . , a−2, b−1, a−1, b0, a0, b1, a1, . . .

such that in each block bn a finite Hamiltonian path connecting an−1 and an exists

(for each integer n).

Theorem 5. Let G be a connected infinite locally finite FB graph. The graph

G contains a one-way infinite Hamiltonian path H1 if and only if its block graph
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BG(G) contains a one-way infinite path H ′
1 with the sequence of vertices

b0, a0, b1, a1, b2, a2, b3, a3, . . .

such that in each block bn for a positive integer n there exists a finite Hamiltonian

path connecting an−1 and an and in the block b0 there exists a finite Hamiltonian

path ending in a0.

At the end we shall prove a formula for IW (T ), where T is a tree.

Theorem 6. Let T be a finite or infinite locally finite tree. For each positive inte-

ger k let d denote the number of vertices of T of degree k. Suppose that
∞∑

k=1

(k − 2)dk

is finite. Then

IW (T ) = 2 +
∞∑

k=1

(k − 2)dk.

���	�����
. We shall do the proof by induction with respect to IW (T ). First let

IW (T ) = 0. Then T is a locally finite tree without infinite paths and therefore it

is finite. Denote D(T ) = (k − 2)dk. We have D(T ) =
∞∑

k=1

kdk − 2
∞∑

k=1

dk; both the

sums on the right-hand side are finite. The sum
∞∑

k=1

kdk is the sum of degrees of

all vertices of T . Let n be the number of vertices of T ; then the number of edges

is n − 1. Hence
∞∑

k=1

kdk = 2n − 2. The sum
∞∑

k=1

dk = n and D(T ) = −2, hence

2 + D(T ) = 0 = IW (T ). Now suppose that the assertion is true for IW (T ) = p > 0
and let T be a locally finite tree with D(T ) finite and with IW (T ) = p + 1. Let
W be a one-way infinite path in T . For k = 2 we have (k − 2)dk = 0 and thus

D(T ) = −d1 +
∞∑

k=3

(k − 2)dk. As this number is finite, both d1 and
∞∑

k=1

(k − 2)dk

must be finite and thus dk is finite for all k 6= 2. In particular, in W there are only
finitely many vertices having degrees different from 2 in T . There exists a one-way

infinite subpath W ′ of W , all of whose vertices have degree 2 in T . Let u be the
initial vertex of W ′. Let T ′ be the tree obtained from T by deleting all vertices and

edges of W ′ except u. Then IW (T ′) = IW (T )− 1 = p. If d′k denotes the number of
vertices of degree k in T ′, then d′1 = d′1 + 1 and d′k = dk for k > 3. By the induction

hypothesis we have 2 + D(T ′) = 2− d′1 +
∞∑

k=3

(k − 2)d′k = IW (T ′) = IW (T )− 1 and

thus 2 +D(T ) = 2− d1 − 1 +
∞∑

k=3

(k− 2)dk = 1+ D(T ′) = IW (T ′) + 1 = IW (T ). �
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