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1. Introduction

Let r = (α, β), 0 < α, β 6 1 and 0 < a < +∞, 0 < b < +∞. For f ∈

L((0, a) × (0, b)), the expression

(Ir
0f)(x, y) =

1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− s)α−1(y − t)β−1f(s, t) ds dt

where Γ(·) is the Euler gamma function, is called [1] the left-sided mixed Riemann-

Liouville integral of order r. In particular,

(Ir
0f)(x, y) =

∫ x

0

∫ y

0

f(s, t) ds dt, (I0
0f)(x, y) = f(x, y)

for almost all (x, y) ∈ L((0, a) × (0, b)).

The mixed fractional Riemann-Liouville derivative of order r is defined [1] by the

expression

(Dr
0f)(x, y) = Dxyf1−r(x, y)

where f1−r(x, y) = (I1−r
0 f)(x, y) and Dxy = ∂2/∂x∂y.
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E x am p l e 1.1.

(Ir
0 )xλyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ α)Γ(1 + ω + β)
xλ+αyω+β, λ > −1, ω > −1

(Dr
0)x

λyω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− α)Γ(1 + ω − β)
xλ−αyω−β, λ > −1, ω > −1

Proposition 1.1 [1]. Let q = (γ, δ), γ, δ > 0, the following relation is true

(Iq
0I

r
0f)(x, y) = (Iq+r

0 f)(x, y)

for all f ∈ L((0, a) × (0, b)).

From the definition of the mixed Riemann-Liouville fractional derivative and in-

tegral, we have the following results.

Proposition 1.2. The relation

(Dr
0)(I

r
0 )f(x, y) = f(x, y)

for all f ∈ L((0, a) × (0, b)) holds.

Proposition 1.3. Let f be a continuous function defined on [0, a]× [0, b]. Assume

that (Dr
0f)(x, y) exists, r = (α, β). Then for 0 < r < 1, the following relation

(Ir
0D

r
0f)(x, y) = f(x, y)

holds.

Recently, there appeared many papers where the existence of solutions of initial

value problem for partial differential equation of fractional order is considered, see

[2]–[4]. In particular, A.N.Vityuk and A.V.Golushkov [5] consider the existence of

solutions of systems of partial differential equations of fractional order in spaces of

integrable functions

(Dri

0 ui)(x, y) = fi[x, y, u(x, y)] ≡ fi[x, y, u1(x, y), . . . , un(x, y)]

with the initial value conditions

ui,1−ri
(x, 0) = ϕi(x), 0 6 x 6 a,

ui,1−ri
(0, y) = ψi(y), 0 6 y 6 b, ϕi(0) = ψi(0)
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where ri = (αi, βi), 0 < αi, βi 6 1, ui,1−ri
(x, y) = (I1−ri

0 ui)(x, y), ϕi(x) ∈ AC([0, a])

and ψi(y) ∈ AC([0, b]), i = 1, . . . , n. Motivated by [5], by means of the Schauder

Fixed Point Theorem and Contraction Principle, we consider the existence and

uniqueness of positive solution of the following singular partial differential equation

of fractional order, in the function spaces concerning the mixed Riemann-Liouville

fractional derivative

(1)

{

(Dr
0u)(x, y) = f(x, y, u(x, y), (D̺1

0 u)(x, y), . . . , (D
̺n

0 u)(x, y)), (x, y) ∈ p,

u(x, 0) = u(0, y) = 0,

where p = (0, a] × (0, b], and ̺i = (γi, δi), 0 6 γi, δi < r, i = 1, . . . , n, that is

0 6 γi < α, 0 6 δi < β.

Definition. In this paper, the positive solution of problem (1) means that

u(0, y) = u(x, 0) = 0 and u(x, y) > 0 for (x, y) ∈ (0, a] × (0, b].

2. Function spaces concerning the mixed Riemann-Liouville

fractional derivative

Let P = [0, a] × [0, b]. Motivated by [6], we define function spaces as following

X = {u ∈ C(P ) having the mixed Riemann-Liouville fractional derivative

of order ̺i = (γi, δi), and (D̺i

0 u) ∈ C(P ), i = 1, . . . , n}

where C(P ) is the usual space of continuous functions on P , which is a Banach space

endowed with the norm

‖u‖0 = max
(x,y)∈P

|u(x, y)|

Theorem 2.1. The space X endowed with the norm

‖u‖ = ‖u‖0 +

n
∑

i=1

‖(D̺i

0 u)‖0

is a Banach space.

In order to prove this theorem, we first prove the following two results.
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Lemma 2.2. Let ̺i = (γi, δi), i = 1, . . . , n. If sequence of functions wn(x, y)

∈ C(P ) converges uniformly to a function w(x, y) ∈ C(P ), then the sequence

(I̺i

0 wn)(x, y) converges uniformly to a function (I̺i

0 w)(x, y) in C(P ), i = 1, . . . , n.

P r o o f. By the definition of operator (I̺i

0 ), i = 1, . . . , n, there has

|(I̺i

0 wn)(x, y) − (I̺i

0 w)(x, y)|

=

∣

∣

∣

∣

1

Γ(γi)Γ(δi)

∫ x

0

∫ y

0

(x − s)γi−1(y − t)δi−1(wn(s, t) − w(s, t)) ds dt

∣

∣

∣

∣

6
1

Γ(γi)Γ(δi)

∫ x

0

∫ y

0

(x− s)γi−1(y − t)δi−1‖wn − w‖0 ds dt

6
1

Γ(1 + γi)Γ(1 + βi)
aγibδi‖wn − w‖0

which completes the proof. �

Lemma 2.3. Let ̺i = (γi, δi), 0 6 γi, δi < 1, i = 1, 2, . . . , n, and let un(x, y) ∈

C(P ) be a sequence, having the continuous mixed Riemann-Liouville fractional

derivative of order ̺i = (γi, δi), i = 1, 2, . . . , n. Assume that the sequence un(x, y)

converges to the function u(x, y) in C(P )-norm and that the sequence (D̺i

0 un)(x, y)

converges to the function vi(x, y), i = 1, 2, . . . , n, in C(P )-norm, then, (D̺i

0 u)(x, y) =

vi(x, y), i = 1, 2, . . . , n.

P r o o f. Setting wn(x, y) = (D̺i

0 un)(x, y), i = 1, 2, . . . , n, then by Proposi-

tion 1.3 and Lemma 2.2,

(I̺i

0 wn)(x, y) = un(x, y), i = 1, 2, . . . , n

converge to the function (I̺i

0 vi)(x, y), i = 1, 2, . . . , n in C0-norm. This means

u(x, y) = (I̺i

0 vi)(x, y), i = 1, 2, . . . , n

Hence, by Proposition 1.2, (D̺i

0 u)(x, y) = vi(x, y), i = 1, 2, . . . , n. �

P r o o f o f T h e o r e m 2 . 1. Let (un(x, y))n∈N be a Cauchy sequence in X .
That is, for each ε > 0 there exists an index n∗ such that for all n,m > n∗

‖un − um‖ < ε

From the definition of X-norm, it follows that sequences un(x, y), (D̺i

0 un)(x, y), i =

1, 2, . . . , n, are two Cauchy sequences in C(P ), which are complete. So, denoting by

u(x, y) the limit of sequence un(x, y) and vi(x, y) the limit of sequence (D̺i

0 un)(x, y),

i = 1, 2, . . . , n, Lemma 2.3 implies that (D̺i

0 u)(x, y) = vi(x, y), i = 1, 2, . . . , n. This

proves that X is a Banach space.
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3. Existence results

We assume that

(H1) xµyνf : [0, a] × [0, b] × Rn+1 → [0,+∞), is continuous, where 0 6 µ 6 α − γi,

0 6 ν 6 β − δi, i = 1, 2, . . . , n;

Lemma 3.1. Assume that (H1) holds, then a function u(x, y) ∈ X is a solution

of problem (1) if and only if u(x, y) satisfies the following integral equation

(2) u(x, y) = (Ir
0f)(x, y, u(x, y), (D̺1

0 u)(x, y), . . . , (D̺n

0 u)(x, y))

P r o o f. Let us first prove the necessity. If u ∈ X is a solution of problem (1),

then applying operator Ir
0 to both sides of equation of (1), by the assumption (H1)

and Proposition 1.3, we have

u(x, y) = (Ir
0f)(x, y, u(x, y), (D̺1

0 u)(x, y), . . . , (D̺n

0 u)(x, y))

for all (x, y) ∈ P := [0, a] × [0, b]. If we denote the right-hand side of this relation

by Tu(x, y), then we can check that it is in X . That is, that T maps X into itself.

Indeed, for u ∈ X , by the definition of space X , for each ε > 0, there exist ηi > 0,

i = 0, 1, 2, . . . , n such that, for each (x0, y0) ∈ P , when |(x, y) − (x0, y0)| < ηi,

i = 0, 1, 2, . . . , n, (x, y) ∈ P , we have

‖u(x, y) − u(x0, y0)‖0 < ε

‖(D̺i

0 u)(x, y) − (D̺i

0 u)((x0, y0)‖0 < ε, i = 1, 2, . . . , n.

Then, taking into account the assumption (H1), for any (x0, y0) ∈ P and (x, y) ∈ P

such that |(x, y) − (x0, y0)| < δi, i = 0, 1, 2, . . . , n we have

|xµyνf(x, y, u, (D̺1

0 u), . . . , (D
̺n

0 u)) − xµ
0y

ν
0f(x0, y0, u, (D

̺1

0 u), . . . , (D
̺n

0 u))| < ε

Thus, for u ∈ X , combining with these facts and the definition of T , for each ε > 0,

(x0, y0) ∈ P , let

θ = min
{

ηi,
( Γ(1 − µ+ α)Γ(1 − ν + β)

2ka1+α−µb1+β−νΓ(1 − µ)Γ(1 − ν)

)
1

α−µ

;

( Γ(1 − µ+ α)Γ(1 − ν + β)

2ka1+α−µb1+β−νΓ(1 − µ)Γ(1 − ν)

)
1

β−ν

, i = 0, 1, 2, . . . , n

}

,
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where k is maximum number of xµyν |f(x, y, u, (D̺1

0 u, . . . , (D
̺n

0 u)| + 1 on P ×

[−‖u‖, ‖u‖]n+1, when, for |(x, y) − (x0, y0)| < θ, (x, y) ∈ P , we have

|Tu(x, y) − Tu(x0, y0)|

=
∣

∣

∣

1

Γ(α)Γ(β)

∫ 1

0

∫ 1

0

(1 − s)α−1(1 − t)β−1(xαyβf(xs, yt, u, (D̺1

0 u), . . . , (D
̺n

0 u))

− xα
0 y

β
0 f(x0s, y0t, u, (D

̺1

0 u), . . . , (D
̺n

0 u))) ds dt
∣

∣

∣

6
1

Γ(α)Γ(β)

∫ 1

0

∫ 1

0

(1 − s)α−1(1 − t)β−1|xαyβf(xs, yt, u, (D̺1

0 u), . . . , (D
̺n

0 u))

− xα
0 y

β
0 f(x0s, y0t, u, (D

̺1

0 u), . . . , (D
̺n

0 u)))| ds dt

6
1

Γ(α)Γ(β)

∫ 1

0

∫ 1

0

(1 − s)α−1(1 − t)β−1

× (xα−µyβ−ν |(x)µ(y)νf(xs, yt, u, (D̺1

0 u), . . . , (D
̺n

0 u))

− (x0)
µ(y0)

νf(x0s, y0t, u, (D
̺1

0 u), . . . , (D
̺n

0 u))|

+ |xα−µyβ−ν − xα−µ
0 yβ−ν

0 |(x0)
µ(y0)

νf(x0s, y0t, u, (D
̺1

0 u), . . . , (D
̺n

0 u))|) ds dt

6
ε

Γ(α)Γ(β)

∫ 1

0

∫ 1

0

(1 − s)α−1(1 − t)β−1xα−µyβ−νs−µt−ν ds dt

+
k|xα−µyβ−ν − xα−µ

0 yβ−ν
0 |

Γ(α)Γ(β)

∫ 1

0

∫ 1

0

(1 − s)α−1(1 − t)β−1s−µt−ν ds dt

=
ε

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− s)α−1(y − t)β−1xys−µt−ν ds dt

+
k|xα−µyβ−ν − xα−µ

0 yβ−ν
0 |

Γ(α)Γ(β)

×

∫ x

0

∫ y

0

(x− s)α−1(y − t)β−1x1−α+µy1−β+νs−µt−ν ds dt

6
εa1+α−µb1+β−νΓ(1 − µ)Γ(1 − ν)

Γ(1 − µ+ α)Γ(1 − ν + β)

+
kabΓ(1 − µ)Γ(1 − ν)

Γ(1 − µ+ α)Γ(1 − ν + β)
|xα−µyβ−ν − xα−µ

0 yβ−ν
0 |

In order to estimate |xα−µyβ−ν − xα−µ
0 yβ−ν

0 |, we write

|xα−µyβ−ν − xα−µ
0 yβ−ν

0 | = |xα−µyβ−ν − xα−µ
0 yβ−ν + xα−µ

0 yβ−ν − xα−µ
0 yβ−ν

0 |

6 yβ−ν |xα−µ − xα−µ
0 | + xα−µ

0 |yβ−ν − yβ−ν
0 |

6 bβ−ν |xα−µ − xα−µ
0 | + aα−µ|yβ−ν − yβ−ν

0 |

Next, we estimate |xα−µ − xα−µ
0 |. Without loss of generality, we may assume that

x > x0. Since, by the triangle inequality, |x− x0| 6 |(x, y)− (x0, y0)| < θ, |y− y0| 6

34



|(x, y)−(x0, y0)| 6 θ, thus, for θ 6 x0 < x 6 a, and by means of mean value theorem

of differentiation, we find

xα−µ − xα−µ
0 < (α− µ)θα−µ−1(x− x0) < 2θα−µ

for 0 6 x0 < θ, x 6 2θ. Also, we find that

xα−µ − xα−µ
0 6 xα−µ < 2α−µθα−µ < 2θα−µ,

while for 0 6 x0 < x 6 θ, we find

xα−µ − xα−µ
0 6 xα−µ 6 θα−µ < 2θα−µ.

We can obtain the estimate of |yβ−ν − yβ−ν
0 | by the same way. In consequence, we

obtain

|Tu(x, y) − Tu(x0, y0)| 6
εa1+α−µb1+β−νΓ(1 − µ)Γ(1 − ν)

Γ(1 − µ+ α)Γ(1 − ν + β)

+
kab|xα−µyβ−ν − xα−µ

0 yβ−ν
0 |Γ(1 − µ)Γ(1 − ν)

Γ(1 − µ+ α)Γ(1 − ν + β)

6
εa1+α−µb1+β−νΓ(1 − µ)Γ(1 − ν)

Γ(1 − µ+ α)Γ(1 − ν + β)

+
2ka1+α−µb1+β−νΓ(1 − µ)Γ(1 − ν)

Γ(1 − µ+ α)Γ(1 − ν + β)
(θα−µ + θβ−ν)

6
εa1+α−µb1+β−νΓ(1 − µ)Γ(1 − ν)

Γ(1 − µ+ α)Γ(1 − ν + β)
+ 2ε

Therefore, Tu(x, y) is continuous at the point (x0, y0). It follows from the arbitrary

choice of (x0, y0) that Tu(x, y) is continuous in P , that is, Tu(x, y) ∈ C(P ). On the

other hand, by Propositions 1.1 and 1.2, we see that

(D̺i

0 Tu)(x, y) = (Ir−̺i

0 f)(x, y, u, (D̺1

0 u), . . . , (D
̺n

0 u)), i = 1, . . . , n.

In a similar way, we can obtain that the right-hand side of the above equality belongs

to function space C(P ). That is, u is a solution of integral equation (2).

For sufficiency, applying Dr
0 to both sides of (2), by Proposition 1.2, we obtain

that u satisfies the equation in (1), and that, it follows from the necessity proof

that (Ir
0f)(x, y, u, (D̺1

0 u), . . . , (D
̺n

0 u)) ∈ C(P ). Hence, u(x, 0) = u(0, y) = 0, which

implies that u is a solution of problem (1). The proof is complete. �

Next, define the operator T : X → X by

Tu(x, y) = (Ir
0f)(x, y, u(x, y), (D̺1

0 u(x, y), . . . , (D
̺n

0 u)(x, y)).
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Lemma 3.2. Assume that (H1) holds, then operator T : X → X is completely

continuous.

P r o o f. From (H1) and the proof of necessity in Lemma 3.1 and the Arzela-

Ascoli Theorem, we can easily obtain that T : X → X is completely continuous. �

Theorem 3.3. Assume that (H1) holds, and f is nonnegative, satisfying one of

the following conditions:

(H2) There exist constants ci > 0, i = −1, 0, 1, 2, . . . , n and 0 < τj < 1, j = 0, 1,

2, . . . , n, such that

xµyν |f(x, y, u(x, y), (D̺1

0 u), . . . , (D
̺n

0 u))| 6 c−1 + c0|u|
τ0 +

n
∑

i=1

ci|(D
̺i

0 u)|
τi

for all (x, y) ∈ P .

(H3) There exist constants di > 0, i = 0, 1, 2, . . . , n and ηj > 1, j = 0, 1, 2, . . . , n,

such that

xµyν |f(x, y, u(x, y), (D̺1

0 u), . . . , (D
̺n

0 u))| 6 d0|u|
η0 +

n
∑

i=1

di|(D
̺i

0 u)|
ηi

for all (x, y) ∈ P .

(H4) There exist constants ci > 0, i = −1, 0, 1, 2, . . . , n, satisfying

Γ(1 − µ)Γ(1 − ν)aα−µbβ−ν

Γ(1 − µ+ α)Γ(1 − ν + β)

(

c−1 +

n
∑

i=0

ci

)

6
1

n+ 1

Γ(1 − µ)Γ(1 − ν)aα−γi−µbβ−δi−ν

Γ(1 − µ+ α− γi)Γ(1 − ν + β − δi)

(

c−1 +

n
∑

i=0

ci

)

<
1

n+ 1

i = 1, 2, . . . , n, such that

xµyν |f(x, y, u(x, y), (D̺1

0 u), . . . , (D̺n

0 u))| 6 c−1 + c0|u| +

n
∑

i=1

ci|(D
̺i

0 u)|

for all (x, y) ∈ P .

Then problem (1) has at least a positive solution.

P r o o f. By Lemma 3.1, we know that we only need to consider existence of

fixed point of operator T in X . It follows from Lemma 3.2 that T : X → X is a

completely continuous operator. First, we assume that condition (H2) holds. Let
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τ = max{τ0, τ1, . . . , τn}, and BR = {u ∈ X ; ‖u‖ < R} be a closed, bounded and

convex subset of the function space X , where

R > max

{

1;
2c−1(n+ 1)Γ(1 − µ)Γ(1 − ν)aα−µbβ−ν

Γ(1 − µ+ α)Γ(1 − ν + β)
;

2c−1(n+ 1)Γ(1 − µ)Γ(1 − ν)aα−γi−µbβ−δi−ν

Γ(1 − µ+ α− γi)Γ(1 − ν + β − δi)
;

(

Γ(1 − µ+ α)Γ(1 − ν + β)

2(n+ 1)
n
∑

i=0

(ci + 1)Γ(1 − µ)Γ(1 − ν)aα−µbβ−ν

)
1

1−τ

;

(

Γ(1 − µ+ α− γi)Γ(1 − ν + β − δi)

2(n+ 1)
n
∑

i=0

(ci + 1)Γ(1 − µ)Γ(1 − ν)aα−γi−µbβ−δi−ν

)
1

1−τ
}

,

i = 1, 2, . . . , n.

By (H2), for every u ∈ X , we have

|Tu(x, y)| = |(Ir
0f)(x, y, u, (D̺1

0 u), . . . , (D
̺n

0 u))|

6
1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− s)α−1(y − t)β−1s−µt−ν

×

(

c−1 + c0|u|
τ0 +

n
∑

i=1

ci|(D
̺i

0 u)|
τi

)

ds dt

6
Γ(1 − µ)Γ(1 − ν)aα−µbβ−ν

Γ(1 − µ+ α)Γ(1 − ν + β)

(

c−1 + c0‖u‖
τ0

0 +

n
∑

i=1

ci‖(D
̺i

0 u)‖
τi

0

)

6
Γ(1 − µ)Γ(1 − ν)aα−µbβ−ν

Γ(1 − µ+ α)Γ(1 − ν + β)

(

c−1 +

n
∑

i=0

(ci + 1)Rτi

)

6
Γ(1 − µ)Γ(1 − ν)aα−µbβ−ν

Γ(1 − µ+ α)Γ(1 − ν + β)

(

c−1 +
n

∑

i=0

(ci + 1)Rτ

)

=
Γ(1 − µ)Γ(1 − ν)aα−µbβ−ν

Γ(1 − µ+ α)Γ(1 − ν + β)

(

c−1 +Rτ−1R

n
∑

i=0

(ci + 1)

)

6
R

2(n+ 1)
+

R

2(n+ 1)
=

R

n+ 1
,

|(D̺i

0 T )(x, y)| = |(Ir−̺i

0 f)(x, y, u, (D̺1

0 u), . . . , (D
̺n

0 u))|

6
Γ(1 − µ)Γ(1 − ν)aα−γi−µbβ−δi−ν

Γ(1 − µ+ α− γi)Γ(1 − ν + β − δi)

(

c−1 +
n

∑

i=0

(ci + 1)Rτ−1R

)

6
R

2(n+ 1)
+

R

2(n+ 1)
=

R

n+ 1
.
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Hence, ‖Tu‖ 6 R(n+ 1)−1 +
n
∑

i=1

R(n+ 1)−1 = R for u ∈ BR, that is, T (BR) ⊆ BR.

The Schauder Fixed Point Theorem implies that the operator T has at least a fixed

point u∗ ∈ BR. By Lemma 3.1, problem (1) has a solution u∗ ∈ BR. On the

other hand, by the nonnegativity of f and the monotonicity of (Ir
0 ), we obtain that

u∗(x, y) = Tu∗(x, y) = (Ir
0f)(x, y, u∗, (D̺1

0 u
∗), . . . , (D̺n

0 u∗)) > 0, that is, problem

(1) has a positive solution u∗ ∈ BR.

Secondly, we assume that condition (H3) holds. In a similar way, we can complete

this proof, provided if we take a closed, bounded and convex subset BR = {u ∈

X ; ‖u‖ < R} of the function space X , where

R < min

{

1,

(

Γ(1 − µ+ α)Γ(1 − ν + β)

(n+ 1)
n
∑

i=0

(ci + 1)Γ(1 − µ)Γ(1 − ν)aα−µbβ−ν

)1/(1−η)

,

(

Γ(1 − µ+ α− γi)Γ(1 − ν + β − δi)

(n+ 1)
n
∑

i=0

(ci + 1)Γ(1 − µ)Γ(1 − ν)aα−γi−µbβ−δi−ν

)1/(1−η)}

i = 1, 2, . . . , n, where η = min{η0, η1, . . . , ηn}.

For condition (H4), in a similar way, we can also easily complete this proof. �

Theorem 3.4. Assume that (H1) holds, and f is nonnegative, satisfying the

following condition:

(H5) There exist positive functions g(x, y), hi(x, y) ∈ C(P ), i = 1, 2, . . . , n satisfying

(Ir
0x

−µy−νg)(x, y) +

n
∑

i=1

(Ir−̺i

0 x−µy−νg)(x, y) <
1

2

n
∑

i=1

(Ir
0x

−µy−νhi)(x, y) +

n
∑

i=1

n
∑

j=1

(Ir−̺i

0 x−µy−νhj)(x, y) <
1

2

such that

xµyν |f(x, y, u1, (D
̺1

0 u1), . . . , (D
̺n

0 u1)) − f(x, y, u2, (D
̺1

0 u2), . . . , (D
̺n

0 u2))|

6 g(x, y)|u1 − u2| +

n
∑

i=1

hi(x, y)|(D
̺i

0 u1) − (D̺i

0 u2)|

for all (x, y) ∈ P and u1, u2 ∈ (−∞,+∞).

Then problem (1) has a unique positive solution.

P r o o f. By Lemma 3.1, we know that we only need to consider the existence of

a fixed point of the operator T in X . It follows from the necessity proof of Lemma 3.1

that T : X → X is well defined.
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For ∀u, v ∈ X , by assumption (H5), we have

|Tu(x, y) − Tv(x, y)|

= |(Ir
0f)(x, y, u, (D̺1

0 u), . . . , (D
̺n

0 u)) − (Ir
0f)(x, y, v, (D̺1

0 v), . . . , (D̺n

0 v))|

6 (Ir
0 )

(

x−µy−ν

(

g(x, y)|u− v| +
n

∑

i=1

hi(x, y)|(D
̺i

0 u) − (D̺i

0 v)|

))

6 (Ir
0 )

(

x−µy−ν

(

g(x, y)‖u− v‖0 +

n
∑

i=1

hi(x, y)‖(D
̺i

0 u) − (D̺i

0 v)‖0

))

6 (Ir
0x

−µy−νg)(x, y) +

n
∑

i=1

(Ir
0x

−µy−νhi)(x, y)‖u − v‖

|(D̺i

0 Tu)(x, y) − (D̺i

0 Tv)(x, y)|

= |(Ir−̺i

0 f)(x, y, u, (D̺1

0 u), . . . , (D
̺n

0 u)) − (Ir−̺i

0 f)(x, y, (D̺1

0 v), . . . , (D̺n

0 v))|

6 (Ir−̺i

0 )

(

x−µy−ν

(

g(x, y)|u− v| +

n
∑

j=1

hj(x, y)|(D
̺j

0 u) − (D
̺j

0 v)|

))

6 (Ir−̺i

0 )

(

x−µy−ν

(

g(x, y)‖u− v‖0 +

n
∑

j=1

hj(x, y)‖(D
̺j

0 u) − (D
̺j

0 v)‖0

))

6 (Ir−̺i

0 x−µy−νg)(x, y) +
n

∑

j=1

(Ir−̺i

0 x−µy−νhj)(x, y)‖u− v‖

Hence,

‖Tu− Tv‖ = ‖Tu− Tv‖0 +

n
∑

i=1

‖(D̺i

0 Tu)− (D̺i

0 Tv)‖0

6

(

(Ir
0x

−µy−νg)(x, y) +

n
∑

i=1

(Ir−̺i

0 x−µy−νg)(x, y)

+

n
∑

i=1

(Ir
0x

−µy−νhi)(x, y) +

n
∑

i=1

n
∑

j=1

(Ir−̺i

0 x−µy−νhj)(x, y)

)

‖u− v‖

< ‖u− v‖

which implies that T is a contraction operator. Then the Contraction Principle

assures that the operator T has a unique fixed point u∗ ∈ X . By Lemma 3.1,

problem (1) has a unique solution u∗ ∈ X . By the same reason as in the Theorem 3.3,

problem (1) has a unique positive solution u∗ ∈ X .

R em a r k 3.5. We can define another function space concerning the mixed

Riemann-Liouville fractional derivative, and consider existence and uniqueness of
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solution of systems of partial differential equations of fractional order, which are

analogy with that ones considered by A.N.Vityuk and A.V.Golushkov [5]

(Dri

0 ui)(x, y) = fi[x, y, u1(x, y), . . . , un(x, y), (D̺i

0 u1(x, y), . . . , (D
̺i

0 un(x, y)]

with the initial value conditions

ui,1−ri
(x, 0) = ϕi(x), 0 6 x 6 a

ui,1−ri
(0, y) = ψi(y), 0 6 y 6 b, ϕi(0) = ψi(0)

where ri = (αi, βi), ̺i = (γi, δi), 0 < γi < αi 6 1, 0 < δi < βi 6 1, ui,1−ri
(x, y) =

(I1−ri

0 ui)(x, y), ϕi(x) ∈ AC([0, a]) and ψi(y) ∈ AC([0, b]), i = 1, . . . , n.
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