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RADIO ANTIPODAL COLORINGS OF GRAPHS

Gary Chartrand, David Erwin, Ping Zhang1, Kalamazoo

(Received May 12, 2000)

Abstract. A radio antipodal coloring of a connected graph G with diameter d is an
assignment of positive integers to the vertices of G, with x ∈ V (G) assigned c(x), such that

d(u, v) + |c(u) − c(v)| � d

for every two distinct vertices u, v of G, where d(u, v) is the distance between u and v in
G. The radio antipodal coloring number ac(c) of a radio antipodal coloring c of G is the
maximum color assigned to a vertex of G. The radio antipodal chromatic number ac(G)
of G is min{ac(c)} over all radio antipodal colorings c of G. Radio antipodal chromatic
numbers of paths are discussed and upper and lower bounds are presented. Furthermore,
upper and lower bounds for radio antipodal chromatic numbers of graphs are given in terms
of their diameter and other invariants.
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1. Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of a shortest u–v path in G. A u–v path of length d(u, v) is called a

u–v geodesic. For a vertex v of a connected graph G, the eccentricity e(v) is the
distance between v and a vertex farthest from v. The minimum eccentricity among

the vertices of G is the radius radG and the maximum eccentricity is its diameter
diamG. We refer to [3] for graph theory notation and terminology. Let G be a

connected graph of diameter d and let k an integer such that 1 � k � d. A radio

1Research supported in part by the Western Michigan University Research Development
Award Program
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k-coloring of G is an assignment of colors (positive integers) to the vertices of G such

that
d(u, v) + |c(u)− c(v)| � 1 + k

for every two distinct vertices u, v of G. The radio k-coloring number rck(c) of a

radio k-coloring c of G is the maximum color assigned to a vertex of G. The radio
k-chromatic number rck(G) is min{rck(c)} over all radio k-colorings c of G. A radio

k-coloring c of G is a minimum radio k-coloring if rck(c) = rck(G). A set S of
positive integers is a radio k-coloring set if the elements of S are used in a radio

k-coloring of some graph G and S is a minimum radio k-coloring set if S is a radio
k-coloring set of a minimum radio k-coloring of some graphG. The radio 1-chromatic

number rc1(G) is then the chromatic number χ(G). A radio d-coloring of G is a radio
labeling of G, and the radio d-chromatic number rcd(G) is the radio number rn(G)

that was introduced in [1] and studied further in [2].
A few observations about radio k-colorings will be useful. Let G be a connected

graph with rck(G) = �, where 1 � k � diamG. In any radio k-coloring c of G with
rck(c) = �, certainly some vertex of G is assigned the color �. Also, some vertex of G

is colored 1, for otherwise the new k-coloring obtained from c by replacing c(v) by
c(v) − 1 for each vertex v of G is a radio k-coloring of G as well, contradicting the

fact that rck(G) = �. That is, if c is a radio k-coloring of G with rck(c) = rck(G),
then there exist vertices u and v of G with c(u) = 1 and c(v) = rck(G).

Let c be a radio k-coloring of a graph G with rck(c) = � and let v ∈ V (G)
with c(v) = �. For each integer �′ > �, define a new coloring c′ by c′(v) = �′ and

c′(u) = c(u) for all u ∈ V (G)−{v}. Then c′ is a radio k-coloring ofG with rn(c′) = �′.
This observation yields the following lemma.

Lemma 1.1. Let G be a connected graph with diameter d and k an integer such

that 1 � k � d. If c is a radio k-coloring of G with rck(c) = �, then for each integer

�′ > �, there exists a radio k-coloring c′ of G with rck(c′) = �′.

LetG be a connected graph of order n and diameter d with V (G) = {v1, v2, . . . , vn}.
For a radio k-coloring c of G, the complementary coloring c of c is defined by

c(vi) = (rck(c) + 1)− c(vi)

for all i with 1 � i � n. Since |c(vi) − c(vj)| = |c(vi) − c(vj)| for all i, j with
1 � i < j � n, we have the following result.

Proposition 1.2. Let G be a connected graph with diameter d and k an integer

such that 1 � k � d. If c is a radio k-coloring of G, then c is also a radio k-coloring

of G and rck(c) = rck(c).
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In this paper, we study the radio (d − 1)-colorings of a connected graph G with

diameter d, that is, those radio colorings c of G for which

d(u, v) + |c(u)− c(v)| � diamG

for every two distinct vertices u, v of G. Thus in a radio (d − 1)-coloring of G, it is
possible for two vertices u and v to be colored the same, but only if they are antipodal,
that is, d(u, v) = diamG. For this reason, we also refer to a radio (d− 1)-coloring as
a radio antipodal coloring or, more simply, as an antipodal coloring. The antipodal
coloring number ac(c) of an antipodal coloring c of G is the maximum color assigned

to a vertex of G. The antipodal chromatic number ac(G) of G is min{ac(c)} over
all antipodal colorings c of G. An antipodal coloring c of G is a minimum antipodal

coloring if ac(c) = ac(G).

To illustrate these concepts, consider the graph G of Figure 1(a). Since diamG =
3, it follows that in any antipodal coloring of G, the colors of every two adjacent

vertices must differ by at least 2, the colors of every two vertices whose distance
is 2 must differ by at least 1, and the colors of two antipodal vertices can be the

same. Thus the coloring of G given in Figure 1(b) is an antipodal coloring. In fact,
it can be verified that the antipodal coloring of G given in Figure 1(b) is a minimum

antipodal coloring of G and so ac(G) = 5. The complementary antipodal coloring of
c is illustrated in Figure 1(c).

G :

(a)
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w

u�
(b)
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(c)
4

2

5

1

3�
Figure 1. Minimum antipodal colorings of a graph
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2. Antipodal colorings of paths

We now consider antipodal colorings of paths. We denote the path of order n by
Pn. Thus diamPn = n − 1. Antipodal colorings of Pn for 1 � n � 6 are shown
in Figure 2. In fact, all these colorings are minimum antipodal colorings of the
respective paths. Thus, ac(P1) = 1, ac(P2) = 1, ac(P3) = 2, ac(P4) = 4, ac(P5) = 7,

and ac(P6) = 11. We verify ac(P5) = 7 only.

9 5 1 11 7 3

7 4 1 6 3

3 1 4 2

2 1 2

1 1

1

x u v w y�
Figure 2. Antipodal colorings of Pn for 1 � n � 6

Example 2.1. ac(P5) = 7.

�����. Since the coloring of P5 shown in Figure 2 has antipodal coloring

number 7, ac(P5) � 7. Assume, to the contrary, that ac(P5) < 7. By Lemma 1.1,
there is an antipodal coloring c of P5 with ac(c) = 6. Let P5 : x, u, v, w, y (shown

in Figure 2). We consider the colors of u, v, w. Since the distance between any two
of u, v, and w is at most 2 and diamP5 = 4, it follows that c(u), c(v), and c(w) are

distinct. Let m = min{c(u), c(v), c(w)} and M = max{c(u), c(v), c(w)}. There are
two cases.

Case 1. m < c(v) < M . We may assume that 1 � c(u) < c(v) < c(w) � 6. Since
c(v)−c(u) � 3 and c(w)−c(v) � 3, it follows that c(w) � 7, which is a contradiction.
Case 2. m < c(u) < M . Assume first that 1 � c(v) < c(u) < c(w) � 6. Since

c(u)− c(v) � 3 and c(w) − c(u) � 3, it follows that 4 � c(u) � 5. If c(u) = 4, then
c(v) = 1 and consequently there is no color for x. If c(u) = 5, then c(w) = 6. Since

d(u, w) = 2, it follows that d(u, w) + |c(w) − c(u)| = 3, which is a contradiction.
Next assume that 1 � c(w) < c(u) < c(v) � 6. Then c(u) � 3. On the other hand,
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since d(u, v) = 1 and c(v) � 6, it follows that c(u) � 3. Thus c(u) = 3. Necessarily,

c(w) = 1 and c(v) = 6. Thus there is no color for x. �

In order to provide additional information about the antipodal chromatic numbers
of paths, we present a sufficient condition for the antipodal chromatic number of a

connected subgraph of a connected graph G of diameter d to be bounded above by
ac(G).

Theorem 2.2. Let G be a connected graph and H a connected subgraph of G.

If dG(u, v)− dH(u, v) � diamG− diamH for all u, v ∈ V (H), then ac(H) � ac(G).

�����. Let c be an antipodal coloring of G and u, v ∈ V (H). Since dG(u, v)−
dH(u, v) � diamG− diamH , it follows that

|c(u)− c(v)| � diamG− dG(u, v) � diamH − dH(u, v),

so dH(u, v) + |c(u)− c(v)| � diamH . Hence the restriction of c to H is an antipodal
coloring of H and so ac(H) � ac(G). �

With an additional restriction on the subgraph H in Theorem 2.2, the conclusion

can be strengthened. A subgraph H of a connected G is distance-preserving if
dH(u, v) = dG(u, v) for all u, v ∈ V (H).

Theorem 2.3. LetH be a distance-preserving connected subgraph of a connected
graph G. If diamH < diamG, then ac(H) < ac(G).

�����. Let c be an antipodal coloring of G. Let W ⊆ V (G) such that c(w) = 1

for all w ∈ W . If W ∩ V (H) = ∅, then the result is immediate. So we may assume
that W ∩ V (H) �= ∅. Define a function c′ : V (H)→ � by

c′(v) =

{
c(v)− 1 if v /∈ W,

1 if v ∈ W.

We now show that c′ is an antipodal coloring of H . Let u, v ∈ V (H). If neither u

nor v is in W , then |c′(u)− c′(v)| = |c(u)− c(v)|. Since H is distance-preserving and

diamG − diamH > 0, it follows that dG(u, v) − dH(u, v) = 0 < diamG − diamH .
Thus |c′(u)−c′(v)| = |c(u)−c(v)| � diamG−dG(u, v) � diamH−dH(u, v). If u, v ∈
W , then dG(u, v) = diamG. Since H is distance-preserving, dG(u, v) = dH(u, v),
implying that diamG = diamH , which contradicts the fact that diamG > diamH .

So we assume that exactly one of u, v is in W , say u ∈ W and v /∈ W . Since
diamG � diamH + 1 and H is distance-preserving,

|c′(v) − c′(w)| = |c(v)− 1| − 1 � diamG− dG(v, w) − 1
� (diamH + 1)− dH(v, w) − 1 = diamH + dH(v, w).
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Thus, c′ is an antipodal coloring ofH with ac(c′) < ac(c). Therefore, ac(H) < ac(G).

�

Let n � 4. Since Pn is a distance-preserving subgraph of Pn+1 and diamPn+1 >

diamPn, the following corollary is an immediate consequence of Theorem 2.3.

Corollary 2.4. Let n � 4. Then ac(Pn) < ac(Pn+1).

We now establish an upper bound for the antipodal chromatic number of paths.

Theorem 2.5. For every integer n � 1,

ac(Pn) �
(

n− 1
2

)
+ 1.

�����. Since ac(P1) = ac(P2) = 1, ac(P3) = 2, ac(P4) = 4, ac(P5) = 7, and
ac(P6) = 11, it actually follows that ac(Pn) =

(
n−1
2

)
+ 1 for 1 � n � 6. So we

may assume that n � 7. Let Pn : v1, v2, . . . , vn. We consider two cases, according to
whether n is even or n is odd.

Case 1. n = 2k is even for some integer k � 4. Define a coloring c of P2k by

c(vi) = 1 + (k − i)(n− 2)

for all i with 1 � i � k and

c(vk+j) =

(
n− 1
2

)
+ 1− (j − 1)(n− 2)

for all j with 1 � j � k. Then c(vk) = 1, c(vk+1) =
(
n−1
2

)
+ 1,

c(v1) > c(v2) > . . . > c(vk), and c(vk+1) > c(vk+2) > . . . > c(v2k).

Since c(v1) = 1 + (k − 1)(n− 2) = 1 + (n − 2)2/2 <
(
n−1
2

)
+ 1 = c(vk+1), it follows

that ac(c) = c(vk+1) =
(

n−1
2

)
+ 1. Next we show that c is an antipodal coloring of

P2k. Let u, v ∈ V (P2k). If u, v ∈ {v1, v2, . . . , vk} or u, v ∈ {vk+1, vk+2, . . . , v2k}, then
|c(u)−c(v)| � n−2 by the definition of c. So we assume that u ∈ {v1, v2, . . . , vk} and
v ∈ {vk+1, vk+2, . . . , v2k}. Let u = vi for some i with 1 � i � k. The only possibilities
for a vertex v for which |c(u) − c(v)| < n − 3 are v = vi+k or v = vi+k+1 (where

the latter situation occurs only if 1 � i < k), in which case |c(u) − c(v)| = k − 1.
However, in these cases, |c(u)− c(v)| + d(u, v) � (k − 1) + k = n− 1 = diamPn.
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Case 2. n = 2k + 1 is odd for some integer k � 3. Define a coloring c of P2k+1 by

c(vi) =

(
n− 1
2

)
+ 1− (i− 1)(n− 2)

for all i with 1 � i � k + 1 and

c(vk+j+1) =

(
n− 1
2

)
+ 2− k − (j − 1)(n− 2)

for all j with 1 � j � k. Then ac(c) = c(v1) =
(
n−1
2

)
+ 1. Next we show that c

is an antipodal coloring of P2k+1. Let u, v ∈ V (P2k+1). If u, v ∈ {v1, v2, . . . , vk+1}
or u, v ∈ {vk+2, vk+3, . . . , v2k+1}, then |c(u) − c(v)| � n − 2. So we assume that
u ∈ {v1, v2, . . . , vk+1} and v ∈ {vk+2, vk+3, . . . , v2k+1}. Let u = vi for some i with
1 � i � k+1. The only possibilities for a vertex v for which |c(u)− c(v)| < n− 3 are
v = vi+k or v = vi+k+1 (where the former case can occur only if 2 � i � k + 1 and
the latter case occurs only if 1 � i � k). If v = vi+k, then |c(u)− c(v)| = d(u, v) = k;

while if v = vi+k+1, then |c(u) − c(v)| = k − 1 and d(u, v) = k + 1. Thus, in each
case, d(u, v) + |c(u)− c(v)| = 2k = n− 1. Therefore, c is an antipodal coloring of Pn

for n odd and ac(Pn) �
(
n−1
2

)
+ 1. �

Although we have shown only that ac(Pn) �
(
n−1
2

)
+1 for all n � 1, with equality

holding for 1 � n � 6, there is reason to believe that we may have equality for all n.
We state this as a conjecture.

Conjecture 2.6. For every positive integer n,

ac(Pn) =

(
n− 1
2

)
+ 1.

Regardless of whether this conjecture is true or not, it is useful to know the values

of ac(Pn) for every positive integer n.

3. Bounds for radio antipodal chromatic numbers

Let G be a connected graph of order n and diameter d and let V (G) =

{v1, v2, . . . , vn}, where d(v1, vn) = d. Then the coloring c of G defined by c(v1) =
c(vn) = 1 and c(vi) = 1+ (i− 1)(d− 1) (2 � i � n− 1) is an antipodal coloring of G
with ac(c) = 1 + (n− 2)(d − 1). This observation yields the following upper bound
for ac(G) in terms of the order and diameter of G.
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Observation 3.1. If G is a connected graph of order n and diameter d, then

ac(G) � (n− 2)(d− 1) + 1.

Since the antipodal chromatic number of a connected graph of diameter 2 is the
chromatic number ofG, we will restrict our attention to connected graphs of diameter

at least 3.
If G is a graph containing an edge e such that diamG = diam(G− e), then every

antipodal coloring of G is an antipodal coloring of G−e. This observation yields the
following.

Proposition 3.2. If G is a graph containing an edge e such that diamG =

diam(G− e), then ac(G− e) � ac(G).

Theorem 3.3. If G is a connected graph of order n and diameter d, then

ac(Pd+1) � ac(G) � ac(Pd+1) + (d− 1)(n− d− 1).

�����. Let Pd+1 : v1, v2, . . . , vd+1 be a geodesic in G. We first verify the lower

bound. Let c be an antipodal coloring of G. Then an antipodal coloring c′ of Pd+1

can be obtained from c by defining c′(vi) = c(vi) for all 1 � i � d + 1. Since

ac(c) � ac(c′) � ac(Pd+1), it follows that ac(G) � ac(Pd+1).
For the upper bound, let c′′ be an antipodal coloring of Pd+1 with rn(c′′) =

ac(Pd+1). Let V (G) − V (Pd+1) = {u1, u2, . . . , un−d−1}. Define a coloring c of G by
c(vi) = c′′(vi) for 1 � i � d+1 and c(uj) = ac(Pd+1)+(d−1)j for 1 � j � n−d−1.
Since c is an antipodal coloring of G, it follows that

ac(G) � ac(c) = c(un−d−1) = ac(Pd+1) + (d− 1)(n− d− 1)

as desired. �

The following is a consequence of Theorems 2.5 and 3.3.

Corollary 3.4. If G is a connected graph of order n and diameter d, then

ac(G) � (d− 1)(2n− d− 2)
2

+ 1.

Next we present a lower bound for ac(G) for a connected graph G in terms of its

diameter only. For a set S of vertices of a connected graph G, we define the diameter
of a set S by

diam(S) = max{d(u, v) : u, v ∈ S}.
Thus diam(V (G)) = diamG.
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Lemma 3.5. For every connected graph G,

ac(G) � 1 + max
S⊆V (G)

{(|S| − 1)(diamG− diam(S))} .

�����. Let G be a connected graph with diamG = d, let c be an antipodal
coloring of G, and let S = {v1, v2, . . . , vk} ⊆ V (G). It then suffices to show that

(1) ac(c) � 1 + (|S| − 1)(d− diam(S)).

We may assume that c(v1) � c(v2) � . . . � c(vk). Since ac(c) � 1, it follows
that (1) holds for k = 1; so we may assume that k � 2. Since c(vi+1) − c(vi) �
d− d(vi+1, vi) � d− diam(S) for all i with 1 � i � k − 1, it follows that

c(vk) � c(v1) + (k − 1)(d− diam(S)) � 1 + (k − 1)(d− diam(S)).

Thus ac(c) � c(vk) � 1 + (k − 1)(d− diam(S)), as desired. �

Proposition 3.6. If G is a connected graph of diameter d � 2, then

ac(G) � 1 + d2

4
.

�����. Let u and v be two antipodal vertices of G, that is, d(u, v) = d, and let

P : u = v1, v2, . . ., vd+1 = v be a u–v geodesic. For each integer k with 1 � k � d+1,
let Pk be the subpath v1, v2, . . . , vk of P . Since P is a u–v geodesic, d(vi, vj) = |i− j|
for all vi, vj ∈ V (Pk) and so d(V (Pk)) = k−1. Define f(k) = 1+(k−1)(d− (k−1)),
where 1 � k � d+ 1. It then follows from Lemma 3.5 that

ac(G) � max{f(k) : 1 � k � d+ 1} = f
(d

2
+ 1

)

and we obtain the desired result. �

The lower bound for the antipodal chromatic number of a graph G given in Propo-
sition 3.6 in terms of the diameter of G does not appear to be especially good, sug-

gesting that knowing only the diameter of G is not sufficient to provide potentially
useful information about ac(G). For this reason, we now present lower bounds for

ac(G) in terms of the diameter and (1) the maximum degree of G and (2) the clique
number of G, beginning with the first of these.

Theorem 3.7. If G is a connected graph of diameter d � 3 and maximum degree
∆, then

ac(G) � 2 + ∆(d− 2).
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�����. Let c be an antipodal coloring of G. Let v be a vertex of degree ∆ in G

and let u1, u2, . . . , u∆ be the neighbors of v, where c(u1) � c(u2) � . . . � c(u∆). Since
d(v, ui) = 1 for all i, 1 � i � ∆, it follows that |c(v)− c(ui)| � d−1. Moreover, since
d(ui, uj) � 2 for each pair i, j with 1 � i �= j � ∆, we have |c(ui) − c(uj)| � d− 2.
We now consider three cases, according to how c(v) compares with the numbers
c(u1), c(u2), . . . , c(u∆).

Case 1. c(v) < c(u1). Then

(2) ac(c) � c(u∆) � c(v) + (d− 1) + (∆− 1)(d− 2) � 2 + ∆(d − 2).

Case 2. c(v) > c(u∆). Here too we obtain rn(c) � 2 + ∆(d − 2) by interchanging
c(u∆) and c(v) in (2).
Case 3. c(u1) < c(v) < c(u∆). Then there is a positive integer t < ∆ such that

c(ut) < c(v) < c(ut+1). Observe that

c(u∆)− c(u1) =
t−1∑

i=1

[c(ui+1)− c(ui)] + [c(v)− c(ut)] + [c(ut)− c(v)]

+
∆−1∑

i=t+1

[c(ui+1)− c(ui)]

� (t− 1)(d− 2) + 2(d− 1) + (∆− t− 1)(d− 2).

Thus

ac(c) � c(u∆) � 1 + (t− 1)(d− 2) + 2(d− 1) + (∆− t− 1)(d− 2)
= 2d− 1 + (∆− 2)(d− 2) = 3 +∆(d− 2).

Therefore, ac(G) � 2 + ∆(d− 2). �

The bound in Theorem 3.7 is sharp for graphs with diameter 3. By Theorem 3.7, if
G is a connected graph of diameter 3 and maximum degree ∆, then ac(G) � 2+∆. Let

G be obtained from the path P3 : u, v, w by adding a � 1 new vertices w1, w2, . . . , wa

and joining each wi, 1 � i � a, to the vertex w. Then the maximum degree ∆ of

G is a+ 1 and the diameter of G is 3. Define a coloring c : V (G) → � by c(u) = 2,
c(v) = 4, c(w) = 1, c(w1) = 3, and c(wi) = 5 + (i− 2) for all i with 2 � i � a. The

graph G and the coloring c are shown in Figure 3. It can be verified that c is an
antipodal coloring of G. If a = 1, then G is the path P4 and ac(c) = c(v) = 4. If

a � 2, then ac(c) = c(wa) = 2+∆. Thus in all cases, ac(c) = 2+∆; so ac(G) = 2+∆
by Theorem 3.7.

If G is a connected graph of diameter 4 and maximum degree 2, then G =
P5, C8, C9 and ac(G) � 6 by Theorem 3.7. We have seen that ac(P5) = 7 and it
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Figure 3. A graph G with diameter 3 and ac(G) = 2 +∆
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Figure 4. Minimum antipodal colorings of C8 and C9

can be shown that ac(C8) = 8 and ac(C9) = 9. Minimum antipodal colorings of C8
and C9 are shown in Figure 4.

Hence the bound in Theorem 3.7 is not sharp for graphs with diameter 4 and

maximum degree 2. However, the bound in Theorem 3.7 is sharp for graphs with
diameter 4 and maximum degree at least 3. By Theorem 3.7, ifG is a connected graph

of diameter 4 and maximum degree ∆, then ac(G) � 2+2∆. Let G be obtained from
the path P4 : u, v, w, x, y by adding a � 1 new vertices w1, w2, . . . , wa and joining

each wi, 1 � i � a, to the vertex w. Then the maximum degree ∆ of G is a+ 2 � 3
and the diameter of G is 4. Define a coloring c : V (G) → � by c(u) = 7, c(v) = 4,

c(w) = 1, c(x) = 6, c(y) = 3, and c(wi) = 8 + 2(i− 1) for all i with 1 � i � a. The
graph G and the coloring c are shown in Figure 5. The coloring c is an antipodal

coloring of G with ac(c) = ac(wa) = 8+(a−1)2 = 8+2(∆−3) = 2+2∆. Therefore,
ac(G) = 2 + 2∆ by Theorem 3.7.

The lower bound for ac(G) does not appear to be sharp for connected graphs of

diameter 5 or more and so an improved bound for such graphs is anticipated. The
clique number ω(G) is the maximum order of a complete subgraph of G.

Theorem 3.8. Let G be a connected graph of diameter d � 3 and clique number
ω. Then

ac(G) � 1 + (d− 1)(ω − 1).
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Figure 5. A graph G with diameter 4 and ac(G) = 2 + 2∆

�����. Let U = {u1, u2, . . . , uω} be the set of vertices in some complete
subgraph of G and let c be an antipodal coloring of G. We may assume that c(u1) �
c(u2) � . . . � c(uω). Since d(ui, uj) = 1 for each pair i, j of integers with 1 � i �= j �
ω, it follows that |c(ui)−c(uj)| � d−1. Hence ac(G) � ac(c) � 1+(d−1)(ω−1). �

We now consider a class of graphs of diameter 3. The corona cor(G) of a graph G

with V (G) = {v1, v2, . . . , vn} is that graph of order 2n obtained from G by adding n

new vertices u1, u2, . . . , un and the n new edges uivi (1 � i � n). We now determine

ac(cor(Kn)) for all n � 3.
For n � 4, define a coloring c of cor(Kn) by letting c(vi) = 1 + 2(i − 1) for all i

with 1 � i � n and letting c(u1) = c(u2) = 2n − 2 and c(ui) = 2 + 2(i− 3) for all
3 � i � n. Since c is an antipodal coloring of cor(Kn) with ac(c) = c(vn) = 2n− 1,
it follows that ac(cor(Kn)) � 2n − 1. On the other hand, ac(cor(Kn)) � 2n − 1 by
Theorem 3.8. Thus ac(cor(Kn)) = 2n − 1 for n � 4. Figure 6 shows an antipodal
coloring c of cor(K3) with ac(c) = 6 and so ac(cor(K3)) � 6.

1 3

5

2

4 6

�
Figure 6. An antipodal coloring of cor(K3)

We show, in fact, that ac(cor(K3)) = 6. If this were not the case, then there exists
an antipodal coloring c′ of cor(K3) with ac(c′) = 5. Necessarily, then, the vertices

of K3 are colored 1, 3, and 5 by the coloring c′. However, then the end-vertex
adjacent to the vertex colored 3 cannot be colored by any of the colors from the set

{1, 2, . . . , 5}, which is a contradiction.
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