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MEAN VALUES AND ASSOCIATED MEASURES OF

δ-SUBHARMONIC FUNCTIONS

Neil A. Watson, Christchurch

(Received May 22, 2000)

Abstract. Let u be a δ-subharmonic function with associated measure µ, and let v be a
superharmonic function with associated measure ν, on an open set E. For any closed ball
B(x, r), of centre x and radius r, contained in E, let M(u, x, r) denote the mean value of
u over the surface of the ball. We prove that the upper and lower limits as s, t → 0 with
0 < s < t of the quotient (M(u, x, s)−M(u, x, t))/(M(v, x, s)−M(v, x, t)), lie between the
upper and lower limits as r → 0+ of the quotient µ(B(x, r))/ν(B(x, r)). This enables us to
use some well-known measure-theoretic results to prove new variants and generalizations of
several theorems about δ-subharmonic functions.
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1. Introduction

Let E be an open subset of �n , let u be δ-subharmonic on E, and let v be
superharmonic on E. Let µ and ν be the Borel measures associated with u and v by

the Riesz Decomposition Theorem, so that µ is signed and ν is positive. Let B(x, r)
denote the closed ball with centre x and radius r contained in E, and letM(u, x, r)

denote the spherical mean value of u over ∂B(x, r). We shall prove that the upper
and lower limits as s, t → 0 with 0 < s < t of

(1)
M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

lie between the upper and lower limits as r → 0+ of

(2)
µ(B(x, r))
ν(B(x, r))

.

83



This enables us to use the measure-theoretic results of Besicovitch [3], [4] to study

the behaviour of δ-subharmonic functions.
This work was inspired by a recent paper of Sodin [12]. However, the techniques we

devised have much wider ramifications, so that Sodin’s results appear only as fairly

minor details. We generalize not only Sodin’s results, but also some due to Armitage
[2] and Watson [14]. We also present new analogues of some theorems about Poisson

integrals which appeared in [1], [5], and [16], a new form of the Domination Principle,
and variants of recent results of Fuglede [10].

Our starting point is the well-known formula

M(u, x, s) =M(u, x, t) + pn

∫ t

s

r1−nµ(B(x, r)) dr,

in which 0 < s < t, B(x, t) ⊆ E, and pn = max{1, n − 2}. See, for example, [2]
Lemma 3. We shall put

Iµ(x; s, t) = pn

∫ t

s

r1−nµ(B(x, r)) dr.

Then the quotient (1) can be written as either

(3)
Iµ(x; s, t)
Iν(x; s, t)

or

(4)
M(u, x, s)−M(u, x, t)

Iν(x; s, t)
.

From (3) it is easy to see the connection with (2).

If we take ν to be the Lebesgue measure λ, we have

Iλ(x; s, t) = pnvn(t2 − s2)/2,

where vn = λ(B(0, 1)). Then, up to a multiplicative constant, (4) becomes

M(u, x, s)−M(u, x, t)
t2 − s2

.

Theorem 3 below gives conditions on this quotient which ensure that µ can be written
in the form

µ = ω −
∑

j

cjδj
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where ω is a positive measure, each cj is a specific positive constant, each δj is a unit

mass at a given point xj , and there are countably many indices. This is analogous
to decomposition formulas for the boundary measures of Poisson integrals given in
[5], [1], and [16].

Theorem 4 shows how the quotient (4) can be used to determine which sets are
positive for µ. Roughly, if

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
Iν(x; s, t)

� 0

for all x ∈ S, then S is positive for µ. The condition can be weakened on a ν-null

subset of S. This result contains as special cases those due to Sodin [12], which
include the one known as Grishin’s lemma [11].

Theorems 5 and 6 generalize results of Armitage [2] by extending them to points
where his conditions that an infinity occur no longer hold. Theorems 10 and 11

similarly extend results of Watson [14].

By analogy with results on half-space Poisson integrals given in [1] and [16], Theo-

rem 7 gives conditions on the quotient (1) which ensure that u−Av is superharmonic
for some real number A. For example, the condition

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s) −M(v, x, t)

� A

for all x ∈ E, is sufficient. A minor modification of the proof, in the special case

where u is a positive superharmonic function, E is Greenian, and v = GEν is a Green
potential, yields the following domination principle as Theorem 8: If

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

is never −∞, and is greater than or equal to 1 for ν-almost all x, then u � v.

In Theorem 9, we use (1) to determine the µ-null subsets of E. One of its corollaries
is an extension to δ-subharmonic functions of the fact that polar sets are null for the

restriction of ν to the set where v is finite. A different such extension was established
by Fuglede [10].

Given a Borel subset B of E, we denote by µB the restriction of µ to B.
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2. The measure-theoretic connection

Theorem 1 contains the necessary measure theory. It is implicit in [15], but may
not have been stated explicitly before. References are given to the original papers of

Besicovitch; an alternative source is [9].

Theorem 1. Let µ be a signed measure and ν a positive measure on E. Let

f(x) = lim
r→0

µ(B(x, r))
ν(B(x, r))

whenever the limit exists, let Z+ = {x ∈ E : f(x) = ∞}, and let Z− = {x ∈
E : f(x) = −∞}. Then f is defined and finite ν-a.e. on E, and there are positive

ν-singular measures σ+ and σ−, concentrated on Z+ and Z− respectively, such that

(5) dµ = f dν + dσ+ − dσ−.

�����. By [3] Theorem 2, f is defined and finite ν-a.e. By [4] Theorem 6, f
is the Radon-Nikodým derivative of µ with respect to ν, so that (5) holds with σ+

and σ− the positive and negative variations of the ν-singular part of µ.
To show that σ+ is concentrated on Z+, we put dω = f dν − dσ−. Then both ν

and ω are σ+-singular, so that by [3] Theorem 3,

lim
r→0

ν(B(x, r))
σ+(B(x, r))

= 0

and

lim
r→0

µ(B(x, r))
σ+(B(x, r))

= lim
r→0

ω(B(x, r))
σ+(B(x, r))

+ 1 = 1,

for σ+-almost all x. Hence f(x) =∞ for σ+-almost all x, so that σ+ is concentrated

on Z+. Similarly, σ− is concentrated on Z−.

Corollary 1. Let µ be a signed measure and ν a positive measure on E, and let

S be a Borel subset of E. If

(6) lim sup
r→0

µ(B(x, r))
ν(B(x, r))

> −∞

for all x ∈ S at which the upper limit is defined, and

(7) lim sup
r→0

µ(B(x, r))
ν(B(x, r))

� A

for ν-almost all x ∈ S, then (µ−Aν)S � 0.
�����. By Theorem 1, dµS = f dvS + dσ

+
S − dσ−S with f(x) equal to the

upper limit in (7) and σ−S concentrated on {x ∈ S : f(x) = −∞}. By (6) this set is
empty, and by (7) f � A. Hence dµS −AdνS � dσ+S � 0. �
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Corollary 2. Let µ be a signed measure and ν a positive measure on E. Let S

be a Borel subset of E such that, for each x ∈ S, either

(8) lim
r→0

µ(B(x, r))
ν(B(x, r))

= 0

or the limit does not exist. Then µS = 0.

�����. By Theorem 1, {x ∈ E : (8) holds} is µ-null, and the set of points
where f is undefined is also µ-null. �

We include for completeness the definition of

lim sup
0<s<t→0

f(s, t),

although it is the natural one. Those of the corresponding lim inf and lim are then
obvious.

Definition. Suppose that f(s, t) is defined as an extended-real number whenever
0 < s < t < a, and that � ∈ �. We write

lim sup
0<s<t→0

f(s, t) = �

if to each ε > 0 there corresponds δ > 0 such that f(s, t) < �+ ε whenever 0 < s <

t < δ, and there is a sequence {(sk, tk)} such that 0 < sk < tk → 0 and f(sk, tk)→ �

as k →∞. We also write
lim sup
0<s<t→0

f(s, t) =∞

if there is a sequence {(sk, tk)} such that 0 < sk < tk → 0 and f(sk, tk) → ∞.
Finally, we write

lim sup
0<s<t→0

f(s, t) = −∞

if to each A ∈ � there corresponds δ > 0 such that f(s, t) < A whenever 0 < s <

t < δ.

We can now establish the connection on which all our results are based.

Theorem 2. If u is δ-subharmonic on E with associated measure µ, and ν is a

positive measure on E, then

(9) lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
Iν(x; s, t)

� lim sup
r→0

µ(B(x, r))
ν(B(x, r))
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whenever the latter exists. The reverse inequality holds for lower limits, and

(10) lim
0<s<t→0

M(u, x, s)−M(u, x, t)
Iν(x; s, t)

= lim
r→0

µ(B(x, r))
ν(B(x, r))

for ν-almost all x ∈ E.

�����. Given x for which the upper limit on the right-hand side of (9) exists,

denote that upper limit by �. If � = ∞ there is nothing to prove. Otherwise, given
a real number A > � we can find δ > 0 such that

µ(B(x, r))
ν(B(x, r))

< A whenever 0 < r < δ.

If ν(B(x, r)) = 0 for all r < η (� δ), then the above inequality can hold only if

µ(B(x, r)) < 0 for all such r. Then Iν(x; s, t) = 0 whenever t < η, and

M(u, x, s)−M(u, x, t) = Iµ(x; s, t) < 0,

so that (9) holds with both sides −∞. On the other hand, if ν(B(x, r)) > 0 for all
r, then

M(u, x, s)−M(u, x, t)
Iν(x; s, t)

=
pn

Iν(x; s, t)

∫ t

s

r1−nν(B(x, r))
µ(B(x, r))
ν(B(x, r))

dr < A

whenever 0 < s < t < δ, and again (9) holds.

Obviously (9) implies the reverse inequality for lower limits. Now (10) follows
from [3] Theorem 2. �

The particular cases of Theorem 2, in which ν is the Lebesgue measure λ or the
unit mass δx at x, are of special importance.

Corollary 1. If u is δ-subharmonic with associated measure µ on E, then

lim
0<s<t→0

M(u, x, s)−M(u, x, t)
t2 − s2

=
pn

2
lim
r→0

µ(B(x, r))
rn

whenever the latter exists.

�����. Whenever B(x, t) ⊆ E, we have

Iλ(x; s, t) = pn

∫ t

s

r1−n(vnrn) dr = pnvn(t
2 − s2)/2,

so that the result follows from Theorem 2. �
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Corollary 2. If u is δ-subharmonic with associated measure µ on E, then for

each x ∈ E we have

µ({x}) = lim
0<s<t→0

M(u, x, s)−M(u, x, t)
log(t/s)

if n = 2,

and

µ({x}) = lim
0<s<t→0

M(u, x, s)−M(u, x, t)
s2−n − t2−n

if n � 3.

�����. Writing δ = δx, we have

Iδ(x; s, t) = pn

∫ t

s

r1−n dr =

{
log(t/s) if n = 2,

s2−n − t2−n if n � 3,

}

so that Theorem 2 gives the result. �

3. A representation theorem

Theorem 2 and its corollaries enable us to prove a new representation theorem
for δ-subharmonic functions, which is analogous to known results about Poisson

integrals on a ball due to Bruckner, Lohwater and Ryan [5], and on a half-space due
to Armitage [1] and Watson [16].

Theorem 3. Let u be δ-subharmonic with associated measure µ on E. If

(11) lim
0<s<t→0

M(u, x, s)−M(u, x, t)
t2 − s2

� 0

for λ-almost all x ∈ E, and

(12) lim
0<s<t→0

M(u, xj , s)−M(u, xj , t)
t2 − s2

= −∞

for only the points xj in a countable set C, then µ can be written in the form

(13) µ = ω +
∑

j

(
lim

0<s<t→0
M(u, xj , s)−M(u, xj , t)

log(t/s)

)
δj

if n = 2,

(14) µ = ω +
∑

j

(
lim

0<s<t→0
M(u, xj , s)−M(u, xj , t)

s2−n − t2−n

)
δj
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if n � 3, where ω is a positive measure such that ω(C) = 0, and δj is the unit mass

at xj .

�����. In view of Theorem 2 Corollary 1, condition (11) implies that

lim
r→0

µ(B(x, r))
λ(B(x, r))

� 0

for λ-almost all x ∈ E, and condition (12) implies that

lim
r→0

µ(B(x, r))
λ(B(x, r))

= −∞

only if x ∈ C. Therefore, by Theorem 1,

dµ = f dλ+ dσ+ − dσ−

with f � 0 and σ− concentrated on C. Furthermore, for each j, Theorem 2 Corol-
lary 2 shows that the limits in (13) and (14) are equal to µ({xj}). Thus

dµ = (f dλ+ dσ+) +
∑

j

µ({xj})δj

yields the required representation. �

In particular, Theorem 3 allows the following characterization of a point mass.

Corollary. Let u be δ-subharmonic with associated measure µ on E. If

lim
0<s<t→0

M(u, x, s)−M(u, x, t)
t2 − s2

is 0 for λ-almost all x ∈ E, is finite except at x0, and is ∞ at x0, then µ is a positive

constant multiple of the unit mass at x0.

�����. Applying Theorem 3 to −u, we obtain

−µ = ω −
(
lim

0<s<t→0
M(u, x0, s)−M(u, x0, t)

log(t/s)

)
δ0

if n = 2,

−µ = ω −
(
lim

0<s<t→0
M(u, x0, s)−M(u, x0, t)

s2−n − t2−n

)
δ0

if n � 3, where ω is a positive measure such that ω({x0}) = 0. By Theorem 2
Corollary 2, −µ = ω − µ({x0})δ0 in either case. Applying Theorem 3 to u itself, we

find that µ is positive, so that ω is null. �
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4. Positive sets for associated measures

The proof of its corollary illustrates how Theorem 3 can sometimes be used to show
that the measure associated with a δ-subharmonic function is positive. Theorem 4

below is a refinement that allows us to determine which are the positive sets for the
measure. It is similar in essence to the case Y = ∅ of [15] Theorem 6.
Recall that µS denotes the restriction of µ to the set S.

Theorem 4. Let u be δ-subharmonic with associated measure µ on E, let S be

a Borel subset of E, and let ν be a positive measure on E. If

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
Iν(x; s, t)

is not −∞ for any x ∈ S, and is nonnegative for ν-almost all x ∈ S, then µS � 0.

�����. By Theorem 2,

lim sup
r→0

µ(B(x, r))
ν(B(x, r))

is not −∞ for any x ∈ S, and is nonnegative for ν-almost all x ∈ S. Therefore
µS � 0, by Theorem 1 Corollary 1. �

Theorem 4 contains the results of Sodin [12] which, in turn, are extensions of

Grishin’s lemma [11]. Other extensions of Grishin’s lemma were obtained by Fuglede
[10]. Our next corollary extends Sodin’s theorem to n-dimensions.

Corollary 1. Let u be δ-subharmonic with associated measure µ on E, and let

S be the set of points in E with the following property: There are sequences {sk}
and {tk}, which depend on the point x, such that 0 < sk < tk → 0 and

(15) M(u, x, sk) � M(u, x, tk)

for all k. Then µS � 0.

�����. Sodin proved that S is a Borel set. If x ∈ S, then

lim inf
0<s<t→0

M(u, x, s)−M(u, x, t)
Iλ(x; s, t)

� 0.

Therefore µS � 0, by Theorem 4. �
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Theorem 4 is much stronger than its first corollary. To see this, consider the case

where dµ(y) = f(y) dy with f continuous and nonnegative, and with the zero set Z

of f nonempty but with empty interior. Then, whenever B(x, t) ⊆ E and 0 < s < t,
we haveM(u, x, s) > M(u, x, t), so that the corollary can only be applied to −u and

not to u, and it yields only the inequality µ � 0. However, for any x ∈ Z we have

lim
r→0

µ(B(x, r))
λ(B(x, r))

= 0,

so that

lim
0<s<t→0

M(u, x, s)−M(u, x, t)
Iλ(x; s, t)

= 0

by Theorem 2. Now Theorem 4 can be applied to both u and −u (with S = Z), and

confirms that µZ is null.

The next corollary generalizes both of Sodin’s “remarks” to n-dimensions, with
weaker hypotheses.

Corollary 2. Let u be δ-subharmonic with associated measure µ on E, and let

S be a Borel subset of E on which there is defined a positive measure ν such that

for some constant β � 0
ν(B(x, r)) � κrβ

whenever x ∈ S and 0 < r < rx, where κ = κx > 0. Let α > 0, and let h be an

absolutely continuous function on [0, α] such that h′(r) = o(rβ−n+1) as r → 0. If,
to each x ∈ S, there correspond sequences {sk} and {tk} such that 0 < sk < tk → 0
and

M(u, x, sk)−M(u, x, tk) � h(sk)− h(tk) ∀k,

then µS � 0.

�����. Given x ∈ S and ε > 0, for all sufficiently large k we have

M(u, x, sk)−M(u, x, tk) � −
∫ tk

sk

h′(r) dr � −εκpn

∫ tk

sk

rβ−n+1 dr

� −εpn

∫ tk

sk

r1−nν(B(x, r)) dr = −εIν(x; sk, tk),

so that

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
Iν(x; sk, tk)

� 0.

By Theorem 4, µS � 0. �
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In the above corollary, the case n = β = 2 is [12] Remark 1, which does not

mention a measure ν. The choice ν = λ gives the result. The case n = 2, β > 0, is
[12] Remark 2. With regard to the existence of ν, Sodin mentioned only the work
of Tricot [13]. However, there are many other results in this direction. For example,

if S is a q-set for some q ∈ [0, n] (as, for example, in [8]), then the q-dimensional
Hausdorff measure ν on S satisfies ν(B(x, r)) ∼ (2r)q as r → 0, at every regular

point of S.

5. Specific rates

The next theorem generalizes one due to Armitage [2], which we deduce as a
corollary.

Theorem 5. Let u be δ-subharmonic with associated measure µ on E. Let α > 0,

let f be a positive, increasing, absolutely continuous function on [0, α], and let

f̂(s, t) = pn

∫ t

s

r1−nf(r) dr

whenever 0 � s < t � α. Then

(16) lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)

f̂(s, t)
� lim sup

r→0

µ(B(x, r))
f(r)

for every x ∈ E.

�����. Given x, define a positive measure ν on B(x, α) by putting

dν(y) = ‖x− y‖1−nf ′(‖x− y‖) dy + σnf(0) dδx(y),

where σn is the surface area of the unit sphere in �n . Then

ν(B(x, r)) = σn

∫ r

0
f ′(s) ds+ σnf(0) = σnf(r)

if 0 < r � α, so that

Iν(x; s, t) = pn

∫ t

s

r1−nσnf(r) dr = σnf̂(s, t)

whenever 0 < s < t � α. The result now follows from Theorem 2. �
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Armitage’s result did not involve differences of spherical mean values, and so

required an additional hypothesis on f̂ , as follows.

Corollary 1. Let u be δ-subharmonic with associated measure µ on E. Let

α > 0, let f be a positive, increasing, absolutely continuous function on [0, α], and
let

f̂(s, t) = pn

∫ t

s

r1−nf(r) dr

whenever 0 � s < t � α. If f̂(0, α) =∞, then

lim sup
s→0

M(u, x, s)

f̂(s, α)
� lim sup

r→0

µ(B(x, r))
f(r)

for all x ∈ E.

�����. Given x ∈ E, let � denote the left-hand side of (16). In view of (16), it
suffices to prove that

(17) lim sup
s→0

M(u, x, s)

f̂(s, α)
� �.

We may assume that � < ∞. Given a real number A > �, choose δ > 0 such that

M(u, x, s)−M(u, x, t)

f̂(s, t)
< A whenever 0 < s < t < δ.

Fix t < δ. Given ε > 0, choose η < t such that both

M(u, x, t)

f̂(s, α)
< ε and

f̂(t, α)

f̂(s, α)
< ε

whenever 0 < s < η. Then

M(u, x, s)

f̂(s, α)
=
M(u, x, s)−M(u, x, t)

f̂(s, t)
· f̂(s, t)

f̂(s, α)
+
M(u, x, t)

f̂(s, α)

< A
(
1− f̂(t, α)

f̂(s, α)

)
+ ε < max{A, (1− ε)A} + ε

if 0 < s < η, and (17) follows. �
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The extra generality of Theorem 5 over Corollary 1 allows us to generalize the

corollary of Armitage’s theorem and remove its restrictions on q.

Corollary 2. Let u be δ-subharmonic with associated measure µ on E, and let

x ∈ E. Then

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
sq+2−n − tq+2−n

�
( n− 2

n− q − 2
)
lim sup

r→0

µ(B(x, r))
rq

if 0 � q < n− 2,

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
log(t/s)

� pn lim sup
r→0

µ(B(x, r))
rn−2 ,

and

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
tq+2−n − sq+2−n

�
( pn

q + 2− n

)
lim sup

r→0

µ(B(x, r))
rq

if q > n− 2.
�����. If we take f(r) = rq (q � 0) in Theorem 5, so that f̂(s, t) =

pn

∫ t

s

rq+1−n dr, then f̂(s, t) is equal to pn times

sq+2−n − tq+2−n

n− q − 2 if q < n− 2,

log(t/s) if q = n− 2,
tq+2−n − sq+2−n

q + 2− n
if q > n− 2,

which gives the result. �

If S is a regular q-set [8] contained in E, and µ is the q-dimensional Hausdorff
measure on S, then

lim
r→0

µ(B(x, r))
rq

= 2q

for µ-almost all x ∈ S. Therefore, for such x,

lim
0<s<t→0

M(u, x, s)−M(u, x, t)
sq+2−n − tq+2−n

=
pn2q

n− q − 2
if q 	= n− 2, and

lim
0<s<t→0

M(u, x, s)−M(u, x, t)
log(t/s)

= pn2
q

if q = n−2, for any superharmonic function u whose associated measure is µ. These
identities follow easily from Theorem 5 Corollary 2.
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6. Conditions for superharmonicity

Theorem 2 can easily be re-written in a form that generalizes [2] Theorem 1, which
we deduce as a corollary. This formulation is then used to provide conditions under

which u−Av is superharmonic for some real number A, as well as a new version of
the domination principle.

Theorem 6. Let u be δ-subharmonic and v superharmonic on E, with associated

measures µ and ν respectively. Then

(18) lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

� lim sup
r→0

µ(B(x, r))
ν(B(x, r))

whenever the latter exists. The reverse inequality holds for lower limits, and

lim
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

= lim
r→0

µ(B(x, r))
ν(B(x, r))

for ν-almost all x ∈ E.

�����. The result follows from Theorem 2, because

M(v, x, s)−M(v, x, t) = Iν(x; s, t)

by [2] Lemma 3. �

Corollary. Let u be δ-subharmonic and v superharmonic on E, with associated

measures µ and ν respectively. If x ∈ E and v(x) =∞, then

lim sup
s→0

M(u, x, s)
M(v, x, s)

� lim sup
r→0

µ(B(x, r))
ν(B(x, r))

and the reverse inequality holds for lower limits.

�����. Given x ∈ E such that v(x) = ∞, let � denote the left-hand side of
(18). In view of (18), it suffices to prove that

(19) lim sup
s→0

M(u, x, s)
M(v, x, s)

� �.

We may assume that � < ∞. Given a real number A > �, choose δ > 0 such that

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

< A whenever 0 < s < t < δ.
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Since M(v, x, r) → ∞ as r → 0, we may suppose thatM(v, x, r) > 0 for all r < δ.

Fix t < δ. Given ε > 0, choose η < t such that both

M(v, x, t)
M(v, x, s)

< ε and
M(u, x, t)
M(v, x, s)

< ε

whenever 0 < s < η. Then

M(u, x, s)
M(v, x, s)

=
M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

(
1− M(v, x, t)

M(v, x, s)

)
+
M(u, x, t)
M(v, x, s)

< max{A, (1− ε)A}+ ε

if 0 < s < η. This proves (19). �

We now use Theorem 6 to prove analogues of a domination theorem and a unique-

ness theorem about Poisson integrals on half-spaces given in [1] and [16]. Conditions
for the measure to be positive or null in that context translate into conditions for

superharmonicity or harmonicity here.

Theorem 7. Let u be δ-subharmonic on E, and let v be superharmonic on E

with associated measure ν. If

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

is never −∞, and is greater than or equal to A for ν-almost all x, then u − Av is

superharmonic on E.

�����. Let µ be the measure associated to u. By Theorem 6, our hypotheses

imply that

lim sup
r→0

µ(B(x, r))
ν(B(x, r))

is never −∞, and is greater than or equal to A for ν-almost all x. Therefore, we can
use Theorem 1 Corollary 1 to show that µ−Aν � 0. Hence u−Av is superharmonic

on E. �

Note that the case A = 0 of Theorem 7 gives a condition for u itself to be superhar-

monic. Theorem 7 is analogous to both [16] Theorem 2 and an earlier result about
Poisson integrals on a disc, [5] Theorem 2. It also implies the following condition for

u to be harmonic; compare [1] Theorem 4 and the comment on that result in [16]
(p. 470).
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Corollary. Let u be δ-subharmonic on E, and let v be superharmonic on E with

associated measure ν. If

lim
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

is finite whenever it exists, and is 0 for ν-almost all x, then u is harmonic on E.

�����. Applying Theorem 7 to both u and −u, we see that both functions are
superharmonic on E. �

A minor variation in the proof of Theorem 7 yields a new form of the Domination
Principle ([7], pp. 67, 194).

Theorem 8. Let E be Greenian, let v = GEν be the Green potential of a positive

measure ν on E, and let u be a positive superharmonic function on E. If

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

is never −∞, and is greater than or equal to 1 for ν-almost all x, then u � GEν.

�����. Let µ be the measure associated to u. As in the proof of Theorem 7, our
hypotheses imply that µ � ν, so that GEµ � GEν. Since u is positive, its greatest

harmonic minorant is nonnegative, and so u � GEν. �

7. Null sets for associated measures

Theorem 4 obviously implies a condition for a set to be null for the associated mea-
sure µ. In this section we state the result explicitly and relate it to known theorems.

For example, if u is superharmonic on E and S = {x ∈ E : u(x) < ∞}, it is well-
known that any polar subset of E is µS-null ([7], p. 68). That result was generalized

to δ-subharmonic functions, with S replaced by {x ∈ E : fine lim inf
y→x

|u(y)| < ∞}, by
Fuglede [10] Theorem 2.1. Theorem 9 Corollary 2 gives a different generalization.

Theorem 9. Let u be δ-subharmonic and v superharmonic on E, with associated

measures µ and ν respectively, and let S be a Borel subset of E. If

lim
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

is not infinite for any x ∈ S, and is zero for ν-almost all x ∈ S, then µS is null.

�����. Write M(v, x, s) −M(v, x, t) as Iν(x; s, t), and apply Theorem 4 to
both u and −u. �
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The first corollary gives a restricted version of the theorem which involves quotients

of the formM(u, x, s)/M(v, x, s), and thus parallels Theorem 6 Corollary.

Corollary 1. Let u be δ-subharmonic with associated measure µ on E, let v be

superharmonic on E, and let S be a Borel subset of E. If, for each x ∈ S, v(x) =∞
and there is a null sequence {rk} such that

(20) lim
k→∞

M(u, x, rk)
M(v, x, rk)

= 0,

then µS is null.

�����. For any x ∈ S we haveM(v, x, r) → ∞ as r → 0. Therefore, for any
fixed t such that B(x, t) ⊆ E,

lim
k→∞

M(u, x, rk)−M(u, x, t)
M(v, x, rk)−M(v, x, t)

= 0

in view of (20). Therefore

lim
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

is zero if it exists, and it exists for ν-almost all x (where ν is the measure associated

to v) by Theorem 6. Now Theorem 9 shows that µS is null. �

Corollary 2. Let u be δ-subharmonic with associated measure µ on E. If S is a

Borel subset of E such that for each x ∈ S

(21) lim inf
r→0

|M(u, x, r)| < ∞,

then any polar subset of E is µS-null.

�����. Let N be a polar subset of E, and let v be a superharmonic function on
E such that v(x) =∞ for every x ∈ N . Then, for any x ∈ S ∩N , the condition (21)
implies the existence of a null sequence {rk} such that (20) holds. By Corollary 1,
µS∩N is null. �

Corollary 1 is considerably stronger than Corollary 2. To illustrate this, we con-

sider an open ball B with a Gδ polar subset N . We construct two positive superhar-
monic functions u, v on B, with u(x) = v(x) =∞ for all x ∈ N , such that µ(N) = 0
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(see [2], p. 61) and ν(B \N) = 0 (see [6]), where µ, ν are the measures associated to

u, v respectively. Since µ and ν are mutually singular, we have

lim
r→0

µ(B(x, r))
ν(B(x, r))

= 0

for ν-almost all x [3], so that

lim
r→0

M(u, x, r))
M(v, x, r))

= 0

by [2] Theorem 1. So Corollary 1 confirms that there is a ν-null set M such that

µN\M is null, but Corollary 2 is inapplicable because (21) fails to hold for any x ∈ N .

8. More extensions of known results

We conclude with two extensions of results in [14].

Theorem 10. Let u be δ-subharmonic and v superharmonic onE, with associated

measures µ and ν respectively. Let

f(x) = lim
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s) −M(v, x, t)

whenever the limit exists, let Z+ = {x ∈ E : f(x) = ∞}, and let Z− = {x ∈
E : f(x) = −∞}. Then f is defined and finite ν-a.e. on E, and there are positive

ν-singular measures σ+ and σ−, concentrated on Z+ and Z− respectively, such that

dµ = f dν + dσ+ − dσ−.

�����. By Theorem 6,

f(x) = lim
r→0

µ(B(x, r))
ν(B(x, r))

whenever this limit exists. The result now follows from Theorem 1. �

Note that, if f(x) is finite whenever it exists, then µ is absolutely continuous with
respect to ν.

Theorem 10 generalizes [14] Theorem 6, which we now deduce as a corollary.

Corollary. Let u be δ-subharmonic and v superharmonic on E, with associated

measures µ and ν respectively, let X = {x ∈ E : v(x) =∞}, let

g(x) = lim
r→0

M(u, x, r)
M(v, x, r)
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whenever the limit exists, let Z+ = {x ∈ X : g(x) = ∞}, and let Z− = {x ∈
X : g(x) = −∞}. Then g is defined and finite ν-a.e. on X , and there are positive

ν-singular measures σ+ and σ−, concentrated on Z+ and Z− respectively, such that

dµX = g dνX + dσ+ − dσ−.

�����. If x ∈ X , then

lim sup
r→0

M(u, x, r)
M(v, x, r)

� lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

by (19), and the reverse inequality holds for lower limits. Therefore g(x) is equal to
the f(x) in Theorem 10, whenever f(x) exists. The result follows. �

Theorem 10 enables us to prove a corresponding generalization of [14] Theorem 8,
as follows. This generalization provides conditions under which a Borel set is a pos-

itive set for the Riesz measure of a δ-subharmonic function, whereas [14] Theorem 8
applied only to a Borel polar set.

Theorem 11. Let u be δ-subharmonic and v superharmonic onE, with associated

measures µ and ν respectively. Let q ∈ [0, n− 2], and let S be a Borel subset of E.

If

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

> −∞

for all x ∈ S \ Y , where Y is an mq-null Borel set, if

lim sup
0<s<t→0

M(u, x, s)−M(u, x, t)
M(v, x, s)−M(v, x, t)

� 0

for ν-almost all x ∈ S \ Y , and if

(22) lim inf
r→0

rn−q−2M(u, x, r) > −∞

for |µ|-almost all x ∈ Y , then µS � 0. If (22) is replaced by

lim inf
r→0

rn−q−2M(u, x, r) � 0,

then the result remains valid if 0 < mq(Y ) < ∞.

�����. Follow the proof of [14] Theorem 8, but use Theorem 10 above instead

of [14] Theorem 6. �
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