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THE INDEPENDENT RESOLVING NUMBER OF A GRAPH
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To the Memory of W.T. Tutte

Abstract. For an ordered set W = {w1, w2, . . . , wk} of vertices in a connected graph G
and a vertex v of G, the code of v with respect to W is the k-vector

cW (v) = (d(v, w1), d(v, w2), . . . , d(v, wk)).

The setW is an independent resolving set for G if (1)W is independent in G and (2) distinct
vertices have distinct codes with respect to W . The cardinality of a minimum independent
resolving set in G is the independent resolving number ir(G). We study the existence of
independent resolving sets in graphs, characterize all nontrivial connected graphs G of order
n with ir(G) = 1, n − 1, n− 2, and present several realization results. It is shown that for
every pair r, k of integers with k > 2 and 0 6 r 6 k, there exists a connected graph G with
ir(G) = k such that exactly r vertices belong to every minimum independent resolving set
of G.
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MSC 2000 : 05C12, 05C69

1. Introduction

Independent sets of vertices in graphs is one of the most commonly studied con-

cepts in graph theory. The independent sets of maximum cardinality are called
maximum independent sets and these are the independent sets that have received

the most attention. The number of vertices in a maximum independent set in a
graph G is the independence number (or vertex independence number) of G and is

denoted by β(G). There are also certain independent sets of minimum cardinality
that are of interest.
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Ordinarily, a graph contains many independent sets. An independent set of ver-

tices that is not properly contained in any other independent set of vertices is a
maximal independent set of vertices. The minimum number of vertices in a maximal
independent set is denoted by i(G). This parameter is also called the independent
domination number as it is a smallest cardinality of an independent set of vertices
that dominate all vertices of G.

Some graphs contain (ordered) independent setsW such that the vertices of G are
uniquely distinguished by their distances from the vertices of W . The goal of this

paper is to study the existence of such independent sets in graphs and, when they
exist, to investigate the minimum cardinality of such a set.

The distance d(u, v) between two vertices u and v in a connected graph G is the

length of a shortest u−v path inG. For an ordered setW = {w1, w2, . . . , wk} ⊆ V (G)
and a vertex v of G, we refer to the k-vector

cW (v) = (d(v, w1), d(v, w2), . . . , d(v, wk))

as the code of v with respect to W . The setW is called a resolving set for G if distinct

vertices have distinct codes. A minimum resolving set is also called a basis for G.
The (metric) dimension dim(G) is the number of vertices in a basis for G. Resolving
sets (and minimum resolving sets) have appeared previously. In [4], and later in [5],
Slater introduced these ideas and used locating set for what we have called resolving

set. He referred to the cardinality of a minimum resolving set in a graph G as its
location number loc(G). Slater described the usefulness of these ideas when working
with U.S. sonar and Coast Guard Loran (Long range aids to navigation) stations.
Independently, Harary and Melter [3] discovered the concept of a location number as

well but used the term metric dimension, the terminology that we have adopted. We
refer to the book [1] for graph theoretical notation and terminology not described in

this paper.

If G is a nontrivial connected graph of order n, then 1 6 dim(G) 6 n − 1. Con-
nected graphs of order n > 2 with dimension 1 or n − 1 are characterized in [3],
[4], [5].

Theorem A. Let G be a connected graph of order n > 2.
(a) Then dim(G) = 1 if and only if G = Pn, the path of order n.

(b) Then dim(G) = n − 1 if and only if G = Kn, the complete graph of order n.

An independent resolving set W in a connected graph G is both resolving and

independent. The cardinality of a minimum independent resolving set (or simply an
ir-set) in a graph G is the independent resolving number ir(G). Let G be a connected
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graph of order n containing an independent resolving set. Since every independent

resolving set of G is a resolving set, it follows that

(1) 1 6 dim(G) 6 ir(G) 6 β(G) 6 n− 1.

To illustrate this concept, consider the graph G of Figure 1(a). The set W ′ =
{v1, v7, v8} shown in Figure 1(b) is a basis for G and so dim(G) = 3. However,
W ′ is not an independent resolving set for G. On the other hand, the set W =
{v1, v4, v5, v6} in Figure 1(c) is an independent resolving set. Indeed, the codes of
the vertices of G with respect to W are

cW (v1) = (0, 2, 2, 2), cW (v2) = (2, 2, 2, 2), cW (v3) = (1, 1, 1, 1), cW (v4) = (2, 0, 2, 2),

cW (v5) = (2, 2, 0, 2), cW (v6) = (2, 2, 2, 0), cW (v7) = (3, 1, 1, 2), cW (v8) = (3, 2, 1, 1).

We can show, by a case-by-case analysis, that G contains no 3-element independent
resolving set and so ir(G) = 4. The set {v1, v2, v4, v5, v6} is a maximum independent
set of G and so β(G) = 5. Thus the graph G of Figure 1(a) has dim(G) = 3,
ir(G) = 4, and β(G) = 5.

G :
v5

v3

v4

v7 v8

v6

v2v1

(a) (b) (c)

Figure 1. A graph G with dim(G) = 3, ir(G) = 4, and β(G) = 5

2. Preliminary results

Not all graphs have an independent resolving set, however, and so ir(G) is not
defined for all graphs G. For example, the only independent sets of the complete

graph Kn for n > 3 consist of a single vertex. Thus ir(Kn) is not defined for
n > 3. Figure 2 shows the 3-regular graphs K3,3, Q3, and the Petersen graph P .

A resolving set of K3,3 contains at least two vertices from each partite sets of K3,3.
Since β(K3,3) = 3, it follows that ir(K3,3) does not exist. On the other hand, ir(Q3)
and ir(P ) are defined and, in fact, ir(Q3) = ir(P ) = 3. In Figure 2, the solid vertices
represent a minimum independent resolving set for each of Q3 and P .

381



K3,3 : Q3 : P :

Figure 2. Three 3-regular graphs

Two vertices u and v in a connected graph G are distance similar if d(u, x) =
d(v, x) for all x ∈ V (G) − {u, v}. For a vertex v in a graph G, let N(v) be the set
of vertices adjacent to v and let N [v] = N(v) ∪ {v}. Then two vertices u and v in a
connected graph are distance similar if and only if (1) uv /∈ E(G) and N(u) = N(v)
or (2) uv ∈ E(G) andN [u] = N [v]. Distance similarity in a graphG is an equivalence
relation on V (G). The following observation is useful.

Observation 2.1. If U is a distance similar equivalence class in a connected

graph G with |U | = p > 2, then every resolving set of G contains at least p − 1
vertices from U . Thus if G has k distance similar equivalence classes and ir(G) is
defined, then

n − k 6 dim(G) 6 ir(G).

There exist graphs G such that every ir-set of G must contain all vertices of

some distance similar equivalence class. For example, let G be the graph obtained
from K2,p, whose partite sets are {x, y} and U = {u1, u2, . . . , up} with p > 2, by
adding p′ > 2 vertices vi, 1 6 i 6 p′, and the pendant edges xvi. Then G contains
two distance similar equivalence classes of cardinality at least 2, namely U and

U ′ = {v1, v2, . . . , vp′}. Since every ir-set of G has the form (U ∪ U ′) − {w} for some
w ∈ U ∪ U ′, it follows that every ir-set of G contains either U or U ′.

If U is a distance similar equivalence class of a connected graph G, then either
U is an independent set in G or the subgraph 〈U〉 induced by U is complete in G.

Thus we have the following observation.

Observation 2.2. Let G be a connected graph and let U be a distance similar

equivalence class in G with |U | > 3. If U is not independent in G, then ir(G) is not
defined.

The converse of Observation 2.2 is not true. For example, let G = K3,3 with partite

sets V1 and V2. We have seen that ir(G) is not defined. On the other hand, V1 and
V2 are the only distance similar equivalence classes and they are both independent.

Proposition 2.3. Let G be a connected graph of order n > 6 for which ir(G) is
defined. If W is an independent resolving set of G, then deg w 6 n − 3 for every
w ∈ W .
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���������
. Assume, to the contrary, that there exists u ∈ W such that deg u > n−2.

Since W is independent, |W | 6 2. On the other hand, since deg u > n − 2 > 4, it
follows that G 6= Pn. Since Pn is the only connected graph of order n with dimension
1 by Theorem A, it follows that |W | > 1 and so |W | = 2. Let W = {u, v}. For
each x ∈ V (G)−W = N(u), the code cW (x) = (d(u, x), d(v, x)) = (1, d(v, x)). Since
d(v, x) is one of d(u, v), d(u, v) + 1, and d(u, v) − 1, there are at most three distinct
codes for the vertices in V (G) −W . However, |V (G) −W | = |N(u)| = n− 2 > 4, a
contradiction. �

The following corollary is a consequence of Proposition 2.3.

Corollary 2.4. Let G be a connected graph of order n > 6.
(a) If G contains two nonadjacent vertices of degree n−2, then ir(G) is not defined.
(b) If G contains two vertices of degree n− 1, then ir(G) is not defined.
���������

. Assume, to the contrary, that ir(G) is defined, and let W be an inde-
pendent resolving set of G. First, suppose that G contains two nonadjacent vertices

x and y of degree n − 2. Then x and y belong to the same distance similar equiv-
alence class in G. By Observation 2.1, W contains at least one of x and y, which

contradicts Proposition 2.3. Thus (a) holds.
Next, suppose that G contains two vertices x and y of degree n− 1. Then x and y

belong to the same distance similar equivalence class in G. Necessarily, W contains
exactly one of x and y, which again contradicts Proposition 2.3. Thus (b) holds. �

On the other hand, there exist graphs G of order n > 6 having two adjacent
vertices of degree n − 2 for which ir(G) is defined. For example, let G be the graph
obtained from Kn−2, where V (Kn−2) = {v1, v2, . . . , vn−2}, and P2 : x, y by adding

the edges xvi (1 6 i 6 n − 3) and yvj (2 6 j 6 n − 2). The graph G is shown
in Figure 3 for n = 7. Then W = {v1, v2, . . . , vn−4} is a minimum independent
resolving set of G and so ir(G) = n− 4.

v1 v2 v3 v4 v5

x y

G :

Figure 3. The graph G

Proposition 2.5. Let G be a connected graph of order n > 4. Suppose that G

contains two distinct distance similar equivalence classes U1 and U2 of cardinality at

least 2. If some vertex of U1 is adjacent to a vertex of U2, then ir(G) is not defined.
���������

. Suppose that u1u2 ∈ E(G), where u1 ∈ U1 and u2 ∈ U2. Since U1

and U2 are distance similar equivalence classes, u1 is adjacent to every vertex of U2
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and so every vertex of U1 is adjacent to every vertex of U2. By Observation 2.1,

every resolving set of G must contain at least one vertex from each of U1 and U2.
This implies, however, that no resolving set of G is independent and so ir(G) is not
defined. �

The converse of Proposition 2.5 is not true. For example, let G be the graph
obtained from two copies of K4, whose vertex sets are U1 = {u1, u2, u3, u4} and
V1 = {v1, v2, v3, v4} by adding the edge u4v4. Then U1 −{u4} and V1 −{v4} are two
distinct distance similar equivalence classes of G. By Observation 2.2, ir(G) does
not exist. However, no edge joins a vertex in U1 − {u4} and a vertex in V1 − {v4}.
Let G be a connected graph with ir(G) = k, let W = {w1, w2, . . . , wk} be a

minimum independent resolving set of G, and let v ∈ V (G) with deg v = ∆(G).
Observe that if u ∈ N(v), then d(u, wi) is one of d(v, wi), d(v, wi)+1, or d(v, wi)−1
for all i with 1 6 i 6 k. Thus there are at most 3k − 1 distinct codes of the vertices
in N(v) with respect to W . Therefore, |N(v)| = ∆(G) 6 3k − 1. This observation
gives the following bound for ir(G) of a connected graph G in terms of its maximum
degree ∆(G).

Proposition 2.6. If G is a nontrivial connected graph for which ir(G) is defined,
then

ir(G) > dlog3(∆(G) + 1)e.

The lower bound in Proposition 2.6 is sharp. In fact, for each pair (k, ∆) of integers
such that 3k = ∆ + 1, there exists a connected graph Gk such that ir(Gk) = k and

∆(Gk) = ∆ = 3k − 1. For k = 1 (∆ = 2) and n > 3, the graph G = Pn has the
desired properties. For k = 2 (∆ = 8), we consider the graph G2 of Figure 4. The

maximum degree of G2 is 8 with deg u0 = 8 and N(u0) = {u1, u2, . . . , u8}. Then
W = {v1, v2} is an independent resolving set of G2 and so ir(G2) = 2.

u0
u1

u2

u3

u4

u5

u6

u7

u8

v1

v2G2 :

Figure 4. The graph G2

For k = 3 (∆ = 26), we construct the graph G3 from the graph G2 of Figure 4 by
(I) replacing each vertex ui (0 6 i 6 8) by the path ui1 , ui, ui2 such that (a) u0 is
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adjacent to all vertices ui1 and ui2 with 0 6 i 6 8 and all uj with 1 6 j 6 8, (b) u01

and u02 are adjacent, respectively, to all vertices ui1 , ui2 , where 1 6 i 6 8, and (c) vj

is adjacent to ui, ui1 , and ui2 if and only if vj is adjacent to ui in G2, where 0 6 i 6 8
and j = 1, 2 and (II) adding a new vertex v3 such that v3 is adjacent to every vertex

ui1 for all 1 6 i 6 8. This completes the construction of G3 and certainly G2 is a
subgraph of G3. Then ∆(G3) = deg u0 = 26. Since W = {v1, v2, v3} is a minimum
independent resolving set of G3, it follows that ir(G3) = 3. Repeating this procedure,
we construct the graph Gk from Gk−1 such that ir(Gk) = k and ∆(Gk) = 3k − 1.

3. Existence of independent resolving sets in some well-known graphs

In this section, we determine the existence of independent resolving sets in some

well-known classes of graphs. Some additional definitions and notation are needed.
A vertex of degree at least 3 in a graphG will be called amajor vertex. An end-vertex

u of G is said to be a terminal vertex of a major vertex v of G if d(u, v) < d(u, w)
for every other major vertex w of G. The terminal degree ter(v) of a major vertex
v is the number of terminal vertices of v. A major vertex v of G is an exterior
major vertex of G if it has positive terminal degree. Let σ(G) denote the sum of
the terminal degrees of the major vertices of G and let ex(G) denote the number
of exterior major vertices of G. In fact, σ(G) is the number of end-vertices of G.

A connected graph with exactly one cycle is called a unicyclic graph. The graph
Wn = Cn + K1 is called the wheel of order n + 1.

Theorem 3.1. Let G be a connected graph of order n > 3.
(a) If G is a complete multipartite graph of order n, then ir(G) exists if and only if

G = K1,n−1. Furthermore, ir(K1,n−1) = n− 2.
(b) If G = Cn for n > 5, then ir(G) = 2.
(c) If G is a tree, then ir(G) = 1 if G is a path and ir(G) = σ(T )− ex(T ) otherwise.
(d) If G a unicyclic graph, then ir(G) exists.
(e) If G = Wn for n > 3, then ir(Wn) does not exist for 3 6 n 6 5, ir(W6) = 3, and

ir(Wn) =
⌊

2n+2
5

⌋
for n > 7.

Parts (a)–(d) in Theorem 3.1 are consequences of results from Section 2. Thus

we will only verify (e) for n > 7. To do this, we need some additional definitions.
In Wn = Cn + K1, let Cn : v1, v2, . . . , vn, v1 and let v be the central vertex of Wn.

Let S be a set of two or more vertices of Cn, let vi and vj be two distinct vertices
of S, and let P and P ′ denote the two distinct vi − vj paths determined by Cn.

If either P or P ′, say P , contains only two vertices of S (namely, vi and vj), then
we refer to vi and vj as neighboring vertices of S and the set of vertices of P that

385



belong to Cn − {vi, vj} as the gap of S (determined by vi and vj). The two gaps of

S determined by a vertex of S and its two neighboring vertices will be referred to as
neighboring gaps. Consequently, if |S| = r, then S has r gaps, some of which may
be empty. We first verify the following two claims.

Claim 1. Every ir-set W of Wn satisfies the following conditions (i)–(iii):
(i) Every gap of W contains at least one and at most three vertices of Cn.

(ii) At most one gap of W contains exactly three vertices.
(iii) If a gap of W contains at least two vertices, then any neighboring gap contains

exactly one vertex.
������������� �"!$#&%('*)

. Let W be an ir-set of Wn. Note that |W | = ir(Wn) > 3
if n > 7. Since the central vertex v of Wn is adjacent to every other vertex of Wn, it
follows that v /∈ W . So W consists of vertices in Cn. If (i) is false, then either W is

not independent, which is impossible, or there is a gap containing four consecutive
vertices vj , vj+1, vj+2, vj+3 of Cn, where 1 6 j 6 n and addition is performed

modulo n. In the latter case, cW (vj+1) = cW (vj+2) = (2, 2, . . . , 2), a contradiction.
If (ii) is false, then there exist two distinct gaps {vp, vp+1, vp+2} and {vq , vq+1, vq+2}.
However, cW (vp+1) = cW (vq+1) = (2, 2, . . . , 2), a contradiction. If (iii) is false, then
there exist five consecutive vertices vj , vj+1, vj+2, vj+3, vj+4, of Cn such that vj+2

is the only vertex of W . However, cW (vj+1) = cW (vj+3), a contradiction. This
completes the proof of Claim 1. �

Claim 2. Any set of vertices of Cn that satisfies (i)–(iii) is a resolving set of Wn.���������+�,�-�.!$#,%('0/
. Let W be a set of vertices of Cn that satisfies (i)–(iii).

We show that W is a resolving set of Wn. Let u be any vertex of V (Wn) − W . If
u = v, cW (u) = (1, 1, . . . , 1) and u is the only vertex of Wn with this code. Thus we
may assume that u 6= v. There are three cases.
�+#21
3

1. Vertex u belongs to a gap of size 1 ofW . Let vi and vj be the neighboring
vertices of W that determine this gap. Then u is adjacent to vi and vj and has

distance 2 to all other vertices of W . Since n > 7, no other vertices of Wn has this
property and so cW (x) 6= cW (u) for x 6= u.
�+#21
3

2. Vertex u belongs to a gap of size 2 of W . Then we may assume that vj ,
vj+1 = u, vj+2, vj+3 are vertices of Cn, where vj+1, vj+2 /∈ W and vj , vj+3 ∈ W .

Then u is adjacent to vj and has distance 2 from all other vertices ofW . By property
(iii), only u has this property and so cW (x) 6= cW (u) for x 6= u.
�+#21
3

3. Vertex u belongs to a gap of size 3 of W . Then there exist vertices vj ,
vj+1, vj+2, vj+3, vj+4 of Cn, only vj and vj+4 of which belong to W . Assume first
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that u = vj+1. Then u is adjacent to vj and has distance 2 from all other vertices of

W . By (iii), u is the only vertex of Wn with this property and so cW (x) 6= cW (u) for
x 6= u. Next, we assume that u = vj+2. Then cW (u) = (2, 2, . . . , 2). By properties
(i) and (ii), no other vertex of of Wn has this representation. This completes the

proof of Claim 2. �

We are now prepared to prove Part (e) in Theorem 3.1 for n > 7.
���������4�,�5��#,��6

(e)
%(798 :;3<�2��3=' > ?$)@�A���

n > 7. First we show that
ir(Wn) 6

⌊
2n+2

5

⌋
by constructing an independent resolving setW inWn with

⌊
2n+2

5

⌋

vertices.

(1) For n ≡ 0 (mod 5), let n = 5k, where k > 2. Then
⌊

2n+2
5

⌋
= 2k. Then

W = {v5i+1, v5i+4 : 0 6 i 6 k − 1} contains 2k vertices.

(2) For n ≡ 1 (mod 5), let n = 5k + 1, where k > 2. Therefore,
⌊

2n+2
5

⌋
= 2k. Then

W = {v5i+1, v5i+4 : 0 6 i 6 k − 2} ∪ {v5k−4, v5k} contains 2k vertices.

(3) For n ≡ 2 (mod 5), let n = 5k + 2, where k > 1. So
⌊

2n+2
5

⌋
= 2k + 1. Then

W = {v5i+1, v5i+4 : 0 6 i 6 k − 1} ∪ {v5k+1} contains 2k + 1 vertices.
(4) For n ≡ 3 (mod 5), let n = 5k + 3, where k > 1. In this case,

⌊
2n+2

5

⌋
= 2k + 1.

Then W = {v5i+1, v5i+4 : 0 6 i 6 k − 2} ∪ {v5k−4, v5k, v5k+2} contains 2k + 1
vertices.

(5) For n ≡ 4 (mod 5), let n = 5k + 4, where k > 1. Thus
⌊

2n+2
5

⌋
= 2k + 2. Then

W = {v5i+1, v5i+4 : 0 6 i 6 k − 1} ∪ {v5k+1, v5k+3} contains 2k + 2 vertices.
In each case, W is independent and satisfies (i)–(iii). By Claim 2, W is an inde-

pendent resolving set. Hence ir(Wn) 6
⌊

2n+2
5

⌋
.

It remains to show that ir(Wn) >
⌊

2n+2
5

⌋
. Let W be an ir-set of Wn. We consider

two cases.

�+#21
3
1. |W | = 2` > 4 for some integer `. By (iii) in Claim 1 at most ` gaps of

W contain one vertex and, by (i) and (ii) in Claim 1, all of them contain at most
two vertices, except possibly one containing three vertices. So the number of vertices

belonging to the gaps of W is at most 3` + 1. Hence n− 2` 6 3` + 1, which implies
that |W | = 2` > d 2

5n − 2
5e >

⌊
2n+2

5

⌋
.

�+#21
3
2. |W | = 2` + 1 > 3 for some integer `. By (iii) in Claim 1 at most ` gaps

contain one vertex and, by (i) and (ii) in Claim 1, all contain at most two vertices

except possibly one containing three vertices. So the number of vertices belonging
to the gaps of W is at most 3` + 2. Hence n − 2` − 1 6 3` + 2, which implies that
|W | = 2` + 1 > d 2

5n − 6
5 + 1e >

⌊
2n+2

5

⌋
. �
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4. Realizable results

If G is a nontrivial connected graph of order n for which ir(G) exists, then by (1),
1 6 ir(G) 6 n− 1. The following result characterizes all nontrivial connected graphs
G of order n for which ir(G) ∈ {1, n− 2, n− 1}.

Theorem 4.1. Let G be a nontrivial connected graph of order n for which ir(G)
exists. Then

(a) ir(G) = 1 if and only if G = Pn,

(b) ir(G) = n − 2 if and only if n > 3 and G = K1,n−1 or n = 4 and G =
(K2 ∪ K1) + K1,

(c) ir(G) = n− 1 if and only if n = 2 and G = K2.

���������
. Part (a) is an immediate consequence of the fact that Pn is the only

connected graph of order n with dimension 1 by Theorem A.

For (b), it is straightforward to show that each graph G described in the theorem
has order n and ir(G) = n−2. To verify the converse, suppose that G is a nontrivial

connected graph of order n such that ir(G) = n − 2 and that G is not a star. It
is routine to show that G = (K2 ∪ K1) + K1 is the only connected graph of order

n 6 4 with ir(G) = n − 2. Thus, we may assume that n > 5. Let W be a minimum
independent resolving set of G and let V (G)−W = {x, y}. Since W is independent

and G is connected, every vertex in W is adjacent to at least one of x and y. Let W1

be the set of vertices in W that are adjacent to x but not adjacent to y, let W2 be

the set of vertices in W that are adjacent to y but not adjacent to x, and let W3 be
the set of vertices inW that are adjacent to both x and y. ThenW = W1∪W2∪W3.

Since n > 5, it follows that |W | = n− 2 > 3. We consider four cases.

�+#21
3
1. W = Wi for some i ∈ {1, 2, 3}. First, assume that W = W1 orW = W2,

say W = W1. Since G is connected, it follows that y is adjacent to x. This implies
that G is a star with x as the central vertex, which is a contradiction. Therefore,

W = W3. Since d(x, w) = d(y, w) = 1 for all w ∈ W = V (G)−{x, y}, it follows that
{x, y} is a distance similar equivalence class. By Observation 2.1, W must contain

at least one of x and y, a contradiction.

�+#21
3
2. W = W1 ∪ W2 and Wi 6= ∅ for i = 1, 2. Since W is independent and

G is connected, it follows that x is adjacent to y. This implies that G is a double

star with central vertices x and y. Since the order of G is at least 5, at least one
of W1 and W2 contains two or more vertices, say |W1| > 2. Let u ∈ W1. Then

W ′ = W − {u} is an independent resolving set and so ir(G) 6 |W ′| = n − 3, which
is impossible.

388



�+#21
3
3. W = Wi ∪ W3, where Wi 6= ∅ for i = 1, 2 and W3 6= ∅. Assume,

without loss of generality, that W = W1 ∪ W3, where W1 6= ∅ and W3 6= ∅. Let
u ∈ W1, v ∈ W3, and let w ∈ W − {u, v}. If xy /∈ E(G), then let W ′ = W − {v}.
Since d(x, u) = 1, d(y, u) = 3, and d(v, u) = 2, it follows that W ′ is an independent

resolving set of G of cardinality n − 3, which is impossible. If xy ∈ E(G), then let
W ′′ = W −{w}. Since (1) d(x, u) = d(x, v) = 1, (2) d(y, u) = 2 and d(y, v) = 1, and
(3) d(w, u) = d(w, v) = 2, it follows that W ′′ is an independent resolving set of G of
cardinality n − 3, a contradiction.
�+#21
3

4. W = W1 ∪ W2 ∪ W3 and Wi 6= ∅ for i = 1, 2, 3. Let u ∈ W1, v ∈ W2

and let W ′ = W − {v}. If xy /∈ E(G), then d(x, u) = 1, d(y, u) = 3, and d(v, u) = 4;
while if xy ∈ E(G), then d(x, u) = 1, d(y, u) = 2, and d(v, u) = 3. In either case, W ′

is an independent resolving set of G of cardinality n− 3, a contradiction.

Therefore, for n > 5, the star K1,n−1 is the only connected graph of order n with

ir(G) = n− 2 and so (b) holds.
For part (c), it is clear that ir(K2) = 1. For the converse, let G be a connected

graph of order n with ir(G) = n− 1. Then β(G) = n− 1 by (1) and so G = K1,n−1.
By (b), if n > 3, then ir(K1,n−1) = n− 2. Therefore, n = 2 and G = K2. �

By Theorems 3.1 and 4.1, we are able to determine all pairs k, n of positive integers
with k 6 n that are realizable as the independent resolving number and the order of

some connected graph. We omit the routine proof of the next result.

Theorem 4.2. For each pair k, n of positive integers with k 6 n, there exists

a connected graph G of order n with ir(G) = k if and only if (k, n) = (1, 2) or
1 6 k 6 n− 2.

Next, we show that certain pairs a, b are realizable as the dimension and the
independent resolving number of some connected graph.

Theorem 4.3. For every pair a, b of integers with 2 6 a 6 b 6 b 3
2ac, there exists

a connected graph G such that dim(G) = a and ir(G) = b.

���������
. For a = b, let G = K1,a+1. Then dim(G) = ir(G) = a. Thus we

may assume that a < b. Since b 6 b 3
2ac, it follows that 3a − 2b + 1 > 1. For each

integer j with 1 6 j 6 b − a, let Hj be the graph of Figure 5. Then the graph G is

obtained from the graphs Hj (1 6 j 6 b− a) by (1) identifying the b− a vertices vj0

(1 6 j 6 b− a) and labeling the identified vertex v0 and (2) adding the 3a− 2b + 1
new vertices x1, x2, . . . , x3a−2b+1 and joining each vertex xi (1 6 i 6 3a− 2b + 1) to
v0. Let X = {x1, x2, . . . , x3a−2b+1}. We show that dim(G) = a and ir(G) = b.
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vj4 vj5

vj3
Hj :

Figure 5. The graph Hj

First, we show that dim(G) = a. SinceW = {vj4, vj5 : 1 6 j 6 b−a}∪(X−{x1})
is a resolving set of G, it follows that dim(G) 6 |W | = 2(b− a) + (3a− 2b) = a. To
show that dim(G) > a, we verify the following claim. �

Claim 1. Every resolving set of G contains at least two vertices from each set

Vj = V (Hj) − {v0} = {vj1, vj2, vj3, vj4, vj5}

for 1 6 j 6 b− a.
������������� �"!$#&%('B)

. Assume, to the contrary, there exists a resolving set W

of G such thatW contains at most one vertex in Vj for some j with 1 6 j 6 b−a, say

j = 1. Note that if u and u′ are two distinct vertices of V1 with d(u, v0) = d(u′, v0),
then d(u, v) = d(u′, v) for all v ∈ V (G)−V1. Since d(v11, v0) = d(v12, v0) = d(v13, v0)
and d(v14, v0) = d(v15, v0), it follows that W must contain at least one vertex in V1.
So W contains exactly one vertex in V1. We consider three cases.
�+#21
3

1. Vertex v11 ∈ W or v13 ∈ W , say the former. Since d(v12, v11) =
2 = d(v13, v11) and d(v12, v) = d(v13, v) for all v ∈ V (G) − V1, it follows that
cW (v12) = cW (v13).
�+#21
3

2. Vertex v14 ∈ W or v15 ∈ W , say the former. Since d(v11, v14) =
1 = d(v12, v14) and d(v11, v) = d(v12, v) for all v ∈ V (G) − V1, it follows that

cW (v11) = cW (v12).
�+#21
3

3. Vertex v12 ∈ W . Since d(v14, v12) = 1 = d(v15, v12) and d(v14, v) =
d(v15, v) for all v ∈ V (G) − V1, it follows that cW (v14) = cW (v15).

In each case, W is not a resolving set of G, a contradiction. Therefore, every
resolving set of G contains at least two vertices in V (Hj) − {v0} for 1 6 j 6 b − a.

This completes the proof of Claim 1. �

By Claim 1, every basis of G must contain at least two vertices from each set Vj

for 1 6 j 6 b − a. Moreover, by Observation 2.1, every basis of G contains at least

3a−2b vertices from X . It follows that dim(G) > 2(b−a)+(3a−2b) = a. Therefore,
dim(G) = a.
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Next, we show that ir(G) = b. Since W0 = {vj1, vj2, vj3 : 1 6 j 6 b − a} ∪ (X −
{x1}) is an independent resolving set, ir(G) 6 |W0| = 3(b − 2) + (3a − 2b) = b. In
order to show that ir(G) > b, we first verify the following claim.

Claim 2. No ir-set of G contains any vertex in {v0, vj4, vj5 : 1 6 j 6 b− a}.
�������������+�.!$#,%('C/

. We first show that no ir-set of G contains any vertex in
{vj4, vj5} for 1 6 j 6 b−a. Assume, to the contrary, that there exists an ir-set W of

G such thatW contains at least one vertex in {vj4, vj5} for some j with 1 6 j 6 b−a,
say j = 1. Since W is independent, W contains exactly one vertex in {v14, v15}, say
v14 ∈ W . Since v11, v12, and v15 are adjacent to v14, it follows that v11, v12, v15 /∈
W . By Claim 1 then, v13, v14 ∈ W . Since (1) d(v11, v13) = 2 = d(v12, v13), (2)
d(v11, v14) = 1 = d(v12, v14), and (3) d(v11, v) = d(v12, v) for all v ∈ V (G) − V1, it

follows that cW (v11) = cW (v12), a contradiction. Therefore, no ir-set of G contains
any vertex in {vj4, vj5} for 1 6 j 6 b− a. Furthermore, the vertex v0 is adjacent to

v11, v12, v13 in G and W must contain at least two of the three vertices v11, v12, v13,
which is impossible. Therefore, no ir-set of G contains v0 and the proof of Claim 2

is complete. �

We now continue to show that ir(G) > b. Assume, to the contrary, that ir(G) 6
b− 1. Let W ′ be an ir-set of G. Then |W ′| 6 b− 1. By Claim 1, the set W ′ contains
at least two vertices in each set {vj1, vj2, vj3, vj4, vj5} for 1 6 j 6 b− a. By Claim 2,

neither vj4 nor vj5 belongs to W ′ for 1 6 j 6 b − a. Also, by Observation 2.1,
the set W ′ contains at least 3a − 2b elements in X . Now let T = X ∪ {vj1, vj2,

vj3 : 1 6 j 6 b − a}. Then W ′ ⊂ T . Since |W ′| 6 b − 1 and |T | = b + 1, it follows
that |T −W ′| > 2. However, if u1, u2 ∈ T − W ′, then d(u1, v) = d(u2, v) = 2 for all
v ∈ T and so cW ′(u1) = cW ′(u2), which is a contradiction. Therefore, ir(G) = b.
By Theorem 4.3 every pair a, b of positive integers with 2 6 a 6 b 6 b 3

2ac is
realizable as the dimension and the independent resolving number of some connected
graph. Furthermore, for each pair a, b of positive integers with 4 6 a 6 b, it can

be shown that (1) there exists a connected graph F with dim(F ) = ir(F ) = a and
β(F ) = b, (2) there exists a connected graph G with dim(G) = a and β(G) = b such

that dim(G) 6= ir(G), and (3) there exists a connected graph H with ir(H) = a and
β(H) = b such that dim(H) 6= ir(H). However, we do not have a complete solution
for the following problem.
�����2D;!(3<'

4.4. For which triples a, b, c of positive integers with 2 6 a 6 b 6 c,

does there exist a connected graphG such that dim(G) = a, ir(G) = b, and β(G) = c?

To conclude this paper, we construct, for each pair k, r of integers with k > 2 and
0 6 r 6 k, a connected graph G with ir(G) = k such that exactly r vertices belong
to every ir-set of G.
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Theorem 4.5. For every pair r, k of integers with k > 2 and 0 6 r 6 k, there

exists a connected graph G with ir(G) = k such that exactly r vertices belong to

every ir-set of G.
���������

. For r = 0, let G = K1,k+1. Since every ir-set of G consists of any k end-

vertices of G, it follows that no vertex of G belongs to every ir-set of G. For r = 1,
let G be obtained from K4 − e, where V (K4 − e) = {u1, u2, u3, u4} and e = u1u3, by

adding the k new vertices v1, v2, . . . , vk and joining each vertex vi (1 6 i 6 k) to u2

and u3. Then every ir-set of G consists of the vertex u1 and any k − 1 vertices from
the set {v1, v2, . . . , vk}. Thus u1 is the only vertex that belongs to every ir-set of G.
Now let 2 6 r 6 k. First, we construct a graph F of order r + 2r with V (F ) =

U∪W , where U = {u0, u1, . . . , u2r−1} and the ordered setW = {wr−1, wr−2, . . . , w0}
are disjoint. The induced subgraph 〈U〉 of F is complete, while W is independent.

To define the adjacencies between W and U , let each integer j (0 6 j 6 2r − 1) be
expressed in its base 2 (binary) representation. Thus, each such j can be expressed

as a sequence of r coordinates, that is, an r-vector, where the rightmost coordinate
represents the value (either 0 or 1) in the 20 position, the coordinate to its immediate

left is the value in the 21 position, etc. For integers i and j, with 0 6 i 6 r − 1
and 0 6 j 6 2r − 1, we join wi and uj if and only if the value in the 2i position

in the binary representation of j is 1. This completes the construction of F . Then
the graph G is obtained from F by adding k− r copies u01, u02, . . . , u0,k−r of u0 and

joining each of the k − r vertices u01, u02, . . . , u0,k−r to every neighbor of u0 in F .
Let U0 = {u01, u02, . . . , u0,k−r}. Then the set U0 ∪ {u0} is an independent set in G

and each of vertices in U0 has the same neighborhood as that of u0 in G. For r = 3
and k = 5, the edges joining W and U ∪ U0 in the graph G just constructed are
shown in Figure 6.

000
u01

000
u02

000
u0

001
u1

010
u2

011
u3

100
u4

101
u5

110
u6

111
u7

w1 w2
w3 W

U ∪ U0

Figure 6. The graph G for r = 3 and k = 5

Notice that (1) every two vertices of U are adjacent, (2) every vertex in U0 is

adjacent to every vertex in U−{u0}, (3) there is no edge between any two vertices in
U0 ∪ {u0}, and (4) there is no edge between any two vertices in W . By an extensive
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case-by-case analysis, it can be shown that every ir-set consists of W and any k − r

vertices of U0 ∪{u0}. Therefore, exactly r vertices in G, namely the r vertices in W ,
belong to every ir-set of G. �
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