Mathematic Bohemica

Gary Chartrand; Varaporn Saenpholphat; Ping Zhang The independent resolving number of a graph

Mathematica Bohemica, Vol. 128 (2003), No. 4, 379-393
Persistent URL: http://dml.cz/dmlcz/134003

Terms of use:

© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE INDEPENDENT RESOLVING NUMBER OF A GRAPH

G. Chartrand, V. Saenpholphat, P. Zhang, Kalamazoo

(Received October 14, 2002)

To the Memory of W. T. Tutte

Abstract. For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ of vertices in a connected graph G and a vertex v of G, the code of v with respect to W is the k-vector

$$
c_{W}(v)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right) .
$$

The set W is an independent resolving set for G if (1) W is independent in G and (2) distinct vertices have distinct codes with respect to W. The cardinality of a minimum independent resolving set in G is the independent resolving number $\operatorname{ir}(G)$. We study the existence of independent resolving sets in graphs, characterize all nontrivial connected graphs G of order n with $\operatorname{ir}(G)=1, n-1, n-2$, and present several realization results. It is shown that for every pair r, k of integers with $k \geqslant 2$ and $0 \leqslant r \leqslant k$, there exists a connected graph G with $\operatorname{ir}(G)=k$ such that exactly r vertices belong to every minimum independent resolving set of G.

Keywords: distance, resolving set, independent set
MSC 2000: 05C12, 05C69

1. Introduction

Independent sets of vertices in graphs is one of the most commonly studied concepts in graph theory. The independent sets of maximum cardinality are called maximum independent sets and these are the independent sets that have received the most attention. The number of vertices in a maximum independent set in a graph G is the independence number (or vertex independence number) of G and is denoted by $\beta(G)$. There are also certain independent sets of minimum cardinality that are of interest.

Ordinarily, a graph contains many independent sets. An independent set of vertices that is not properly contained in any other independent set of vertices is a maximal independent set of vertices. The minimum number of vertices in a maximal independent set is denoted by $i(G)$. This parameter is also called the independent domination number as it is a smallest cardinality of an independent set of vertices that dominate all vertices of G.

Some graphs contain (ordered) independent sets W such that the vertices of G are uniquely distinguished by their distances from the vertices of W. The goal of this paper is to study the existence of such independent sets in graphs and, when they exist, to investigate the minimum cardinality of such a set.

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq V(G)$ and a vertex v of G, we refer to the k-vector

$$
c_{W}(v)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)
$$

as the code of v with respect to W. The set W is called a resolving set for G if distinct vertices have distinct codes. A minimum resolving set is also called a basis for G. The (metric) dimension $\operatorname{dim}(G)$ is the number of vertices in a basis for G. Resolving sets (and minimum resolving sets) have appeared previously. In [4], and later in [5], Slater introduced these ideas and used locating set for what we have called resolving set. He referred to the cardinality of a minimum resolving set in a graph G as its location number $\operatorname{loc}(G)$. Slater described the usefulness of these ideas when working with U.S. sonar and Coast Guard Loran (Long range aids to navigation) stations. Independently, Harary and Melter [3] discovered the concept of a location number as well but used the term metric dimension, the terminology that we have adopted. We refer to the book [1] for graph theoretical notation and terminology not described in this paper.

If G is a nontrivial connected graph of order n, then $1 \leqslant \operatorname{dim}(G) \leqslant n-1$. Connected graphs of order $n \geqslant 2$ with dimension 1 or $n-1$ are characterized in [3], [4], [5].

Theorem A. Let G be a connected graph of order $n \geqslant 2$.
(a) Then $\operatorname{dim}(G)=1$ if and only if $G=P_{n}$, the path of order n.
(b) Then $\operatorname{dim}(G)=n-1$ if and only if $G=K_{n}$, the complete graph of order n.

An independent resolving set W in a connected graph G is both resolving and independent. The cardinality of a minimum independent resolving set (or simply an ir-set) in a graph G is the independent resolving number $\operatorname{ir}(G)$. Let G be a connected
graph of order n containing an independent resolving set. Since every independent resolving set of G is a resolving set, it follows that

$$
\begin{equation*}
1 \leqslant \operatorname{dim}(G) \leqslant \operatorname{ir}(G) \leqslant \beta(G) \leqslant n-1 \tag{1}
\end{equation*}
$$

To illustrate this concept, consider the graph G of Figure 1(a). The set $W^{\prime}=$ $\left\{v_{1}, v_{7}, v_{8}\right\}$ shown in Figure $1(\mathrm{~b})$ is a basis for G and so $\operatorname{dim}(G)=3$. However, W^{\prime} is not an independent resolving set for G. On the other hand, the set $W=$ $\left\{v_{1}, v_{4}, v_{5}, v_{6}\right\}$ in Figure $1(\mathrm{c})$ is an independent resolving set. Indeed, the codes of the vertices of G with respect to W are
$c_{W}\left(v_{1}\right)=(0,2,2,2), c_{W}\left(v_{2}\right)=(2,2,2,2), c_{W}\left(v_{3}\right)=(1,1,1,1), c_{W}\left(v_{4}\right)=(2,0,2,2)$, $c_{W}\left(v_{5}\right)=(2,2,0,2), c_{W}\left(v_{6}\right)=(2,2,2,0), c_{W}\left(v_{7}\right)=(3,1,1,2), c_{W}\left(v_{8}\right)=(3,2,1,1)$.

We can show, by a case-by-case analysis, that G contains no 3 -element independent resolving set and so $\operatorname{ir}(G)=4$. The set $\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}\right\}$ is a maximum independent set of G and so $\beta(G)=5$. Thus the graph G of Figure $1(\mathrm{a})$ has $\operatorname{dim}(G)=3$, $\operatorname{ir}(G)=4$, and $\beta(G)=5$.

Figure 1. A graph G with $\operatorname{dim}(G)=3, \operatorname{ir}(G)=4$, and $\beta(G)=5$

2. Preliminary Results

Not all graphs have an independent resolving set, however, and so $\operatorname{ir}(G)$ is not defined for all graphs G. For example, the only independent sets of the complete graph K_{n} for $n \geqslant 3$ consist of a single vertex. Thus $\operatorname{ir}\left(K_{n}\right)$ is not defined for $n \geqslant 3$. Figure 2 shows the 3 -regular graphs $K_{3,3}, Q_{3}$, and the Petersen graph P. A resolving set of $K_{3,3}$ contains at least two vertices from each partite sets of $K_{3,3}$. Since $\beta\left(K_{3,3}\right)=3$, it follows that $\operatorname{ir}\left(K_{3,3}\right)$ does not exist. On the other hand, $\operatorname{ir}\left(Q_{3}\right)$ and $\operatorname{ir}(P)$ are defined and, in fact, $\operatorname{ir}\left(Q_{3}\right)=\operatorname{ir}(P)=3$. In Figure 2, the solid vertices represent a minimum independent resolving set for each of Q_{3} and P.

Figure 2. Three 3-regular graphs
Two vertices u and v in a connected graph G are distance similar if $d(u, x)=$ $d(v, x)$ for all $x \in V(G)-\{u, v\}$. For a vertex v in a graph G, let $N(v)$ be the set of vertices adjacent to v and let $N[v]=N(v) \cup\{v\}$. Then two vertices u and v in a connected graph are distance similar if and only if (1) uv $\notin E(G)$ and $N(u)=N(v)$ or (2) uv $\in E(G)$ and $N[u]=N[v]$. Distance similarity in a graph G is an equivalence relation on $V(G)$. The following observation is useful.

Observation 2.1. If U is a distance similar equivalence class in a connected graph G with $|U|=p \geqslant 2$, then every resolving set of G contains at least $p-1$ vertices from U. Thus if G has k distance similar equivalence classes and $\operatorname{ir}(G)$ is defined, then

$$
n-k \leqslant \operatorname{dim}(G) \leqslant \operatorname{ir}(G)
$$

There exist graphs G such that every ir-set of G must contain all vertices of some distance similar equivalence class. For example, let G be the graph obtained from $K_{2, p}$, whose partite sets are $\{x, y\}$ and $U=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ with $p \geqslant 2$, by adding $p^{\prime} \geqslant 2$ vertices $v_{i}, 1 \leqslant i \leqslant p^{\prime}$, and the pendant edges $x v_{i}$. Then G contains two distance similar equivalence classes of cardinality at least 2 , namely U and $U^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{p^{\prime}}\right\}$. Since every ir-set of G has the form $\left(U \cup U^{\prime}\right)-\{w\}$ for some $w \in U \cup U^{\prime}$, it follows that every ir-set of G contains either U or U^{\prime}.

If U is a distance similar equivalence class of a connected graph G, then either U is an independent set in G or the subgraph $\langle U\rangle$ induced by U is complete in G. Thus we have the following observation.

Observation 2.2. Let G be a connected graph and let U be a distance similar equivalence class in G with $|U| \geqslant 3$. If U is not independent in G, then $\operatorname{ir}(G)$ is not defined.

The converse of Observation 2.2 is not true. For example, let $G=K_{3,3}$ with partite sets V_{1} and V_{2}. We have seen that $\operatorname{ir}(G)$ is not defined. On the other hand, V_{1} and V_{2} are the only distance similar equivalence classes and they are both independent.

Proposition 2.3. Let G be a connected graph of order $n \geqslant 6$ for which $\operatorname{ir}(G)$ is defined. If W is an independent resolving set of G, then $\operatorname{deg} w \leqslant n-3$ for every $w \in W$.

Proof. Assume, to the contrary, that there exists $u \in W$ such that $\operatorname{deg} u \geqslant n-2$. Since W is independent, $|W| \leqslant 2$. On the other hand, since $\operatorname{deg} u \geqslant n-2 \geqslant 4$, it follows that $G \neq P_{n}$. Since P_{n} is the only connected graph of order n with dimension 1 by Theorem A, it follows that $|W|>1$ and so $|W|=2$. Let $W=\{u, v\}$. For each $x \in V(G)-W=N(u)$, the code $c_{W}(x)=(d(u, x), d(v, x))=(1, d(v, x))$. Since $d(v, x)$ is one of $d(u, v), d(u, v)+1$, and $d(u, v)-1$, there are at most three distinct codes for the vertices in $V(G)-W$. However, $|V(G)-W|=|N(u)|=n-2 \geqslant 4$, a contradiction.

The following corollary is a consequence of Proposition 2.3.
Corollary 2.4. Let G be a connected graph of order $n \geqslant 6$.
(a) If G contains two nonadjacent vertices of degree $n-2$, then $\operatorname{ir}(G)$ is not defined.
(b) If G contains two vertices of degree $n-1$, then $\operatorname{ir}(G)$ is not defined.

Proof. Assume, to the contrary, that $\operatorname{ir}(G)$ is defined, and let W be an independent resolving set of G. First, suppose that G contains two nonadjacent vertices x and y of degree $n-2$. Then x and y belong to the same distance similar equivalence class in G. By Observation 2.1, W contains at least one of x and y, which contradicts Proposition 2.3. Thus (a) holds.

Next, suppose that G contains two vertices x and y of degree $n-1$. Then x and y belong to the same distance similar equivalence class in G. Necessarily, W contains exactly one of x and y, which again contradicts Proposition 2.3. Thus (b) holds.

On the other hand, there exist graphs G of order $n \geqslant 6$ having two adjacent vertices of degree $n-2$ for which $\operatorname{ir}(G)$ is defined. For example, let G be the graph obtained from \bar{K}_{n-2}, where $V\left(\bar{K}_{n-2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-2}\right\}$, and $P_{2}: x, y$ by adding the edges $x v_{i}(1 \leqslant i \leqslant n-3)$ and $y v_{j}(2 \leqslant j \leqslant n-2)$. The graph G is shown in Figure 3 for $n=7$. Then $W=\left\{v_{1}, v_{2}, \ldots, v_{n-4}\right\}$ is a minimum independent resolving set of G and so $\operatorname{ir}(G)=n-4$.

Figure 3. The graph G
Proposition 2.5. Let G be a connected graph of order $n \geqslant 4$. Suppose that G contains two distinct distance similar equivalence classes U_{1} and U_{2} of cardinality at least 2. If some vertex of U_{1} is adjacent to a vertex of U_{2}, then $\operatorname{ir}(G)$ is not defined.

Proof. Suppose that $u_{1} u_{2} \in E(G)$, where $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$. Since U_{1} and U_{2} are distance similar equivalence classes, u_{1} is adjacent to every vertex of U_{2}
and so every vertex of U_{1} is adjacent to every vertex of U_{2}. By Observation 2.1, every resolving set of G must contain at least one vertex from each of U_{1} and U_{2}. This implies, however, that no resolving set of G is independent and so $\operatorname{ir}(G)$ is not defined.

The converse of Proposition 2.5 is not true. For example, let G be the graph obtained from two copies of K_{4}, whose vertex sets are $U_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $V_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ by adding the edge $u_{4} v_{4}$. Then $U_{1}-\left\{u_{4}\right\}$ and $V_{1}-\left\{v_{4}\right\}$ are two distinct distance similar equivalence classes of G. By Observation 2.2, $\operatorname{ir}(G)$ does not exist. However, no edge joins a vertex in $U_{1}-\left\{u_{4}\right\}$ and a vertex in $V_{1}-\left\{v_{4}\right\}$.

Let G be a connected graph with $\operatorname{ir}(G)=k$, let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a minimum independent resolving set of G, and let $v \in V(G)$ with $\operatorname{deg} v=\Delta(G)$. Observe that if $u \in N(v)$, then $d\left(u, w_{i}\right)$ is one of $d\left(v, w_{i}\right), d\left(v, w_{i}\right)+1$, or $d\left(v, w_{i}\right)-1$ for all i with $1 \leqslant i \leqslant k$. Thus there are at most $3^{k}-1$ distinct codes of the vertices in $N(v)$ with respect to W. Therefore, $|N(v)|=\Delta(G) \leqslant 3^{k}-1$. This observation gives the following bound for $\operatorname{ir}(G)$ of a connected graph G in terms of its maximum degree $\Delta(G)$.

Proposition 2.6. If G is a nontrivial connected graph for which $\operatorname{ir}(G)$ is defined, then

$$
\operatorname{ir}(G) \geqslant\left\lceil\log _{3}(\Delta(G)+1)\right\rceil
$$

The lower bound in Proposition 2.6 is sharp. In fact, for each pair (k, Δ) of integers such that $3^{k}=\Delta+1$, there exists a connected graph G_{k} such that $\operatorname{ir}\left(G_{k}\right)=k$ and $\Delta\left(G_{k}\right)=\Delta=3^{k}-1$. For $k=1(\Delta=2)$ and $n \geqslant 3$, the graph $G=P_{n}$ has the desired properties. For $k=2(\Delta=8)$, we consider the graph G_{2} of Figure 4. The maximum degree of G_{2} is 8 with $\operatorname{deg} u_{0}=8$ and $N\left(u_{0}\right)=\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$. Then $W=\left\{v_{1}, v_{2}\right\}$ is an independent resolving set of G_{2} and so $\operatorname{ir}\left(G_{2}\right)=2$.

Figure 4. The graph G_{2}

For $k=3(\Delta=26)$, we construct the graph G_{3} from the graph G_{2} of Figure 4 by (I) replacing each vertex $u_{i}(0 \leqslant i \leqslant 8)$ by the path $u_{i_{1}}, u_{i}, u_{i_{2}}$ such that (a) u_{0} is
adjacent to all vertices $u_{i_{1}}$ and $u_{i_{2}}$ with $0 \leqslant i \leqslant 8$ and all u_{j} with $1 \leqslant j \leqslant 8$, (b) $u_{0_{1}}$ and $u_{0_{2}}$ are adjacent, respectively, to all vertices $u_{i_{1}}, u_{i_{2}}$, where $1 \leqslant i \leqslant 8$, and (c) v_{j} is adjacent to $u_{i}, u_{i_{1}}$, and $u_{i_{2}}$ if and only if v_{j} is adjacent to u_{i} in G_{2}, where $0 \leqslant i \leqslant 8$ and $j=1,2$ and (II) adding a new vertex v_{3} such that v_{3} is adjacent to every vertex $u_{i_{1}}$ for all $1 \leqslant i \leqslant 8$. This completes the construction of G_{3} and certainly G_{2} is a subgraph of G_{3}. Then $\Delta\left(G_{3}\right)=\operatorname{deg} u_{0}=26$. Since $W=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimum independent resolving set of G_{3}, it follows that $\operatorname{ir}\left(G_{3}\right)=3$. Repeating this procedure, we construct the graph G_{k} from G_{k-1} such that $\operatorname{ir}\left(G_{k}\right)=k$ and $\Delta\left(G_{k}\right)=3^{k}-1$.

3. Existence of independent resolving sets in some well-known graphs

In this section, we determine the existence of independent resolving sets in some well-known classes of graphs. Some additional definitions and notation are needed. A vertex of degree at least 3 in a graph G will be called a major vertex. An end-vertex u of G is said to be a terminal vertex of a major vertex v of G if $d(u, v)<d(u, w)$ for every other major vertex w of G. The terminal degree $\operatorname{ter}(v)$ of a major vertex v is the number of terminal vertices of v. A major vertex v of G is an exterior major vertex of G if it has positive terminal degree. Let $\sigma(G)$ denote the sum of the terminal degrees of the major vertices of G and let $\operatorname{ex}(G)$ denote the number of exterior major vertices of G. In fact, $\sigma(G)$ is the number of end-vertices of G. A connected graph with exactly one cycle is called a unicyclic graph. The graph $W_{n}=C_{n}+K_{1}$ is called the wheel of order $n+1$.

Theorem 3.1. Let G be a connected graph of order $n \geqslant 3$.
(a) If G is a complete multipartite graph of order n, then $\operatorname{ir}(G)$ exists if and only if $G=K_{1, n-1}$. Furthermore, $\operatorname{ir}\left(K_{1, n-1}\right)=n-2$.
(b) If $G=C_{n}$ for $n \geqslant 5$, then $\operatorname{ir}(G)=2$.
(c) If G is a tree, then $\operatorname{ir}(G)=1$ if G is a path and $\operatorname{ir}(G)=\sigma(T)-\operatorname{ex}(T)$ otherwise.
(d) If G a unicyclic graph, then $\operatorname{ir}(G)$ exists.
(e) If $G=W_{n}$ for $n \geqslant 3$, then $\operatorname{ir}\left(W_{n}\right)$ does not exist for $3 \leqslant n \leqslant 5, \operatorname{ir}\left(W_{6}\right)=3$, and $\operatorname{ir}\left(W_{n}\right)=\left\lfloor\frac{2 n+2}{5}\right\rfloor$ for $n \geqslant 7$.

Parts (a)-(d) in Theorem 3.1 are consequences of results from Section 2. Thus we will only verify (e) for $n \geqslant 7$. To do this, we need some additional definitions. In $W_{n}=C_{n}+K_{1}$, let $C_{n}: v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ and let v be the central vertex of W_{n}. Let S be a set of two or more vertices of C_{n}, let v_{i} and v_{j} be two distinct vertices of S, and let P and P^{\prime} denote the two distinct $v_{i}-v_{j}$ paths determined by C_{n}. If either P or P^{\prime}, say P, contains only two vertices of S (namely, v_{i} and v_{j}), then we refer to v_{i} and v_{j} as neighboring vertices of S and the set of vertices of P that
belong to $C_{n}-\left\{v_{i}, v_{j}\right\}$ as the gap of S (determined by v_{i} and v_{j}). The two gaps of S determined by a vertex of S and its two neighboring vertices will be referred to as neighboring gaps. Consequently, if $|S|=r$, then S has r gaps, some of which may be empty. We first verify the following two claims.

Claim 1. Every ir-set W of W_{n} satisfies the following conditions (i)-(iii):
(i) Every gap of W contains at least one and at most three vertices of C_{n}.
(ii) At most one gap of W contains exactly three vertices.
(iii) If a gap of W contains at least two vertices, then any neighboring gap contains exactly one vertex.
Proof of Claim 1. Let W be an ir-set of W_{n}. Note that $|W|=\operatorname{ir}\left(W_{n}\right) \geqslant 3$ if $n \geqslant 7$. Since the central vertex v of W_{n} is adjacent to every other vertex of W_{n}, it follows that $v \notin W$. So W consists of vertices in C_{n}. If (i) is false, then either W is not independent, which is impossible, or there is a gap containing four consecutive vertices $v_{j}, v_{j+1}, v_{j+2}, v_{j+3}$ of C_{n}, where $1 \leqslant j \leqslant n$ and addition is performed modulo n. In the latter case, $c_{W}\left(v_{j+1}\right)=c_{W}\left(v_{j+2}\right)=(2,2, \ldots, 2)$, a contradiction. If (ii) is false, then there exist two distinct gaps $\left\{v_{p}, v_{p+1}, v_{p+2}\right\}$ and $\left\{v_{q}, v_{q+1}, v_{q+2}\right\}$. However, $c_{W}\left(v_{p+1}\right)=c_{W}\left(v_{q+1}\right)=(2,2, \ldots, 2)$, a contradiction. If (iii) is false, then there exist five consecutive vertices $v_{j}, v_{j+1}, v_{j+2}, v_{j+3}, v_{j+4}$, of C_{n} such that v_{j+2} is the only vertex of W. However, $c_{W}\left(v_{j+1}\right)=c_{W}\left(v_{j+3}\right)$, a contradiction. This completes the proof of Claim 1.

Claim 2. Any set of vertices of C_{n} that satisfies (i)-(iii) is a resolving set of W_{n}.
Proof of Claim 2. Let W be a set of vertices of C_{n} that satisfies (i)-(iii). We show that W is a resolving set of W_{n}. Let u be any vertex of $V\left(W_{n}\right)-W$. If $u=v, c_{W}(u)=(1,1, \ldots, 1)$ and u is the only vertex of W_{n} with this code. Thus we may assume that $u \neq v$. There are three cases.

C ase 1. Vertex u belongs to a gap of size 1 of W. Let v_{i} and v_{j} be the neighboring vertices of W that determine this gap. Then u is adjacent to v_{i} and v_{j} and has distance 2 to all other vertices of W. Since $n \geqslant 7$, no other vertices of W_{n} has this property and so $c_{W}(x) \neq c_{W}(u)$ for $x \neq u$.

C ase 2. Vertex u belongs to a gap of size 2 of W. Then we may assume that v_{j}, $v_{j+1}=u, v_{j+2}, v_{j+3}$ are vertices of C_{n}, where $v_{j+1}, v_{j+2} \notin W$ and $v_{j}, v_{j+3} \in W$. Then u is adjacent to v_{j} and has distance 2 from all other vertices of W. By property (iii), only u has this property and so $c_{W}(x) \neq c_{W}(u)$ for $x \neq u$.

C ase 3. Vertex u belongs to a gap of size 3 of W. Then there exist vertices v_{j}, $v_{j+1}, v_{j+2}, v_{j+3}, v_{j+4}$ of C_{n}, only v_{j} and v_{j+4} of which belong to W. Assume first
that $u=v_{j+1}$. Then u is adjacent to v_{j} and has distance 2 from all other vertices of W. By (iii), u is the only vertex of W_{n} with this property and so $c_{W}(x) \neq c_{W}(u)$ for $x \neq u$. Next, we assume that $u=v_{j+2}$. Then $c_{W}(u)=(2,2, \ldots, 2)$. By properties (i) and (ii), no other vertex of of W_{n} has this representation. This completes the proof of Claim 2.

We are now prepared to prove Part (e) in Theorem 3.1 for $n \geqslant 7$.
Proof of Part (e) in Theorem 3.1 for $n \geqslant 7$. First we show that $\operatorname{ir}\left(W_{n}\right) \leqslant\left\lfloor\frac{2 n+2}{5}\right\rfloor$ by constructing an independent resolving set W in W_{n} with $\left\lfloor\frac{2 n+2}{5}\right\rfloor$ vertices.
(1) For $n \equiv 0(\bmod 5)$, let $n=5 k$, where $k \geqslant 2$. Then $\left\lfloor\frac{2 n+2}{5}\right\rfloor=2 k$. Then $W=\left\{v_{5 i+1}, v_{5 i+4}: 0 \leqslant i \leqslant k-1\right\}$ contains $2 k$ vertices.
(2) For $n \equiv 1(\bmod 5)$, let $n=5 k+1$, where $k \geqslant 2$. Therefore, $\left\lfloor\frac{2 n+2}{5}\right\rfloor=2 k$. Then $W=\left\{v_{5 i+1}, v_{5 i+4}: 0 \leqslant i \leqslant k-2\right\} \cup\left\{v_{5 k-4}, v_{5 k}\right\}$ contains $2 k$ vertices.
(3) For $n \equiv 2(\bmod 5)$, let $n=5 k+2$, where $k \geqslant 1$. So $\left\lfloor\frac{2 n+2}{5}\right\rfloor=2 k+1$. Then $W=\left\{v_{5 i+1}, v_{5 i+4}: 0 \leqslant i \leqslant k-1\right\} \cup\left\{v_{5 k+1}\right\}$ contains $2 k+1$ vertices.
(4) For $n \equiv 3(\bmod 5)$, let $n=5 k+3$, where $k \geqslant 1$. In this case, $\left\lfloor\frac{2 n+2}{5}\right\rfloor=2 k+1$. Then $W=\left\{v_{5 i+1}, v_{5 i+4}: 0 \leqslant i \leqslant k-2\right\} \cup\left\{v_{5 k-4}, v_{5 k}, v_{5 k+2}\right\}$ contains $2 k+1$ vertices.
(5) For $n \equiv 4(\bmod 5)$, let $n=5 k+4$, where $k \geqslant 1$. Thus $\left\lfloor\frac{2 n+2}{5}\right\rfloor=2 k+2$. Then $W=\left\{v_{5 i+1}, v_{5 i+4}: 0 \leqslant i \leqslant k-1\right\} \cup\left\{v_{5 k+1}, v_{5 k+3}\right\}$ contains $2 k+2$ vertices.
In each case, W is independent and satisfies (i)-(iii). By Claim 2, W is an independent resolving set. Hence $\operatorname{ir}\left(W_{n}\right) \leqslant\left\lfloor\frac{2 n+2}{5}\right\rfloor$.

It remains to show that $\operatorname{ir}\left(W_{n}\right) \geqslant\left\lfloor\frac{2 n+2}{5}\right\rfloor$. Let W be an ir-set of W_{n}. We consider two cases.

Case 1. $|W|=2 \ell \geqslant 4$ for some integer ℓ. By (iii) in Claim 1 at most ℓ gaps of W contain one vertex and, by (i) and (ii) in Claim 1, all of them contain at most two vertices, except possibly one containing three vertices. So the number of vertices belonging to the gaps of W is at most $3 \ell+1$. Hence $n-2 \ell \leqslant 3 \ell+1$, which implies that $|W|=2 \ell \geqslant\left\lceil\frac{2}{5} n-\frac{2}{5}\right\rceil \geqslant\left\lfloor\frac{2 n+2}{5}\right\rfloor$.

Case 2. $|W|=2 \ell+1 \geqslant 3$ for some integer ℓ. By (iii) in Claim 1 at most ℓ gaps contain one vertex and, by (i) and (ii) in Claim 1, all contain at most two vertices except possibly one containing three vertices. So the number of vertices belonging to the gaps of W is at most $3 \ell+2$. Hence $n-2 \ell-1 \leqslant 3 \ell+2$, which implies that $|W|=2 \ell+1 \geqslant\left\lceil\frac{2}{5} n-\frac{6}{5}+1\right\rceil \geqslant\left\lfloor\frac{2 n+2}{5}\right\rfloor$.

4. Realizable results

If G is a nontrivial connected graph of order n for which $\operatorname{ir}(G)$ exists, then by (1), $1 \leqslant \operatorname{ir}(G) \leqslant n-1$. The following result characterizes all nontrivial connected graphs G of order n for which $\operatorname{ir}(G) \in\{1, n-2, n-1\}$.

Theorem 4.1. Let G be a nontrivial connected graph of order n for which $\operatorname{ir}(G)$ exists. Then
(a) $\operatorname{ir}(G)=1$ if and only if $G=P_{n}$,
(b) $\operatorname{ir}(G)=n-2$ if and only if $n \geqslant 3$ and $G=K_{1, n-1}$ or $n=4$ and $G=$ $\left(K_{2} \cup K_{1}\right)+K_{1}$,
(c) $\operatorname{ir}(G)=n-1$ if and only if $n=2$ and $G=K_{2}$.

Proof. Part (a) is an immediate consequence of the fact that P_{n} is the only connected graph of order n with dimension 1 by Theorem A.

For (b), it is straightforward to show that each graph G described in the theorem has order n and $\operatorname{ir}(G)=n-2$. To verify the converse, suppose that G is a nontrivial connected graph of order n such that $\operatorname{ir}(G)=n-2$ and that G is not a star. It is routine to show that $G=\left(K_{2} \cup K_{1}\right)+K_{1}$ is the only connected graph of order $n \leqslant 4$ with $\operatorname{ir}(G)=n-2$. Thus, we may assume that $n \geqslant 5$. Let W be a minimum independent resolving set of G and let $V(G)-W=\{x, y\}$. Since W is independent and G is connected, every vertex in W is adjacent to at least one of x and y. Let W_{1} be the set of vertices in W that are adjacent to x but not adjacent to y, let W_{2} be the set of vertices in W that are adjacent to y but not adjacent to x, and let W_{3} be the set of vertices in W that are adjacent to both x and y. Then $W=W_{1} \cup W_{2} \cup W_{3}$. Since $n \geqslant 5$, it follows that $|W|=n-2 \geqslant 3$. We consider four cases.

Case 1. $W=W_{i}$ for some $i \in\{1,2,3\}$. First, assume that $W=W_{1}$ or $W=W_{2}$, say $W=W_{1}$. Since G is connected, it follows that y is adjacent to x. This implies that G is a star with x as the central vertex, which is a contradiction. Therefore, $W=W_{3}$. Since $d(x, w)=d(y, w)=1$ for all $w \in W=V(G)-\{x, y\}$, it follows that $\{x, y\}$ is a distance similar equivalence class. By Observation 2.1, W must contain at least one of x and y, a contradiction.

Case $2 . W=W_{1} \cup W_{2}$ and $W_{i} \neq \emptyset$ for $i=1,2$. Since W is independent and G is connected, it follows that x is adjacent to y. This implies that G is a double star with central vertices x and y. Since the order of G is at least 5 , at least one of W_{1} and W_{2} contains two or more vertices, say $\left|W_{1}\right| \geqslant 2$. Let $u \in W_{1}$. Then $W^{\prime}=W-\{u\}$ is an independent resolving set and so $\operatorname{ir}(G) \leqslant\left|W^{\prime}\right|=n-3$, which is impossible.

Case $3 . W=W_{i} \cup W_{3}$, where $W_{i} \neq \emptyset$ for $i=1,2$ and $W_{3} \neq \emptyset$. Assume, without loss of generality, that $W=W_{1} \cup W_{3}$, where $W_{1} \neq \emptyset$ and $W_{3} \neq \emptyset$. Let $u \in W_{1}, v \in W_{3}$, and let $w \in W-\{u, v\}$. If $x y \notin E(G)$, then let $W^{\prime}=W-\{v\}$. Since $d(x, u)=1, d(y, u)=3$, and $d(v, u)=2$, it follows that W^{\prime} is an independent resolving set of G of cardinality $n-3$, which is impossible. If $x y \in E(G)$, then let $W^{\prime \prime}=W-\{w\}$. Since (1) $d(x, u)=d(x, v)=1,(2) d(y, u)=2$ and $d(y, v)=1$, and (3) $d(w, u)=d(w, v)=2$, it follows that $W^{\prime \prime}$ is an independent resolving set of G of cardinality $n-3$, a contradiction.

Case 4. $W=W_{1} \cup W_{2} \cup W_{3}$ and $W_{i} \neq \emptyset$ for $i=1,2,3$. Let $u \in W_{1}, v \in W_{2}$ and let $W^{\prime}=W-\{v\}$. If $x y \notin E(G)$, then $d(x, u)=1, d(y, u)=3$, and $d(v, u)=4$; while if $x y \in E(G)$, then $d(x, u)=1, d(y, u)=2$, and $d(v, u)=3$. In either case, W^{\prime} is an independent resolving set of G of cardinality $n-3$, a contradiction.

Therefore, for $n \geqslant 5$, the star $K_{1, n-1}$ is the only connected graph of order n with $\operatorname{ir}(G)=n-2$ and so (b) holds.

For part (c), it is clear that $\operatorname{ir}\left(K_{2}\right)=1$. For the converse, let G be a connected graph of order n with $\operatorname{ir}(G)=n-1$. Then $\beta(G)=n-1$ by (1) and so $G=K_{1, n-1}$. By (b), if $n \geqslant 3$, then $\operatorname{ir}\left(K_{1, n-1}\right)=n-2$. Therefore, $n=2$ and $G=K_{2}$.

By Theorems 3.1 and 4.1, we are able to determine all pairs k, n of positive integers with $k \leqslant n$ that are realizable as the independent resolving number and the order of some connected graph. We omit the routine proof of the next result.

Theorem 4.2. For each pair k, n of positive integers with $k \leqslant n$, there exists a connected graph G of order n with $\operatorname{ir}(G)=k$ if and only if $(k, n)=(1,2)$ or $1 \leqslant k \leqslant n-2$.

Next, we show that certain pairs a, b are realizable as the dimension and the independent resolving number of some connected graph.

Theorem 4.3. For every pair a, b of integers with $2 \leqslant a \leqslant b \leqslant\left\lfloor\frac{3}{2} a\right\rfloor$, there exists a connected graph G such that $\operatorname{dim}(G)=a$ and $\operatorname{ir}(G)=b$.

Proof. For $a=b$, let $G=K_{1, a+1}$. Then $\operatorname{dim}(G)=\operatorname{ir}(G)=a$. Thus we may assume that $a<b$. Since $b \leqslant\left\lfloor\frac{3}{2} a\right\rfloor$, it follows that $3 a-2 b+1 \geqslant 1$. For each integer j with $1 \leqslant j \leqslant b-a$, let H_{j} be the graph of Figure 5 . Then the graph G is obtained from the graphs $H_{j}(1 \leqslant j \leqslant b-a)$ by (1) identifying the $b-a$ vertices $v_{j 0}$ $(1 \leqslant j \leqslant b-a)$ and labeling the identified vertex v_{0} and (2) adding the $3 a-2 b+1$ new vertices $x_{1}, x_{2}, \ldots, x_{3 a-2 b+1}$ and joining each vertex $x_{i}(1 \leqslant i \leqslant 3 a-2 b+1)$ to v_{0}. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{3 a-2 b+1}\right\}$. We show that $\operatorname{dim}(G)=a$ and $\operatorname{ir}(G)=b$.
$H_{j}:$

Figure 5. The graph H_{j}
First, we show that $\operatorname{dim}(G)=a$. Since $W=\left\{v_{j 4}, v_{j 5}: 1 \leqslant j \leqslant b-a\right\} \cup\left(X-\left\{x_{1}\right\}\right)$ is a resolving set of G, it follows that $\operatorname{dim}(G) \leqslant|W|=2(b-a)+(3 a-2 b)=a$. To show that $\operatorname{dim}(G) \geqslant a$, we verify the following claim.

Claim 1. Every resolving set of G contains at least two vertices from each set

$$
V_{j}=V\left(H_{j}\right)-\left\{v_{0}\right\}=\left\{v_{j 1}, v_{j 2}, v_{j 3}, v_{j 4}, v_{j 5}\right\}
$$

for $1 \leqslant j \leqslant b-a$.
Proof of Claim 1. Assume, to the contrary, there exists a resolving set W of G such that W contains at most one vertex in V_{j} for some j with $1 \leqslant j \leqslant b-a$, say $j=1$. Note that if u and u^{\prime} are two distinct vertices of V_{1} with $d\left(u, v_{0}\right)=d\left(u^{\prime}, v_{0}\right)$, then $d(u, v)=d\left(u^{\prime}, v\right)$ for all $v \in V(G)-V_{1}$. Since $d\left(v_{11}, v_{0}\right)=d\left(v_{12}, v_{0}\right)=d\left(v_{13}, v_{0}\right)$ and $d\left(v_{14}, v_{0}\right)=d\left(v_{15}, v_{0}\right)$, it follows that W must contain at least one vertex in V_{1}. So W contains exactly one vertex in V_{1}. We consider three cases.

Case 1. Vertex $v_{11} \in W$ or $v_{13} \in W$, say the former. Since $d\left(v_{12}, v_{11}\right)=$ $2=d\left(v_{13}, v_{11}\right)$ and $d\left(v_{12}, v\right)=d\left(v_{13}, v\right)$ for all $v \in V(G)-V_{1}$, it follows that $c_{W}\left(v_{12}\right)=c_{W}\left(v_{13}\right)$.

Case 2. Vertex $v_{14} \in W$ or $v_{15} \in W$, say the former. Since $d\left(v_{11}, v_{14}\right)=$ $1=d\left(v_{12}, v_{14}\right)$ and $d\left(v_{11}, v\right)=d\left(v_{12}, v\right)$ for all $v \in V(G)-V_{1}$, it follows that $c_{W}\left(v_{11}\right)=c_{W}\left(v_{12}\right)$.

Case 3. Vertex $v_{12} \in W$. Since $d\left(v_{14}, v_{12}\right)=1=d\left(v_{15}, v_{12}\right)$ and $d\left(v_{14}, v\right)=$ $d\left(v_{15}, v\right)$ for all $v \in V(G)-V_{1}$, it follows that $c_{W}\left(v_{14}\right)=c_{W}\left(v_{15}\right)$.

In each case, W is not a resolving set of G, a contradiction. Therefore, every resolving set of G contains at least two vertices in $V\left(H_{j}\right)-\left\{v_{0}\right\}$ for $1 \leqslant j \leqslant b-a$. This completes the proof of Claim 1.

By Claim 1, every basis of G must contain at least two vertices from each set V_{j} for $1 \leqslant j \leqslant b-a$. Moreover, by Observation 2.1, every basis of G contains at least $3 a-2 b$ vertices from X. It follows that $\operatorname{dim}(G) \geqslant 2(b-a)+(3 a-2 b)=a$. Therefore, $\operatorname{dim}(G)=a$.

Next, we show that $\operatorname{ir}(G)=b$. Since $W_{0}=\left\{v_{j 1}, v_{j 2}, v_{j 3}: 1 \leqslant j \leqslant b-a\right\} \cup(X-$ $\left.\left\{x_{1}\right\}\right)$ is an independent resolving set, $\operatorname{ir}(G) \leqslant\left|W_{0}\right|=3(b-2)+(3 a-2 b)=b$. In order to show that $\operatorname{ir}(G) \geqslant b$, we first verify the following claim.

Claim 2. No ir-set of G contains any vertex in $\left\{v_{0}, v_{j 4}, v_{j 5}: 1 \leqslant j \leqslant b-a\right\}$.
Proof of Claim 2. We first show that no ir-set of G contains any vertex in $\left\{v_{j 4}, v_{j 5}\right\}$ for $1 \leqslant j \leqslant b-a$. Assume, to the contrary, that there exists an ir-set W of G such that W contains at least one vertex in $\left\{v_{j 4}, v_{j 5}\right\}$ for some j with $1 \leqslant j \leqslant b-a$, say $j=1$. Since W is independent, W contains exactly one vertex in $\left\{v_{14}, v_{15}\right\}$, say $v_{14} \in W$. Since v_{11}, v_{12}, and v_{15} are adjacent to v_{14}, it follows that $v_{11}, v_{12}, v_{15} \notin$ W. By Claim 1 then, $v_{13}, v_{14} \in W$. Since (1) $d\left(v_{11}, v_{13}\right)=2=d\left(v_{12}, v_{13}\right)$, (2) $d\left(v_{11}, v_{14}\right)=1=d\left(v_{12}, v_{14}\right)$, and $(3) d\left(v_{11}, v\right)=d\left(v_{12}, v\right)$ for all $v \in V(G)-V_{1}$, it follows that $c_{W}\left(v_{11}\right)=c_{W}\left(v_{12}\right)$, a contradiction. Therefore, no ir-set of G contains any vertex in $\left\{v_{j 4}, v_{j 5}\right\}$ for $1 \leqslant j \leqslant b-a$. Furthermore, the vertex v_{0} is adjacent to v_{11}, v_{12}, v_{13} in G and W must contain at least two of the three vertices v_{11}, v_{12}, v_{13}, which is impossible. Therefore, no ir-set of G contains v_{0} and the proof of Claim 2 is complete.

We now continue to show that $\operatorname{ir}(G) \geqslant b$. Assume, to the contrary, that $\operatorname{ir}(G) \leqslant$ $b-1$. Let W^{\prime} be an ir-set of G. Then $\left|W^{\prime}\right| \leqslant b-1$. By Claim 1, the set W^{\prime} contains at least two vertices in each set $\left\{v_{j 1}, v_{j 2}, v_{j 3}, v_{j 4}, v_{j 5}\right\}$ for $1 \leqslant j \leqslant b-a$. By Claim 2, neither $v_{j 4}$ nor $v_{j 5}$ belongs to W^{\prime} for $1 \leqslant j \leqslant b-a$. Also, by Observation 2.1, the set W^{\prime} contains at least $3 a-2 b$ elements in X. Now let $T=X \cup\left\{v_{j 1}, v_{j 2}\right.$, $\left.v_{j 3}: 1 \leqslant j \leqslant b-a\right\}$. Then $W^{\prime} \subset T$. Since $\left|W^{\prime}\right| \leqslant b-1$ and $|T|=b+1$, it follows that $\left|T-W^{\prime}\right| \geqslant 2$. However, if $u_{1}, u_{2} \in T-W^{\prime}$, then $d\left(u_{1}, v\right)=d\left(u_{2}, v\right)=2$ for all $v \in T$ and so $c_{W^{\prime}}\left(u_{1}\right)=c_{W^{\prime}}\left(u_{2}\right)$, which is a contradiction. Therefore, $\operatorname{ir}(G)=b$.

By Theorem 4.3 every pair a, b of positive integers with $2 \leqslant a \leqslant b \leqslant\left\lfloor\frac{3}{2} a\right\rfloor$ is realizable as the dimension and the independent resolving number of some connected graph. Furthermore, for each pair a, b of positive integers with $4 \leqslant a \leqslant b$, it can be shown that (1) there exists a connected graph F with $\operatorname{dim}(F)=\operatorname{ir}(F)=a$ and $\beta(F)=b,(2)$ there exists a connected graph G with $\operatorname{dim}(G)=a$ and $\beta(G)=b$ such that $\operatorname{dim}(G) \neq \operatorname{ir}(G)$, and (3) there exists a connected graph H with $\operatorname{ir}(H)=a$ and $\beta(H)=b$ such that $\operatorname{dim}(H) \neq \operatorname{ir}(H)$. However, we do not have a complete solution for the following problem.

Problem 4.4. For which triples a, b, c of positive integers with $2 \leqslant a \leqslant b \leqslant c$, does there exist a connected graph G such that $\operatorname{dim}(G)=a$, $\operatorname{ir}(G)=b$, and $\beta(G)=c$?

To conclude this paper, we construct, for each pair k, r of integers with $k \geqslant 2$ and $0 \leqslant r \leqslant k$, a connected graph G with $\operatorname{ir}(G)=k$ such that exactly r vertices belong to every ir-set of G.

Theorem 4.5. For every pair r, k of integers with $k \geqslant 2$ and $0 \leqslant r \leqslant k$, there exists a connected graph G with $\operatorname{ir}(G)=k$ such that exactly r vertices belong to every ir-set of G.

Proof. For $r=0$, let $G=K_{1, k+1}$. Since every ir-set of G consists of any k endvertices of G, it follows that no vertex of G belongs to every ir-set of G. For $r=1$, let G be obtained from $K_{4}-e$, where $V\left(K_{4}-e\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $e=u_{1} u_{3}$, by adding the k new vertices $v_{1}, v_{2}, \ldots, v_{k}$ and joining each vertex $v_{i}(1 \leqslant i \leqslant k)$ to u_{2} and u_{3}. Then every ir-set of G consists of the vertex u_{1} and any $k-1$ vertices from the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Thus u_{1} is the only vertex that belongs to every ir-set of G.

Now let $2 \leqslant r \leqslant k$. First, we construct a graph F of order $r+2^{r}$ with $V(F)=$ $U \cup W$, where $U=\left\{u_{0}, u_{1}, \ldots, u_{2^{r}-1}\right\}$ and the ordered set $W=\left\{w_{r-1}, w_{r-2}, \ldots, w_{0}\right\}$ are disjoint. The induced subgraph $\langle U\rangle$ of F is complete, while W is independent. To define the adjacencies between W and U, let each integer $j\left(0 \leqslant j \leqslant 2^{r}-1\right)$ be expressed in its base 2 (binary) representation. Thus, each such j can be expressed as a sequence of r coordinates, that is, an r-vector, where the rightmost coordinate represents the value (either 0 or 1) in the 2^{0} position, the coordinate to its immediate left is the value in the 2^{1} position, etc. For integers i and j, with $0 \leqslant i \leqslant r-1$ and $0 \leqslant j \leqslant 2^{r}-1$, we join w_{i} and u_{j} if and only if the value in the 2^{i} position in the binary representation of j is 1 . This completes the construction of F. Then the graph G is obtained from F by adding $k-r$ copies $u_{01}, u_{02}, \ldots, u_{0, k-r}$ of u_{0} and joining each of the $k-r$ vertices $u_{01}, u_{02}, \ldots, u_{0, k-r}$ to every neighbor of u_{0} in F. Let $U_{0}=\left\{u_{01}, u_{02}, \ldots, u_{0, k-r}\right\}$. Then the set $U_{0} \cup\left\{u_{0}\right\}$ is an independent set in G and each of vertices in U_{0} has the same neighborhood as that of u_{0} in G. For $r=3$ and $k=5$, the edges joining W and $U \cup U_{0}$ in the graph G just constructed are shown in Figure 6.

Figure 6. The graph G for $r=3$ and $k=5$

Notice that (1) every two vertices of U are adjacent, (2) every vertex in U_{0} is adjacent to every vertex in $U-\left\{u_{0}\right\}$, (3) there is no edge between any two vertices in $U_{0} \cup\left\{u_{0}\right\}$, and (4) there is no edge between any two vertices in W. By an extensive
case-by-case analysis, it can be shown that every ir-set consists of W and any $k-r$ vertices of $U_{0} \cup\left\{u_{0}\right\}$. Therefore, exactly r vertices in G, namely the r vertices in W, belong to every ir-set of G.

References

[1] F. Buckley, F. Harary: Distance in Graphs. Addison-Wesley, Redwood City, CA, 1990.
[2] G. Chartrand, L. Lesniak: Graphs \& Digraphs, third edition. CRC Press, Boca Raton, 1996.
[3] F. Harary, R. A. Melter: On the metric dimension of a graph. Ars Combin. 2 (1976), 191-195.
[4] P. J. Slater: Leaves of trees. Congress. Numer. 14 (1975), 549-559.
[5] P. J. Slater: Dominating and reference sets in graphs. J. Math. Phys. Sci. 22 (1988), 445-455.

Authors' addresses: G. Chartrand, V. Saenpholphat, P. Zhang, Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA, e-mail: ping.zhang@ wmich.edu.

