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Abstract. Suppose G is a subgroup of the reduced abelian p-group A. The following two
dual results are proved:
(∗) If A/G is countable and G is an almost totally projective group, then A is an almost

totally projective group.

(∗∗) If G is countable and nice in A such that A/G is an almost totally projective group,
then A is an almost totally projective group.
These results somewhat strengthen theorems due to Wallace (J. Algebra, 1971) and Hill

(Comment. Math. Univ. Carol., 1995), respectively.
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I. Introduction and preliminaries

In his remarkable investigation [6], Hill introduced the class of the so-called al-

most direct sums of cyclic p-groups and established two results concerning them.

Specifically, the following two theorems hold true:

Theorem (Hill, 1995). If A is a separable abelian p-group which is the countable

extension of an almost direct sum of cyclic groups, then A itself is an almost direct

sum of cyclic groups.

Theorem (Hill, 1995). If A is a separable abelian p-group which is the extension

of a countable group by an almost direct sum of cyclic groups, then A itself is an

almost direct sum of cyclic groups.
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Note that the first assertion alluded to above is of the so-termed “type of Wallace”

who was the first to obtain such a theorem for totally projective primary groups

(see [9]).

On the other hand, Hill jointly with Ullery defined in [7] a generalization of the

aforementioned class of separable groups to the class of the so-called almost totally

projective p-groups. Their definition reads like this:

Definition (Hill and Ullery, 1996). A (reduced) p-primary abelian group H is

said to be almost totally projective provided it possesses a collection C of nice sub-

groups of H which satisfies the following three conditions:

(0) {0} ∈ C;

(1) C is closed with respect to unions of ascending chains, that is, if Hi ∈ C are such

that Hi ⊆ Hj whenever i 6 j with i, j ∈ I, an index set, then
⋃

i∈I

Hi ∈ C;

(2) if C is a countable subgroup of H , then there exists B ∈ C such that C ⊆ B

and B is countable.

Recall that ifH is separable, then it is called an almost direct sum of cyclic groups.

It is the purpose of this paper to initiate a study of these major extensions of

totally projective p-torsion groups by showing that the preceding two theorems of

Hill remain valid for them. It is worthwhile noticing that similar investigations in

this direction were done in [1]–[4] as well as our Theorem 1 stated and proved below

was already established in ([8], Theorem 6) but we have not seen this article.

Any other terms or concepts which are not defined explicitly here can be found

in [5].

II. Main results

We proceed by proving our main theorems. Before doing that, we need the follow-

ing useful technicality on niceness, which can be of general interest as well, since our

technique requires a set-theoretical gymnastic with intersections of certain groups.

It will be necessary for establishing the property of niceness for some subgroups, al-

though we can also successfully copy the idea from [9] which is based on homological

methods and especially on commutative diagrams. Nevertheless, our scheme of proof

of such a niceness is more global and “purely algebraic” than the cited one. Note

also that the technique used by Hill in [6] cannot be used in our first theorem.

So, we are prepared to prove
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Lemma. Suppose G is an abelian p-group with a nice subgroup N and M is an

abelian p-group such that G ∩ M ⊆ N . Then N + M is nice in G + M .

P r o o f. First of all, we shall show by transfinite induction on the ordinal α that

pα(G + M) ⊆ pαG + M + N for every ordinal number α; actually we shall show a

little more. We consider two cases.

C a s e 1: α is non-limit. Thus pα(G + M) = p(pα−1(G + M)) ⊆ p(pα−1G + M +

N) ⊆ p(pα−1G) + M + N = pαG + M + N by applying the induction hypothesis.

C a s e 2: α is limit. We have pα(G + M) =
⋂

τ<α
pτ (G + M) ⊆

⋂

τ<α
(pτG + M +

N) by the induction hypothesis. We take an arbitrary element x lying in the last

intersection. Hence, we may write x = gτ1
+ m1 + n1 = gτ2

+ m2 + n2 = . . ., where

gτ1
∈ pτ1G, m1 ∈ M , n1 ∈ N ; gτ2

∈ pτ2G, m2 ∈ M , n2 ∈ N ; τ1 < τ2 < α.

Since G ∩ M ⊆ N , we obtain that m2 ∈ m1 + N . Therefore, because the sums

are finite while the number of equalities is not affected by the infinite cardinality

of the limit ordinals, gτ1
+ n1 ∈

⋂

τ<α
(N + pτG) = N + pαG owing to the niceness

of N in G. As a final conclusion, x ∈ pαG + M + N . This allows us to infer that
⋂

τ<α
(pτG + M + N) ⊆ pαG + M + N , and we are done.

Further, to deduce the desired niceness, one must show that
⋂

δ<β

(N + M + pδ(G+

M)) = N + M + pβ(G + M) for each limit ordinal number β. Indeed, by what we

have already shown above, we conclude that
⋂

δ<β

(N + M + pδ(G + M)) =
⋂

δ<β

(N +

M + pδG) = N + M + pβG = N + M + pβ(G + M). The proof is complete. �

And so, we are ready to prove

Theorem 1. Let A be a reduced abelian p-group with a subgroup G such that

A/G is countable. If G is an almost totally projective group, then A is an almost

totally projective group.

P r o o f. Write A = G + C where C is countable. Clearly G ∩ C 6 G is at

most countable because C is countable. Since G is almost totally projective, it has

a collection CG consisting of nice subgroups of G and satisfying points (0), (1) and

(2) quoted above. Thus there exists a countable subgroup L of G that belongs to

CG and G ∩ C ⊆ L. Observe that C + L is again countable. Moreover, in virtue of

the classical modular law from [5], we obtain that (C + L) ∩ G = L + C ∩ G = L.

Furthermore, A/(C + L) = (G + C)/(L + C) ∼= G/(G ∩ (L + C)) = G/L. Since

L is countable, G is almost totally projective and L ∈ CG, it is a straightforward

argument, which we leave to the reader, that G/L is again almost totally projective.

We only suggest that CG/L = {K/L : L ⊆ K ∈ CG}. That is why so does A/(C +L)
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and consequently it has a collection CA/(C+L) of nice subgroups of A/(C + L) such

that conditions (0), (1) and (2) are fulfilled.

Henceforth, we put

CA = {0} ∪ {B 6 A|B/(C + L) ∈ CA/(C+L)}.

First of all, we derive that B is nice in A. In fact, B/(C +L) is nice in A/(C +L),

and moreover according to the foregoing Lemma the sum C +L is nice in C +G = A;

it is worthwhile to noting that the method in [9] for proving the wanted niceness also

work, but however our approach is more direct and general. Consequently, applying

([5], p. 92, Lemma 79.3) we deduce that B is really a nice subgroup of A.

Next, we shall verify the truthfulness of (0), (1) and (2). That the zero subgroup of

A lies in CA follows by definition. Suppose now that (Bi)i∈I is an ascending chain of

members of CA. Since Bi/(C + L) ∈ CA/(C+L) is also ascending for each index i ∈ I,

we find that
⋃

i∈I

(Bi/(C + L)) =
(

⋃

i∈I

Bi

)

/(C + L) ∈ CA/(C+L), hence
⋃

i∈I

Bi ∈ CA in

view of
⋃

i∈I

Bi 6 A.

Finally, assume that P is a countable subgroup of A. Thus (P +C +L)/(C +L) ∼=

P/(P ∩(C +L)) is at most a countable subgroup of A/(C +L) (finite or infinite) and

so there is B/(C + L) ∈ CA/(C+L) such that (P + C + L)/(C + L) ⊆ B/(C + L) and

such that B/(C+L) is countable. We therefore elementarily see that P +C+L ⊆ B,

hence P ⊆ B, where B ∈ CA and B is countable because as already pointed out so

is C + L.

Thereby, the validity of the three conditions is proved. �

Next, we come to the other major statement.

Theorem 2. Let A be a reduced abelian p-group with a nice countable subgroup

G such that A/G is almost totally projective. Then A is an almost totally projective

group.

P r o o f. Since A/G is an almost totally projective group, it has a collection L

of nice subgroups which possesses properties (0), (1) and (2). What suffices to verify

is that these conditions (0), (1) and (2) are also satisfied for an appropriate selected

collection C of nice subgroups of A. Indeed, we set

C = {K 6 A : K/G ∈ L} ∪ {0}.

First, if we assume that 0 6= K ∈ C, then K/G ∈ L and hence K/G is nice in A/G.

Bearing in mind that G is nice in A, it follows from ([5], p. 92, Lemma 79.3) that K

is nice in A. Thus C consists of nice subgroups of A.
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Because (0) is trivially fulfilled by construction, what remains to show is the

validity of (1) and (2). And so, suppose (Hi)i∈I is an ascending chain of non-zero

members of C. We therefore have that the chain (Hi/G)i∈I of elements of L also

ascends, whence
⋃

i∈I

(Hi/G) =
(

⋃

i∈I

Hi

)

/G ∈ L. Consequently, in accordance with

the definition,
⋃

i∈I

Hi ∈ C because
⋃

i∈I

Hi 6 A. Hence (1) follows. Furthermore, letting

C be an arbitrary countable subgroup of A, we obtain that (C +G)/G ∼= C/(C ∩G)

is a countable (finite or infinite) subgroup of A/G and there is B/G ∈ L such that

(C + G)/G ⊆ B/G and B/G is countable. Thus B ∈ C, C + G ⊆ B 6 A, hence

C ⊆ B and B is countable because by hypothesis so is G. Notice that when C ⊆ G,

we can take B = G since G ∈ C and G is countable. �

Under some length restrictions on the whole group, we yield the following imme-

diate consequences.

Corollary 1. Suppose that G is a subgroup of the reduced abelian p-group A

with length not exceeding Ω. If G is either an almost direct sum of countable groups

such that A/G is countable, or G is countable and nice in A such that A/G is an

almost direct sum of countable groups, then A is an almost direct sum of countable

groups.

P r o o f. Applying Theorems 1 or 2, respectively, for length(A) 6 Ω, we are

done. �

Corollary 2 ([6]). Suppose that G is a subgroup of the separable abelian p-group

A. If G is either an almost direct sum of cyclic groups such that A/G is countable,

or G is countable such that A/G is an almost direct sum of cyclic groups, then A is

an almost direct sum of cyclic groups.

P r o o f. Employing Theorems 1 or 2, respectively, for length(A) 6 ω, we com-

plete the proof. �

III. Left-open problems

First of all, we ask whether the restriction on the subgroup G in Theorem 2 to

be nice in the full group A can be omitted. Moreover, in what direction the two

theorems listed above may be united; that is, letting A/G be an almost totally

projective group, find a suitable restriction on G which leads to a necessary and

sufficient condition for A to be almost totally projective.
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Secondly, does it follow that quasi-complete almost direct sums of cyclic groups are

bounded, same as the pure-complete almost direct sums of cyclic groups are direct

sums of cyclic groups?

R em a r k. We would like to note that the proof of Proposition 3 in [7] is erro-

neous. In fact, Hill and Ullery state that [sic]: “Recall that N is a nice subgroup

of G if and only if pαN is a nice subgroup of pαG and (N + pαG)/pαG is a nice

subgroup of G/pαG.”

On the other hand, the same Hill proved thirty years ago that (see, e.g., [5],

Chapter 79, p. 93, Exercise 10) N is nice in G if and only if N ∩ pαG is nice in pαG

and (N + pαG)/pαG is nice in G/pαG, which is actually the true statement.

Certainly, these two assertions are not equivalent as simple examples show when,

for instance, N is not isotype in G.

Indeed, let G be an unbounded direct sum of cycles with a subgroup N so that

pN = 0 but N ∩ pG 6= 0. Thus N is not pure in G. We shall show that N is even

not nice in G. To this aim, we shall demonstrate that G/N is not separable.

And so, first observe that

1) pN = 0 is ever nice in pG;

2) G/(N +pG) is ever bounded, hence N +pG is ever nice in G; even (N +pG)/pG

is a subgroup of the bounded G/pG, whence it is nice in G/pG and consequently

N + pG is nice in G since pG is nice in G.

Thus all conditions in the Hill-Ullery’s claim are trivially satisfied, whereas N∩pG

may not be nice in pG, i.e. not nice in G, hence N is not nice in G. Notice that

pG/(N ∩ pG) ∼= (N + pG)/N ⊆ G/N both have equal first Ulm subgroups since

G/N/(N + pG)/N ∼= G/(N + pG) is bounded.

A c k n ow l e d g em e n t. The author would like to express his gratitude to the

anonymous referee for his helpful suggestions.
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