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DISTRIBUTIVITY OF LATTICES OF BINARY RELATIONS

I. Chajda, Olomouc
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Abstract. We present a formal scheme which whenever satisfied by relations of a given
relational lattice L containing only reflexive and transitive relations ensures distributivity
of L.

Keywords: binary relation, relational lattice, distributivity

MSC 2000 : 08A02, 08B10

Distributivity of lattices of binary relations was treated by several authors, see
e.g. [1] for lattices of tolerances and [2], [3] for lattices of congruences. H.-P.Gumm

developed in [4] two schemes (the so called Shifting Lemma and Shifting Principle)
to characterize modularity of congruence lattices in algebras and varieties. A certain

scheme characterizing distributivity of congruence lattices can be found in [2]. The
aim of this short note is to present a suitable scheme for characterizing distributivity

in a more general case.
Let α be a binary relation on a set A. The fact that 〈x, y〉 ∈ α will be visualized

by an arrow going from x to y (where x, y are depicted by points in a plane) which
is valuated by α, see Fig. 1.
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Fig. 1.

Definition. Let L be a lattice of binary relations on a set A �= ∅. We say that L

satisfies the Corner Scheme if for any α, β, γ ∈ L the following condition is satisfied:

if α ∩ β ⊆ γ and 〈z, y〉 ∈ β, 〈a, x〉 ∈ α and 〈x, y〉 ∈ α ∨ γ, then 〈z, y〉 ∈ γ.

������. In our graphical convention, the Corner Scheme can be visualized as
shown in Fig. 2.
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Fig. 2.

Lemma 1. Let L be a lattice of transitive binary relations on a set A �= ∅. If L
is distributive than it satisfies the Corner Scheme.

�����. Let L be distributive, α, β, γ ∈ L and α ∩ β ⊆ γ. Suppose 〈z, y〉 ∈
β, 〈z, x〉 ∈ α and 〈x, y〉 ∈ α ∨ γ. Due to transitivity, we have 〈z, y〉 ∈ α · (α ∨ γ) ⊆
(α ∨ γ) · (α ∨ γ) ⊆ α ∨ γ, thus also

〈a, y〉 ∈ β ∩ (α ∨ γ) = (β ∩ α) ∨ (β ∩ γ) ⊆ γ ∨ (β ∩ γ) = γ,

so L satisfies the Corner Scheme. �

Lemma 2. Let L be a lattice of reflexive binary relations on a set A �= ∅. If L

satisfies the Corner Scheme then it is distributive.

�����. Let L satisfy the Corner Scheme and suppose that it is not distributive.
Then L contains a sublattice isomorphic to M3 or N5 as shown in Fig. 3.
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Fig. 3.

Of, course, we have α ∩ β ⊆ γ in the both cases. Suppose 〈z, y〉 ∈ β. Then

〈z, y〉 ∈ α∨γ and, due to reflexivity and the property α ⊆ α∨γ, also 〈z, y〉 ∈ α·(α∨γ).
Thus there is x ∈ A with 〈z, x〉 ∈ α and 〈x, y〉 ∈ α ∨ γ. By the Corner Scheme we

conclude 〈z, y〉 ∈ γ. We have shown β ⊆ γ which contradicts β‖γ in M3 or γ ⊂ β in
N5. �
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Theorem. Let L be a lattice of reflexive and transitive binary relations on a set

A �= ∅. Then L is distributive if and only if L satisfies the Corner Scheme.

This is an immediate consequence of Lemma 1 and Lemma 2. Since β ∩ γ ⊆
β ∩ (α ∨ γ) for any α, β, γ of any lattice L, we can state the following conclusion of
the Corner Scheme.

Corollary 1. Any lattice of reflexive and transitive relations on a set A �= ∅ is
distributive if and only if it satisfies the quasiidentity:

α ∩ β ⊆ γ ⇒ β ∩ γ = β ∩ (α ∨ γ).

������. It is well-known and easy to check that in any lattice L of reflexive

and transitive relations we have

α ∨ γ =
⋃
{α · γ · α · . . . (n factors); n ∈ N}.

Denote by Λn = γ · α · γ · . . . (n factors) for n ∈ N0 (if n = 0 then Λ0 is the identity
relation on A). Then our Corner Scheme can be reformulated as follows:

Corollary 2. Let L be any lattice of reflexive and transitive binary relations on

a set A �= ∅. Then L is distributive if and only if it satisfies the following scheme for

all n ∈ N0.

x z

y

α

βΛn� α ∩ β ⊂ γ⇒

x z

y

α

βΛn γ�
Let us note that the last scheme was first used for characterizing distributivity of

congruence lattices in [2] under the name of Triangular Scheme.

We say that the lattice L of binary relations on a set A is permutable if

α · γ = γ · α

for every α, γ ∈ L.

Of course, if L is a permutable lattice of reflexive and transitive relations on a set
A �= ∅ then α ∨ γ = α · γ.
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Hence, we can take n = 1 in Corollary 2 to prove the last result:

Corollary 3. Let L be a permutable lattice of reflexive and transitive binary

relations on a set A �= ∅. Then L is distributive if and only if it satisfies the following

scheme:
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