Mathematic Bohemia

Jan Kučera; Carlos Bosch
Multipliers of temperate distributions

Mathematica Bohemica, Vol. 130 (2005), No. 3, 225-229
Persistent URL: http://dml.cz/dmlcz/134095

Terms of use:

© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

MULTIPLIERS OF TEMPERATE DISTRIBUTIONS

Jan Kucera, Washington, Carlos Bosch, Mexico

(Received February 3, 2005)

Abstract

Spaces $\mathcal{O}_{q}, q \in \mathbb{N}$, of multipliers of temperate distributions introduced in an earlier paper of the first author are expressed as inductive limits of Hilbert spaces.

Keywords: temperate distribution, multiplication operator, inductive limit of locally convex spaces, projective limit of locally convex spaces, generalized derivative, Sobolev derivative

MSC 2000: 46F10, 46A13

We denote by $L_{\text {loc }}$ the space of all locally Lebesgue integrable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and by \mathcal{D} the space of all C^{∞}-functions, defined on \mathbb{R}^{n}, with a compact support. For $\alpha \in \mathbb{N}^{n}, x \in \mathbb{R}^{n}$, we write $|\alpha|=\sum_{i=1}^{n} \alpha_{i}, x^{\alpha}=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$, and $D^{\alpha}=$ $\partial|\alpha| / \partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{n}^{\alpha_{n}}$. It is convenient to use a weight function $w(x)=(1+$ $\left.\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$ and a constant $r=1+\left[\frac{1}{2} n\right]$, where $[t]$ is the greatest integer less or equal to $t, t \in \mathbb{R}$.

A function $f \in L_{\text {loc }}$ has a generalized derivative $g \in L_{\text {loc }}$ of order $\alpha \in \mathbb{N}^{n}$ if for all $\varphi \in \mathcal{D}$ we have $\int_{\mathbb{R}^{n}} f D^{\alpha} \varphi \mathrm{d} x=(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} g \varphi \mathrm{~d} x$. We denote by $\mathcal{S}_{k}, k \in \mathbb{N}$, the space of all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which have generalized derivatives of all orders less or equal to k and satisfy $\|f\|_{k}=\sum_{|\alpha+\beta| \leqslant k}\left(\int_{\mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} f(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}<+\infty$. Each space \mathcal{S}_{k} with the norm $f \longmapsto\|f\|_{k}$ is Hilbert and the Schwartz space \mathcal{S} of rapidly decreasing functions is the projective limit $\operatorname{proj} \mathcal{S}_{k}$, see [6]. We denote by $\mathcal{S}_{-k}, k \in \mathbb{N}$, the strong dual of \mathcal{S}_{k}. Then the space \mathcal{S}^{\prime} of temperate distributions, defined by Schwartz, is the inductive limit ind \mathcal{S}_{-k}, see [5].

Let $\mathcal{L}_{\beta}\left(\mathcal{S}_{p}, \mathcal{S}_{q}\right)$ be the space of all continuous linear operators from \mathcal{S}_{p} into \mathcal{S}_{q} equipped with the bounded topology. For any $p, q \in \mathbb{N}, p \geqslant q$, we denote by $\mathcal{O}_{p, q}$ the set of all functions $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for which the mapping $f \mapsto u f: \mathcal{S}_{p} \rightarrow \mathcal{S}_{q}$ is
continuous. Then $\mathcal{O}_{p, q}$ is a closed subspace of the Banach space $\mathcal{L}_{\beta}\left(\mathcal{S}_{p}, \mathcal{S}_{q}\right)$ and as such it is also Banach. We denote its norm by $\|\cdot\|_{p, q}$. Evidently $\mathcal{O}_{p, q} \subset \mathcal{O}_{p+1, q}$, $p \geqslant q$, and for every $u \in \mathcal{O}_{p, q}$, we have $\|u\|_{p+1, q} \leqslant\|u\|_{p, q}$. Hence the identity map id: $\mathcal{O}_{p, q} \rightarrow \mathcal{O}_{p+1, q}$ is continuous and the inductive limit $\operatorname{ind}\left\{\mathcal{O}_{p, q} ; p \rightarrow \infty\right\}$ makes sense. We denote it by \mathcal{O}_{q}. It was proved in [6] that \mathcal{O}_{q} is the set of all functions $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for which $f \mapsto u f$ is a continuous mapping from \mathcal{S}_{-q} into \mathcal{S}^{\prime}.

Finally, we use two classical Banach spaces of functions, measurable on \mathbb{R}^{n}, namely L^{1} and L^{∞}. The norm in L^{∞} is denoted by $\|u\|_{\infty}=\operatorname{ess} \sup \left\{|u(x)| ; x \in \mathbb{R}^{n}\right\}$.

Lemma 1. $\mathcal{S}_{r} \subset L^{\infty}$ and the identity map id: $\mathcal{S}_{r} \rightarrow L^{\infty}$ is continuous.
Proof. The Fourier transformation $u \mapsto \hat{u}=\int_{\mathbb{R}^{n}} u(x) \exp (-2 \pi \mathrm{i} x, \xi) \mathrm{d} x$ is a topological isomorphism on \mathcal{S}_{r}. Hence the Fourier transformation \hat{u} of a function $u \in$ \mathcal{S}_{r} is also in \mathcal{S}_{r} and $\int_{\mathbb{R}^{n}}|\hat{u}| \mathrm{d} \xi=\int_{\mathbb{R}^{n}}\left|w^{-r+r} \hat{u}\right| \mathrm{d} \xi \leqslant\left\|w^{-r}\right\|_{0} \cdot\left\|w^{r} \hat{u}\right\|_{0} \leqslant\left\|w^{-r}\right\|_{0} \cdot\|\hat{u}\|_{r}$.

Then the function u, as an inverse Fourier transformation of $\hat{u} \in L^{1}$, is uniformly continuous on \mathbb{R}^{n}, hence measurable, and bounded by the constant $\left\|w^{-r}\right\|_{0} \cdot\|\hat{u}\|_{r}$.

Finally, id: $\mathcal{S}_{r} \rightarrow L^{\infty}$ is the composition of three continuous maps $u \mapsto \hat{u} \mapsto \hat{u} \mapsto$ $u: \mathcal{S}_{r} \rightarrow \mathcal{S}_{r} \rightarrow L^{1} \rightarrow L^{\infty}$.

Lemma 2. For any $k \in \mathbb{N}$, there exists a constant $C_{k}>0$ such that $\| w^{k-|\alpha|}$ $D^{\alpha} u\left\|_{\infty} \leqslant C_{k} \cdot\right\| u \|_{k+r}$ for any $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant k$, and any $u \in \mathcal{S}_{k+r}$.

Proof. Take $k \in \mathbb{N}, \alpha \in \mathbb{N}^{n},|\alpha| \leqslant k$, and $u \in \mathcal{S}_{k+r}$. Then $u_{\alpha}=w^{k-|\alpha|} D^{\alpha} u \in$ \mathcal{S}_{r} and, by Lemma 1, there exists a constant $C_{\alpha}>0$, which does not depend on the choice of u, such that $\left\|u_{\alpha}\right\|_{\infty} \leqslant C_{\alpha}\left\|u_{\alpha}\right\|_{r} \leqslant C_{\alpha}\|u\|_{k+r}$. Lemma 2 holds for $C_{k}=\max \left\{C_{\alpha} ; \alpha \in \mathbb{N}^{n},|\alpha| \leqslant k\right\}$.

Definition. For any $p, q \in \mathbb{N}$, let $H_{p, q}$ be the space $\left\{u: \mathbb{R}^{n} \rightarrow \mathbb{R} ; \forall \alpha \in \mathbb{N}^{n}\right.$, $|\alpha| \leqslant q, \exists$ generalized derivative $D^{\alpha} u$ and $\left.\left\|w^{-p} D^{\alpha} u\right\|_{0}<\infty\right\}$ with the scalar product $\langle u, v\rangle=\sum_{|\alpha| \leqslant q} \int_{\mathbb{R}^{n}} w^{-2 p} D^{\alpha} u D^{\alpha} v \mathrm{~d} x$. We denote the correponding norm by $\|\cdot\|_{p, q}$.

For any $q \in \mathbb{N}$, we have $H_{1, q} \subset H_{2, q} \subset \ldots$ with the inclusions continuous. Hence the inductive limit ind $\left\{H_{p, q} ; p \rightarrow \infty\right\}$ makes sense. We denote it by H_{q}.

Lemma 3. Let a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ have the generalized derivative $\partial u / \partial x_{1}$ and $v \in \mathcal{S}$. Then the generalized derivative $\partial / \partial x_{1}(u v)$ also exists and equals to $\left(\partial u / \partial x_{1}\right) v+u\left(\partial v / \partial x_{1}\right)$.

Proof. Take $\varphi \in \mathcal{D}$. Then $\varphi v \in \mathcal{D}$ and

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(\frac{\partial u}{\partial x_{1}} v+u \frac{\partial v}{\partial x_{1}}\right) \varphi \mathrm{d} x & =\int_{\mathbb{R}^{n}} \frac{\partial u}{\partial x_{1}}(v \varphi) \mathrm{d} x+\int_{\mathbb{R}^{n}} u \frac{\partial v}{\partial x_{1}} \varphi \mathrm{~d} x \\
& =-\int_{\mathbb{R}^{n}} u \frac{\partial}{\partial x_{1}}(v \varphi) \mathrm{d} x+\int_{\mathbb{R}^{n}} u \frac{\partial v}{\partial x_{1}} \varphi \mathrm{~d} x \\
& =-\int_{\mathbb{R}^{n}} u\left(\frac{\partial}{\partial x_{1}}(v \varphi)-\frac{\partial v}{\partial x_{1}} \varphi\right) \mathrm{d} x=-\int_{\mathbb{R}^{n}}(u v) \frac{\partial \varphi}{\partial x_{1}} \mathrm{~d} x .
\end{aligned}
$$

Lemma 4. Let $u \in \mathcal{O}_{p, q}, p, q \in \mathbb{N}, p \geqslant q$. Then $\frac{\partial u}{\partial x_{1}} \in \mathcal{O}_{p+1, q-1}$ and $\|u\|_{p+1, q-1} \leqslant$ $\|u\|_{p q}$.

Proof. Take $v \in \mathcal{S}$. Then $\left\|\frac{\partial u}{\partial x_{1}} v\right\|_{q-1}=\left\|\frac{\partial}{\partial x_{1}}(u v)-u \frac{\partial v}{\partial x_{1}}\right\|_{q-1} \leqslant\|u v\|_{q}+$ $\left\|u \frac{\partial v}{\partial x_{1}}\right\|_{q} \leqslant\|u\|_{p, q}\left(\|v\|_{p}+\left\|\frac{\partial v}{\partial x_{1}}\right\|_{p}\right) \leqslant\|u\|_{p, q} \cdot 2\|v\|_{p+1}$. Since the space \mathcal{S} is dense in \mathcal{S}_{p+1}, the proof is complete.

Proposition 1. $H_{p, q} \subset \mathcal{O}_{p+q+r, q}$ for any $p, q \in \mathbb{N}$. The identity map id: $H_{p, q} \rightarrow$ $\mathcal{O}_{p+q+r, q}$ is continuous.

Proof. Take $u \in H_{p, q}$ and put, for brevity, $s=p+q+r$. Since the space \mathcal{S} is dense in \mathcal{S}_{s}, it is sufficient to show that there is a constant $C>0$, which does not depend on u, such that $\sup \left\{\|u v\|_{q} ; v \in \mathcal{S},\|v\|_{s} \leqslant 1\right\} \leqslant C \cdot\|u\|_{p, q}$.

By Lemma 3 , for any $v \in \mathcal{S}$ and any $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant q$, the generalized derivative $D^{\alpha}(u v)$ exists and can be computed by Leibniz's rule. There are constants $A, B>0$, independent on u and on $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant q$, such that $\left\|w^{q-|\alpha|} D^{\alpha}(u v)\right\|_{0} \leqslant$ $A \sum_{\beta+\gamma=\alpha}\left\|w^{q-|\alpha|} D^{\beta} u D^{\gamma} v\right\|_{0}$ and $\sum_{|\alpha| \leqslant q} \sum_{\beta \leqslant \alpha}\left\|w^{-p} D^{\beta} u\right\|_{0} \leqslant B \cdot\|u\|_{p, q}$.

Now for the constant C_{k} from Lemma 2 , where $k=p+q$, and for $v \in \mathcal{S},\|u\|_{s} \leqslant 1$, we have

$$
\begin{aligned}
\|u v\|_{q} & \leqslant \sum_{|\alpha| \leqslant q}\left\|w^{q-|\alpha|} D^{\alpha}(u v)\right\|_{0} \leqslant A \sum_{|\alpha| \leqslant q \beta+\gamma=\alpha} \sum\left\|w^{q-|\alpha|} D^{\beta} u D^{\gamma} v\right\|_{0} \\
& \leqslant A \sum_{|\alpha| \leqslant q} \sum_{\beta+\gamma=\alpha}\left\|w^{-p} D^{\beta} u\right\|_{0} \cdot\left\|w^{p+q-|\alpha|} D^{\gamma} v\right\|_{\infty} \\
& \leqslant A \sum_{|\alpha| \leqslant q} \sum_{\beta+\gamma=\alpha}\left\|w^{-p} D^{\beta} u\right\|_{0} \cdot\left\|w^{p+q-|\gamma|} D^{\gamma} v\right\|_{\infty} \\
& \leqslant A B \cdot\|u\|_{p, q} \cdot \sum_{|\gamma| \leqslant q}\left\|w^{p+q-|\gamma|} D^{\gamma} v\right\|_{\infty} \leqslant A B \cdot\|u\|_{p, q} \cdot C_{p+q}\left(\sum_{|\gamma| \leqslant q} 1\right)\|v\|_{s} .
\end{aligned}
$$

This implies $\|u\|_{p+q+r, q} \leqslant A B C_{p+q}\left(\sum_{|\gamma| \leqslant q} 1\right) \cdot\|u\|_{p, q}$.

Lemma 5. Let a function $\varphi \in \mathcal{D}(\mathbb{R})$ be even with $\operatorname{supp} \varphi \subset[-2,2], 0 \leqslant \varphi(t) \leqslant 1$ for $t \in \mathbb{R}$, and $\varphi(t)=1$ for $t \in[-1,1]$. For $\lambda \geqslant 0$ put

$$
\varphi_{\lambda}(t)= \begin{cases}1 & \text { if }|t| \leqslant \lambda+1 \\ \varphi(t-\lambda \operatorname{sgn} t) & \text { if }|t| \geqslant \lambda+1\end{cases}
$$

and $\psi_{\lambda}(x)=\prod_{i=1}^{n} \varphi_{\lambda}\left(x_{i}\right)$ for $x \in \mathbb{R}^{n}$. Then $\sup \left\{\left\|w^{-k-r} \psi_{\lambda}\right\|_{k} ; \lambda \geqslant 0\right\}<\infty$ for any $k \in \mathbb{N}$.

Proof. It holds

$$
\begin{aligned}
\left\|w^{-k-r} \psi_{\lambda}\right\|_{k} & =\sum_{|\alpha+\beta| \leqslant k}\left\|x^{\alpha} D^{\beta}\left(w^{-k-r} \psi_{\lambda}\right)\right\|_{0} \\
& \leqslant \sum_{|\alpha+\beta| \leqslant k}\left\|x^{\alpha} \sum_{\gamma+\delta=\beta}\left[\begin{array}{c}
\beta \\
\gamma, \delta
\end{array}\right] D^{\gamma} w^{-k-r} \cdot D^{\delta} \psi_{\lambda}\right\|_{0}
\end{aligned}
$$

Each function $D^{\delta} \psi_{\lambda}$ is bounded by a constant independent on λ, hence it is sufficient to show that $\int_{\mathbb{R}^{n}}\left|x^{\alpha} D^{\gamma} w^{-k-r}\right|^{2} \mathrm{~d} x<+\infty$ for any $\alpha, \gamma \in \mathbb{N}^{n},|\alpha+\gamma| \leqslant k$. Since $\left|D^{\gamma} w^{-k-r}(x)\right| \leqslant(k+r)^{|\gamma|} w^{-k-r}(x)$ for any $x \in \mathbb{R}^{n}$, we have $\int_{\mathbb{R}^{n}}\left|x^{\alpha} D^{\gamma} w^{-k-r}\right|^{2} \mathrm{~d} x \leqslant$ $(k+r)^{2 k} \int_{\mathbb{R}^{n}}\left|x^{\alpha} w^{-k-r}\right|^{2} \mathrm{~d} x \leqslant(k+r)^{2 k} \int_{\mathbb{R}^{n}} w^{-2 r}<+\infty$.

Proposition 2. $\mathcal{O}_{p, q} \subset H_{p+q+r, q}$ for any $p, q \in \mathbb{N}, p \geqslant q$. The identity map id: $\mathcal{O}_{p, q} \rightarrow H_{p+q+r, q}$ is continuous.

Proof. Put, for brevity, $s=p+q+r, B(\lambda)=\left\{x \in \mathbb{R}^{n} ;\|x\| \leqslant \lambda\right\}$ for $\lambda>0$, and take $u \in \mathcal{O}_{p, q}$. Let the functions $\psi_{\lambda}, \lambda \geqslant 0$ be the same as in Lemma 5.

By Lemma 4, we have $D^{\alpha} u \in \mathcal{O}_{p+|\alpha|, q-|\alpha|}$ and $\left\|D^{\alpha} u\right\|_{p+|\alpha|, q-|\alpha|} \leqslant\|u\|_{p, q}$ for any $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant q$. Put $C=\sup \left\{\left\|w^{-s} \psi_{\lambda}\right\|_{p+|\alpha|} ; \lambda \geqslant 0\right\}$. By Lemma 5, C is a finite constant. Take $\lambda \geqslant 0$. Then $\left(\int_{B(\lambda)}\left|w^{-s} D^{\alpha} u\right|^{2} \mathrm{~d} x\right)^{1 / 2} \leqslant\left\|\psi_{\lambda} w^{-s} D^{\alpha} u\right\|_{0} \leqslant$ $\left\|D^{\alpha} u\right\|_{p+|\alpha|, q-|\alpha|} \cdot\left\|\psi_{\lambda} w^{-s}\right\|_{p+|\alpha|} \leqslant\|u\|_{p, q} \cdot\left\|\psi_{\lambda} w^{-s}\right\|_{p+|\alpha|} \leqslant C \cdot\|u\|_{p, q}$.

Since this inequality holds for all $\lambda \geqslant 0$, we have $\left\|w^{-s} D^{\alpha} u\right\|_{0} \leqslant C \cdot\|u\|_{p, q}$ for any $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant q$, which implies $\|u\|_{p, q} \leqslant C \cdot \sum_{|\alpha| \leqslant q}\|u\|_{p, q} \leqslant q n^{q} C \cdot\|u\|_{p, q}$.

Theorem. For any $q \in \mathbb{N}$, the spaces \mathcal{O}_{q} and H_{q} are the same. Their inductive topologies are the same, too.

Proof. Take $q \in \mathbb{N}$. By Propositions 1 and 2 , for any $p, q \in \mathbb{N}, p \geqslant q$, we have $H_{p, q} \subset \mathcal{O}_{p+q+r, q} \subset \mathcal{O}_{q}$ and $\mathcal{O}_{p, q} \subset H_{p+q+r, q} \subset H_{q}$ with all four inclusions continuous. Hence the identity map id: $H_{q} \rightarrow \mathcal{O}_{q}$ is a topological isomorphism.

References

[1] Schwartz, L.: Théorie des Distributions. Hermann, Paris, 1966.
[2] Horváth, J.: Topological Vector Spaces and Distributions, Vol. 1. Addison-Wisley, Reading, 1966.
[3] Kučera, J.: Fourier L_{2}-transform of distributions. Czechoslovak Math. J. 19 (1969), 143-153.
[4] Kučera, J.: On multipliers of temperate distributions. Czechoslovak Math. J. 21 (1971), 610-618.
[5] Kučera, J., McKennon, K.: Certain topologies on the space of temperate distributions and its multipliers. Indiana Univ. Math. 24 (1975), 773-775.
[6] Kučera, J.: Extension of the L. Schwartz space \mathcal{O}_{M} of multipliers of temperate distributions. J. Math. Anal. Appl. 56 (1976), 368-372.

Authors' addresses: Jan Kucera, Department of Mathematics, Washington State University, Pullman, Washington 99164-3113, U.S.A., e-mail: kucera@math.wsu.edu; Carlos Bosch, Departamento de Matematicas, ITAM, Mexico D.F., MEXICO, e-mail: bosch @itam.mx.

