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Abstract. Spaces Oq , q ∈ � , of multipliers of temperate distributions introduced in an
earlier paper of the first author are expressed as inductive limits of Hilbert spaces.
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We denote by Lloc the space of all locally Lebesgue integrable functions f : � n → �
and by D the space of all C∞-functions, defined on � n , with a compact sup-

port. For α ∈ � n , x ∈ � n , we write |α| =
n∑

i=1

αi, xα =
n∏

i=1

xαi

i , and D
α =

∂|α|/∂xα1
1 ∂xα2

2 . . . ∂xαn
n . It is convenient to use a weight function w(x) =

(
1 +

n∑
i=1

x2
i

)1/2
and a constant r = 1 + [ 12n], where [t] is the greatest integer less or equal

to t, t ∈ � .
A function f ∈ Lloc has a generalized derivative g ∈ Lloc of order α ∈ � n if for all

ϕ ∈ D we have
∫ �

n fD
αϕ dx = (−1)|α|

∫ �
n gϕ dx. We denote by Sk, k ∈ � , the space

of all functions f : � n → � which have generalized derivatives of all orders less or
equal to k and satisfy ‖f‖k =

∑
|α+β|6k

(
∫ �

n |xαDβf(x)|2 dx)1/2 < +∞. Each space Sk

with the norm f 7−→ ‖f‖k is Hilbert and the Schwartz space S of rapidly decreasing
functions is the projective limit projSk, see [6]. We denote by S−k, k ∈ � , the strong
dual of Sk . Then the space S ′ of temperate distributions, defined by Schwartz, is
the inductive limit indS−k, see [5].

Let Lβ(Sp,Sq) be the space of all continuous linear operators from Sp into Sq

equipped with the bounded topology. For any p, q ∈ � , p > q, we denote by Op,q

the set of all functions u : � n → � for which the mapping f 7→ uf : Sp → Sq is
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continuous. Then Op,q is a closed subspace of the Banach space Lβ(Sp,Sq) and as
such it is also Banach. We denote its norm by ‖ · ‖p,q. Evidently Op,q ⊂ Op+1,q ,
p > q, and for every u ∈ Op,q , we have ‖u‖p+1,q 6 ‖u‖p,q. Hence the identity
map id : Op,q → Op+1,q is continuous and the inductive limit ind{Op,q ; p → ∞}
makes sense. We denote it by Oq. It was proved in [6] that Oq is the set of
all functions u : � n → � for which f 7→ uf is a continuous mapping from S−q

into S ′.
Finally, we use two classical Banach spaces of functions, measurable on � n , namely

L1 and L∞. The norm in L∞ is denoted by ‖u‖∞ = ess sup{|u(x)| ; x ∈ � n}.

Lemma 1. Sr ⊂ L∞ and the identity map id : Sr → L∞ is continuous.

���������
. The Fourier transformation u 7→ û =

∫ �
n u(x) exp(−2πix, ξ) dx is a

topological isomorphism on Sr. Hence the Fourier transformation û of a function u ∈
Sr is also in Sr and

∫ �
n |û| dξ =

∫ �
n |w−r+rû| dξ 6 ‖w−r‖0 · ‖wrû‖0 6 ‖w−r‖0 · ‖û‖r.

Then the function u, as an inverse Fourier transformation of û ∈ L1, is uniformly
continuous on � n , hence measurable, and bounded by the constant ‖w−r‖0 · ‖û‖r.

Finally, id : Sr → L∞ is the composition of three continuous maps u 7→ û 7→ û 7→
u : Sr → Sr → L1 → L∞. �

Lemma 2. For any k ∈ � , there exists a constant Ck > 0 such that ‖wk−|α|

Dαu‖∞ 6 Ck · ‖u‖k+r for any α ∈ � n , |α| 6 k, and any u ∈ Sk+r .

���������
. Take k ∈ � , α ∈ � n , |α| 6 k, and u ∈ Sk+r . Then uα = wk−|α|Dαu ∈

Sr and, by Lemma 1, there exists a constant Cα > 0, which does not depend on
the choice of u, such that ‖uα‖∞ 6 Cα‖uα‖r 6 Cα‖u‖k+r. Lemma 2 holds for

Ck = max{Cα ; α ∈ � n , |α| 6 k}. �

Definition. For any p, q ∈ � , let Hp,q be the space {u : � n → � ; ∀α ∈ � n ,
|α| 6 q, ∃ generalized derivativeDαu and ‖w−pDαu‖0 <∞} with the scalar product
〈u, v〉 =

∑
|α|6q

∫ �
n w

−2pDαuDαv dx. We denote the correponding norm by ||| · |||p,q .

For any q ∈ � , we have H1,q ⊂ H2,q ⊂ . . . with the inclusions continuous. Hence
the inductive limit ind{Hp,q ; p→∞} makes sense. We denote it by Hq .

Lemma 3. Let a function u : � n → � have the generalized derivative ∂u/∂x1

and v ∈ S. Then the generalized derivative ∂/∂x1(uv) also exists and equals to
(∂u/∂x1)v + u(∂v/∂x1).
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���������
. Take ϕ ∈ D. Then ϕv ∈ D and

∫
�

n

( ∂u

∂x1
v + u

∂v

∂x1

)
ϕ dx =

∫
�

n

∂u

∂x1
(vϕ) dx+

∫
�

n

u
∂v

∂x1
ϕ dx

= −
∫
�

n

u
∂

∂x1
(vϕ) dx+

∫
�

n

u
∂v

∂x1
ϕ dx

= −
∫
�

n

u
( ∂

∂x1
(vϕ)− ∂v

∂x1
ϕ
)

dx = −
∫
�

n

(uv)
∂ϕ

∂x1
dx.

�

Lemma 4. Let u ∈ Op,q, p, q ∈ � , p > q. Then ∂u
∂x1

∈ Op+1,q−1 and ‖u‖p+1,q−1 6
‖u‖pq.���������

. Take v ∈ S. Then ‖ ∂u
∂x1

v‖q−1 = ‖ ∂
∂x1

(uv) − u ∂v
∂x1

‖q−1 6 ‖uv‖q +
‖u ∂v

∂x1
‖q 6 ‖u‖p,q(‖v‖p + ‖ ∂v

∂x1
‖p) 6 ‖u‖p,q · 2‖v‖p+1. Since the space S is dense in

Sp+1, the proof is complete. �

Proposition 1. Hp,q ⊂ Op+q+r,q for any p, q ∈ � . The identity map id : Hp,q →
Op+q+r,q is continuous.���������

. Take u ∈ Hp,q and put, for brevity, s = p+ q + r. Since the space S is
dense in Ss, it is sufficient to show that there is a constant C > 0, which does not
depend on u, such that sup{‖uv‖q ; v ∈ S, ‖v‖s 6 1} 6 C · |||u|||p,q . �
By Lemma 3, for any v ∈ S and any α ∈ � n , |α| 6 q, the generalized deriva-

tive Dα(uv) exists and can be computed by Leibniz’s rule. There are constants
A,B > 0, independent on u and on α ∈ � n , |α| 6 q, such that ‖wq−|α|Dα(uv)‖0 6
A

∑
β+γ=α

‖wq−|α|DβuDγv‖0 and
∑
|α|6q

∑
β6α

‖w−pDβu‖0 6 B · |||u|||p,q .

Now for the constant Ck from Lemma 2, where k = p+q, and for v ∈ S, ‖u‖s 6 1,
we have

‖uv‖q 6
∑

|α|6q

‖wq−|α|Dα(uv)‖0 6 A
∑

|α|6q

∑

β+γ=α

‖wq−|α|DβuDγv‖0

6 A
∑

|α|6q

∑

β+γ=α

‖w−pDβu‖0 · ‖wp+q−|α|Dγv‖∞

6 A
∑

|α|6q

∑

β+γ=α

‖w−pDβu‖0 · ‖wp+q−|γ|Dγv‖∞

6 AB · |||u|||p,q ·
∑

|γ|6q

‖wp+q−|γ|Dγv‖∞ 6 AB · |||u|||p,q · Cp+q

( ∑

|γ|6q

1
)
‖v‖s.

This implies ‖u‖p+q+r,q 6 ABCp+q

( ∑
|γ|6q

1
)
· |||u|||p,q .
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Lemma 5. Let a function ϕ ∈ D( � ) be even with suppϕ ⊂ [−2, 2], 0 6 ϕ(t) 6 1
for t ∈ � , and ϕ(t) = 1 for t ∈ [−1, 1]. For λ > 0 put

ϕλ(t) =

{
1 if |t| 6 λ+ 1,

ϕ(t− λ sgn t) if |t| > λ+ 1

and ψλ(x) =
n∏

i=1

ϕλ(xi) for x ∈ � n . Then sup{‖w−k−rψλ‖k ; λ > 0} < ∞ for any
k ∈ � .
���������

. It holds

‖w−k−rψλ‖k =
∑

|α+β|6k

‖xαDβ(w−k−rψλ)‖0

6
∑

|α+β|6k

∥∥∥xα
∑

γ+δ=β

[ β

γ, δ

]
Dγw−k−r ·Dδψλ

∥∥∥
0
.

Each function Dδψλ is bounded by a constant independent on λ, hence it is suffi-
cient to show that

∫ �
n |xαDγw−k−r |2 dx < +∞ for any α, γ ∈ � n , |α+γ| 6 k. Since

|Dγw−k−r(x)| 6 (k+r)|γ|w−k−r(x) for any x ∈ � n , we have
∫ �

n |xαDγw−k−r |2 dx 6
(k + r)2k

∫ �
n |xαw−k−r |2 dx 6 (k + r)2k

∫ �
n w

−2r < +∞. �

Proposition 2. Op,q ⊂ Hp+q+r,q for any p, q ∈ � , p > q. The identity map

id : Op,q → Hp+q+r,q is continuous.
���������

. Put, for brevity, s = p + q + r, B(λ) = {x ∈ � n ; ‖x‖ 6 λ} for λ > 0,
and take u ∈ Op,q . Let the functions ψλ, λ > 0 be the same as in Lemma 5. �

By Lemma 4, we have Dαu ∈ Op+|α|,q−|α| and ‖Dαu‖p+|α|,q−|α| 6 ‖u‖p,q for
any α ∈ � n , |α| 6 q. Put C = sup{‖w−sψλ‖p+|α| ; λ > 0}. By Lemma 5, C is
a finite constant. Take λ > 0. Then (

∫
B(λ) |w−sDαu|2 dx)1/2 6 ‖ψλw

−sDαu‖0 6
‖Dαu‖p+|α|,q−|α| · ‖ψλw

−s‖p+|α| 6 ‖u‖p,q · ‖ψλw
−s‖p+|α| 6 C · ‖u‖p,q.

Since this inequality holds for all λ > 0, we have ‖w−sDαu‖0 6 C · ‖u‖p,q for any
α ∈ � n , |α| 6 q, which implies |||u|||p,q 6 C · ∑

|α|6q

‖u‖p,q 6 qnqC · ‖u‖p,q.

Theorem. For any q ∈ � , the spaces Oq and Hq are the same. Their inductive

topologies are the same, too.
���������

. Take q ∈ � . By Propositions 1 and 2, for any p, q ∈ � , p > q, we
have Hp,q ⊂ Op+q+r,q ⊂ Oq and Op,q ⊂ Hp+q+r,q ⊂ Hq with all four inclusions

continuous. Hence the identity map id : Hq → Oq is a topological isomorphism. �
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