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Abstract. Necessary and sufficient conditions are obtained for oscillation of all bounded
solutions of

(∗) [y(t)− y(t− τ )](n) +Q(t)G(y(t− σ)) = 0, t > 0,

where n > 3 is odd. Sufficient conditions are obtained for all solutions of (∗) to oscillate.
Further, sufficient conditions are given for all solutions of the forced equation associated
with (∗) to oscillate or tend to zero as t→∞. In this case, there is no restriction on n.
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1. Introduction

In recent years, nonlinear higher order neutral differential equations of the form

(1) [y(t)− p(t)y(t− τ)](n) + Q(t)G(y(t− σ)) = 0, t > 0,

are the subject of study for many authors [1]–[7]. The nonhomogeneous equations
associated with (1) are given by

(2) [y(t)− p(t)y(t− τ)](n) + Q(t)G(y(t− σ)) = f(t), t > 0,

where p and f ∈ C([0,∞), 
 ), Q ∈ C([0,∞), [0,∞)), G ∈ C( 
 , 
 ) is nonde-
creasing, and xG(x) > 0 for x 6= 0, τ > 0, and σ > 0. While studying oscilla-
tory/nonoscillatory and asymptotic behaviour of solutions of (1)/(2), various ranges
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of p(t) are considered. However, few authors (see [7], [8]) have dealt with critical
cases, viz, p(t) ≡ 1 or p(t) ≡ −1. In [8], the authors have considered these critical
cases for (2) with n = 1. Suppose that
(H1) lim inf

|u|→∞
G(u)/u > α > 0

(H2)
∫∞
0

tn−1Q(t) dt =∞
(H3)

∫∞
0

Q(t) dt = ∞
(H4) there exists F ∈ Cn([0,∞), 
 ) such that F (n)(t) = f(t) and lim

t→∞
F (t) = 0

(H5)
∫∞
0

tn−2Q∗(t) dt =∞, where Q∗(t) = min{Q(t), Q(t− τ)}
(H6) G(uν) 6 G(u)G(ν) for u > 0, ν > 0
(H7) for u > 0, ν > 0, there exists a δ > 0 such that G(u) + G(ν) > δG(u + ν)
(H8) for every sequence {σi} ⊂ (0,∞), σi → ∞ as i → ∞, and for every γ > 0

such that the intervals (σi − γ, σi + γ), i = 1, 2, . . ., are nonoverlapping,
∞∑

i=1

∫ σi+γ

σi−γ
Q(t) dt =∞

(H9) f(t) 6 0, −∞ <
∞∑

k=0

∫∞
kτ

(t− kτ)n−1f(t) dt 6 0

(H10) 0 <
∞∑

k=0

∫∞
kτ (t− kτ)n−1Q(t) dt < ∞

(H11) G(−u) = −G(u).
The following results are particular cases of some results in [9]:

Theorem A (Corollary 3.2, [9]). Let n > 3 be odd. If (H1), (H2) hold, then
every bounded solution of (1) with p(t) ≡ 1 oscillates.

Theorem B (Theorem 3.7, [9]). Suppose that (H1), (H4)–(H7) and (H11) hold.
Then every solution of (2) with p(t) ≡ −1 oscillates or tends to zero as t →∞.

The following results are particular cases of some results in [10]:

Theorem C (Theorem 2.9, [10]). Let p(t) ≡ 1. Suppose that (H4) and (H8) hold.
Then every unbounded solution of (2) oscillates or tends to ±∞ as t →∞ and every
bounded solution of (2) oscillates or tends to zero as t →∞.

Theorem D (Corollary 2.8, [10]). Let p(t) ≡ 1 and n be odd. If (H3) holds, then
every bounded solution of (1) oscillates.

Note: In Theorem 2.7 of [10] there is a misprint. That is: p(t) should satisfy (A5)
instead of (A3).
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Theorem E (Theorem 2.5, [10]). Let p(t) ≡ −1. Suppose that (H3), (H4) and
(H7) hold. Further, suppose there exists β > 0 such that G(u)+G(ν) 6 βG(u+ν) for
u < 0 and ν < 0. If Q is monotonic decreasing, then every solution of (2) oscillates
or tends to zero as t →∞.

Theorem F (Theorem 2.6, [10]). Let p(t) ≡ −1. Let (H4), (H6), (H11) and (H7)
hold. If

∫∞
0 Q∗(t) dt = ∞, then every solution of (2) oscillates or tends to zero as

t →∞, where Q∗(t) = min{Q(t), Q(t− τ)}.
We may observe that (H11) is needed in Theorem F only if we assume strict

inequality in (H6). Further, the superlinearity condition (H1) is not assumed in
Theorems C–F. Moreover, we may note that (H8)⇒ (H3)⇒ (H2) and

∫∞
0

Q∗(t) dt =
∞⇒ (H5).
The purpose of this paper is to obtain necessary and sufficient conditions for

oscillation of all bounded solutions of

(E) [y(t)− y(t− τ)](n) + Q(t)G(y(t − σ)) = 0, t > 0

where n > 3, and Q, G, τ and σ are the same as in (2). Sufficient conditions are
obtained for all solutions of (E) to oscillate. The present results improve Theorems A,
C and D and extend some results in [7].

By a solution of (E) we mean a real-valued continuous function y on [Ty−%,∞) for
some Ty > 0, where % = max{τ, σ}, such that y(t)− y(t− τ) is n-times continuously

differentiable and (E) is satisfied for t ∈ [Ty,∞). A solution of (E) is said to be
oscillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory.

2. Some lemmas

Lemma 2.1. If
∫∞
0

tn−1|f(t)| dt < ∞, then there exists F ∈ Cn([0,∞), 
 ) such
that F (n)(t) = f(t) and F (t) → 0 as t → ∞. If f(t) > 0, then F (t) < 0 or > 0
according as n is odd or even. If f(t) 6 0, then F (t) > 0 or < 0 according as n is

odd or even.

The lemma follows if we define

F (t) =
(−1)n

(n− 1)!

∫ ∞

t

(s− t)n−1f(s) ds, t > 0.

Lemma 2.2 (See [6, p. 17]). Let f, g ∈ C([0,∞), 
 ) be such that f(t) = g(t) +
pg(t − τ), t > τ , where p ∈ 
 and p 6= 1. Let lim

t→∞
f(t) = ` ∈ 
 exist. Then (i)

` = (1 + p)a, if lim inf
t→∞

g(t) = a ∈ 
 and (ii) ` = (1 + p)b, if lim sup
t→∞

g(t) = b ∈ 
 .
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Lemma 2.3. Let Q ∈ C([0,∞), [0,∞)) and Q(t) 6≡ 0 on any interval of the form
[T,∞), T > 0, and G ∈ C( 
 , 
 ) with uG(u) > 0 for u 6= 0. Let y ∈ C([0,∞), 
 )
with y(t) > 0 for t > t0 > 0. If w ∈ C(n)([0,∞), 
 ), w(n)(t) = −Q(t)G(y(t − σ)),
t > t0 + σ, σ > 0, and there exists an integer n∗ ∈ {0, 1, 2, . . . , n − 1} such that
lim

t→∞
w(n∗)(t) exists and lim

t→∞
w(i)(t) = 0 for i ∈ {n∗ + 1, . . . , n− 1}, then

w(n∗)(t) = w(n∗)(∞)− (−1)n−n∗

(n− n∗ − 1)!

∫ ∞

t

(s− t)n−n∗−1Q(s)G(y(s− σ)) ds.

� �������� � ������������������� ����!���
. Let y(t) > 0 for t > t0 > 0. Setting, for

t > t1 > t0 + σ,

ν(t) =
(−1)n−n∗+1

(n− n∗)!

∫ ∞

t

(s− t)n−n∗Q(s)G(y(s− σ)) ds

we obtain ν(t) > 0, ν ′(t) < 0, ν′′(t) > 0 and so on. Hence lim
t→∞

ν(i)(t) = 0, i =

1, 2, . . . , n− n∗ and ν(n−n∗+1)(t) = −w(n)(t). Since w(n∗+1)(t) = −ν′′(t) for t > t1,

then integrating it from t to θ (t1 6 t < θ) and taking limit as θ →∞ we obtain

w(n∗)(t) = w(n∗)(∞)− ν′(t)

= w(n∗)(∞)− (−1)n−n∗

(n− n∗ − 1)!

∫ ∞

t

(s− t)n−n∗−1Q(s)G(y(s− σ)) ds.

Lemma 2.4. Suppose that (H1), (H2) and (H4) hold. Let y(t) be a solution of

(NE) [y(t)− y(t− τ)](n) + Q(t)G(y(t− σ)) = f(t), t > 0

such that y(t) > 0 for t > t0 > 0 and let

w(t) = y(t)− y(t− τ)− F (t)

for t > t0 + %. Then either lim
t→∞

w(t) = −∞ or lim
t→∞

w(i)(t) = 0, i = 0, 1, 2, . . . , n− 1,

and (−1)n+kw(k)(t) < 0 for k = 0, 1, 2, . . . , n − 1 and w(n)(t) 6 0 for t > t0 + %.

If y(t) < 0 for t > t0 > 0, then either lim
t→∞

w(t) = ∞ or lim
t→∞

w(i)(t) = 0, i =

0, 1, 2, . . . , n − 1, (−1)n+kw(k)(t) > 0 for k = 0, 1, 2, . . . , n − 1, and w(n)(t) > 0 for
t > t0 + %.

The proof of Lemma 2.4 is given in [9].
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3. Necessary and sufficient conditions for oscillation

In this section, we obtain necessary and sufficient conditions for all bounded solu-
tions of (E) to oscillate and sufficient conditions for all solutions of (E) to oscillate.
"#�%$'&(��)

1. Let 0 < t0 < t. Hence lim
t→∞

(t− t0)/t = 1. If h(t) > 0, t > 0, then

∫ ∞

T

(t− T )nh(t) dt <∞ if and only if
∫ ∞

T

tnh(t) dt < ∞ for large T.

Theorem 3.1. Let n > 3 be odd and (H9) hold. Then Eq. (NE) admits a positive
bounded solution if and only if (H10) holds.
*+���!���

. From (H9) we obtain

−∞ <

∫ ∞

kτ

(t− kτ)n−1f(t) dt 6 0

for every integer k > 0. Hence
∫∞
0 tn−1|f(t)| dt < ∞. There exists F ∈ Cn([0,∞), 
 )

such that F (n)(t) = f(t), lim
t→∞

F (t) = 0 and F (t) > 0, t > 0, by Lemma 2.1. Let y(t)

be a positive bounded solution of (NE) such that y(t) > 0 for t > t0 > 0. Setting

(3) z(t) = y(t)− y(t− τ), w(t) = z(t)− F (t), t > t0 + %,

we obtain w(n)(t) = −Q(t)G(y(t − σ)) 6 0. Hence each of w, w′, w′′, . . . , w(n−1) is
monotonic and is of constant sign for large t. Since w(t) is bounded, then lim

t→∞
w(t) =

` exists. Hence (−1)n+kw(k)(t) < 0 for k = 1, 2, . . . , n−1 for large t and lim
t→∞

w(i)(t) =

0 for i = 1, 2, . . . , n − 1. Further, lim
t→∞

z(t) = ` exists. From Lemma 2.2 it follows

that ` = 0. Since n is odd, w′(t) < 0 for large t and hence w(t) > 0 for t > t1 > t0.
From (3) we obtain y(t) > y(t− τ), t > t1 because F (t) > 0. Hence lim inf

t→∞
y(t) > 0.

Thus there exists β > 0 such that y(t) > β, for t > t2 > t1. Lemma 2.3 yields, for
t > t3 > t2 + σ,

w(t) =
1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)G(y(s− σ)) ds >
G(β)

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s) ds,

that is,

y(t− τ) < y(t)− G(β)
(n− 1)!

∫ ∞

t

(s− t)n−1Q(s) ds +
1

(n− 1)!

∫ ∞

t

(s− t)n−1f(s) ds,

since n is odd. Hence

y(t) < y(t+τ)− G(β)
(n− 1)!

∫ ∞

t+τ

(s−t−τ)n−1Q(s) ds+
1

(n− 1)!

∫ ∞

t+τ

(s−t−τ)n−1f(s) ds.
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Repeating the process we obtain, for t > t3,

y(t− τ) < y(t + mτ)− G(β)
(n− 1)!

m∑

k=0

∫ ∞

t+kτ

(s− t− kτ)n−1Q(s) ds

+
1

(n− 1)!

m∑

k=0

∫ ∞

t+kτ

(s− t− kτ)n−1f(s) ds.

For t = `τ , where ` is a positive integer large enough such that `τ > t3, we have

G(β)
(n− 1)!

m∑

k=0

∫ ∞

(k+`)τ

(s− `τ − kτ)n−1Q(s) ds < y(`τ + mτ) − y(`τ − τ)(4)

+
1

(n− 1)!

m∑

k=0

∫ ∞

(k+`)τ

(s− `τ − kτ)n−1f(s) ds.

However, the use of (H9) yields

0 >
∞∑

k=0

∫ ∞

(k+`)τ

(s− `τ − kτ)n−1f(s) ds =
∞∑

i=`

∫ ∞

iτ

(s− iτ)n−1f(s) ds

=
∞∑

i=0

∫ ∞

iτ

(s− iτ)n−1f(s) ds−
`−1∑

i=0

∫ ∞

iτ

(s− iτ)n−1f(s) ds > −∞,

because,

0 >

`−1∑

i=0

∫ ∞

iτ

(s− iτ)n−1f(s) ds >

∞∑

i=0

∫ ∞

iτ

(s− iτ)n−1f(s) ds > −∞.

Since y(t) is bounded, we get from (4)

(5) 0 <

∞∑

k=0

∫ ∞

(k+`)τ

(s− `τ − kτ)n−1Q(s) ds <∞.

In particular,

0 <

∫ ∞

`τ

(s− `τ)n−1Q(s) ds < ∞.

From Remark 1 it follows that

0 <

∫ ∞

`τ

sn−1Q(s) ds < ∞.
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Hence

∫ ∞

0

sn−1Q(s) ds =
∫ `τ

0

sn−1Q(s) ds +
∫ ∞

`τ

sn−1Q(s) ds <∞,

∫ ∞

τ

(s− τ)n−1Q(s) ds =
∫ `τ

τ

(s− τ)n−1Q(s) ds +
∫ ∞

`τ

(s− τ)n−1Q(s) ds

<

∫ `τ

τ

(s− τ)n−1Q(s) ds +
∫ ∞

`τ

sn−1Q(s) ds <∞

and so on. Hence from (5) we have (H10).
Next we assume that (H10) holds. It is possible to choose N > 0, sufficiently large,

such that
∞∑

k=N

∫ ∞

kτ

(t− kτ)n−1Q(t) dt <
(n− 1)!
2G(1)

and
∞∑

k=N

∫ ∞

kτ

(t− kτ)n−1|f(t)| dt <
(n− 1)!

2
,

that is,
∞∑

k=0

∫ ∞

T+kτ

(t− T − kτ)n−1Q(t) dt <
(n− 1)!
2G(1)

and
∞∑

k=0

∫ ∞

T+kτ

(t− T − kτ)n−1|f(t)| dt < (n− 1)!/2,

where T = Nτ . Define

L(t) =





0, −∞ < t < T

G(1)
(n− 1)!

∫ ∞

t

(s− t)n−1Q(s) ds− 1
(n− 1)!

∫ ∞

t

(s− t)n−1f(s) ds, t > T.

Then L(t) > 0 for t > T . Let

u(t) =





0, 0 6 t < T
∞∑

i=0

L(t− iτ), t > T.

We may note that
∞∑

i=0

L(t− iτ) contains only finitely many terms, u(t) > 0 for t > T

and u(t)− u(t− τ) = L(t), for t > T . Further, for t > T , it is possible to choose an
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integer k > 0 such that T + kτ 6 t < T + (k + 1)τ . Hence, for t > T ,

u(t) =
k∑

i=0

L(t− iτ) =
G(1)

(n− 1)!

k∑

i=0

∫ ∞

t−iτ

(s− t + iτ)n−1Q(s) ds

− 1
(n− 1)!

k∑

i=0

∫ ∞

t−iτ

(s− t + iτ)n−1f(s) ds

6 G(1)
(n− 1)!

k∑

j=0

∫ ∞

T+(k−j)τ

(s− T − (k − j)τ)n−1Q(s) ds

+
1

(n− 1)!

k∑

j=0

∫ ∞

T+(k−j)τ

(s− T − (k − j)τ)n−1|f(s)| ds

=
G(1)

(n− 1)!

k∑

i=0

∫ ∞

T+iτ

(s− T − iτ)n−1Q(s) ds

+
1

(n− 1)!

k∑

i=0

∫ ∞

T+iτ

(s− T − iτ)n−1|f(s)| ds

<
G(1)

(n− 1)!

∞∑

i=0

∫ ∞

T+iτ

(s− T − iτ)n−1Q(s) ds

+
1

(n− 1)!

k∑

i=0

∫ ∞

T+iτ

(s− T − iτ)n−1|f(s)| ds

< 1/2 + 1/2 = 1.

Let X = BC([T,∞), 
 ), the Banach space of all real-valued bounded continuous
functions on [T,∞) with supremum norm. Let K = {x ∈ X : x(t) > 0 for t > T}.
For x, z ∈ X , we define x 6 z if and only if z − x ∈ K. Thus X is a partially

ordered Banach space. Let M = {x ∈ X : 0 6 x(t) 6 u(t), t > T}. Clearly, x(t) ≡ 0
for t > T belongs to M and it is the infimum of M . Let ϕ ⊂ M ∗ ⊆ M . Define

x0(t) = sup{x(t) : x ∈ M∗}, t > T . Hence x0 is the supremum of M∗ and x0 ∈ M .
For y ∈ M , define

(6) Sy(t) =





y(t− τ) +
1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)G(y(s− σ)) ds

+
1

(n− 1)!

∫ ∞

t

(s− t)n−1|f(s)| ds, t > T1

tu(t)
T1u(T1)

Sy(T1) + (1− t

T1
)u(t), T 6 t 6 T1
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where T1 = T + %. From (6) we obtain, for t > T1,

0 < Sy(t) 6 u(t− τ) +
G(1)

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s) ds

+
1

(n− 1)!

∫ ∞

t

(s− t)n−1|f(s)| ds 6 u(t− τ) + L(t) = u(t)

and, for t ∈ [T, T1], 0 < Sy(t) 6 (t/T1)u(t) + (1 − (t/T1))u(t) = u(t). Hence,
SM ⊆ M . Further, for y1, y2 ∈ M , y1 6 y2 implies that Sy1 6 Sy2. From the
Knaster-Tarski theorem (see [6, p. 30]) it follows that S has a fixed point y0 in M .

Hence, for t > T1,

(7) y0(t)− y0(t− τ) =
1

(n− 1)!

∫ ∞

t

(s− t)n−1[Q(s)G(y0(s− σ)) + |f(s)|] ds,

that is, y0(t) is a solution of (NE) for t > T1 because n is odd. If y0(T1) = 0, then
from (7) we have y0(T1 − τ) < 0 since y0(t) = (1 − (t/T1))u(t) > 0, t ∈ [T, T1].
On the other hand, we obtain y0(T1 − τ) = (1 − (T1 − τ)/T1)u(T1 − τ) > 0. This
contradiction shows that y0(T1) > 0. For T 6 t 6 T1,

y0(t) =
tu(t)

T1u(T1)
y0(T1) +

(
1− 1

T1

)
u(t) > 0

implies that y0(t) > 0 for t ∈ [T1, T1 + r), where r = min{τ, σ}. Hence y0(t) > 0 for
t > T1. Thus the theorem is proved. �
, -�&($. ����

1. The equation

(y(t)− y(t− 1))′′′ + 6(t− 2)−3(t− 1)−1t−4(t4 − (t− 1)4)y3(t− 1) = 0,

t > 3, admits a positive bounded solution by Theorem 3.1. Indeed, y(t) = 1− t−1 is
a positive bounded solution of the equation.

Theorem 3.2. Let n > 3 be odd and (H′9) hold, where

(H′9) f(t) > 0, 0 6
∞∑

k=0

∫ ∞

kτ

(t− kτ)n−1f(t) dt <∞.

Then Eq. (NE) admits a negative bounded solution if and only if (H10) holds.

The proof is similar to that of the previous Theorem and hence is omitted.
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Corollary 3.3. Let n > 3 be odd. Then every bounded solution of (E) oscillates
if and only if

∞∑

k=0

∫ ∞

kτ

(t− kτ)n−1Q(t) dt =∞.

This follows from Theorem 3.1.

Theorem 3.4. Consider

(8) x(m)(t) + Q(t)x(t − σ) = 0, t > 0,

where m > 2 is an even integer, Q ∈ C([0,∞), [0,∞)) and σ > 0. Then the following
statements are equivalent:

(a) every bounded solution of (8) oscillates
(b)

∫∞
0

tm−1Q(t) dt = ∞
(c)

∞∑
k=0

∫∞
kτ

(t− kτ)m−2Q(t) dt =∞, where τ > 0.

"#�%$'&(��)
2. (c) implies that

I ≡
∞∑

k=0

∫ ∞

t0+kτ

(t− t0 − kτ)m−2Q(t) dt = ∞

for every t0 > 0. Indeed, there exists r > 0 such that rτ 6 t0 < (r + 1)τ . If possible,
let I < ∞. Then

(9)
∞∑

k=0

∫ ∞

(r+1)τ+kτ

(t− (r + 1)τ − kτ)m−2Q(t) dt <∞.

Hence ∫ ∞

(r+1)τ

(t− (r + 1)τ)m−2Q(t) dt < ∞.

From Remark 1 it follows that
∫ ∞

(r+1)τ

tm−2Q(t) dt <∞.

Then ∫ ∞

0

tm−2Q(t) dt < ∞

and hence
∫ ∞

τ

(t− τ)m−2Q(t) dt < ∞, . . . ,

∫ ∞

rτ

(t− rτ)m−2Q(t) dt <∞.

20



Consequently,

∞∑

k=0

∫ ∞

kτ

(t− kτ)m−2Q(t) dt =
r∑

k=0

∫ ∞

kτ

(t− kτ)m−2Q(t) dt

+
∞∑

k=r+1

∫ ∞

kτ

(t− kτ)m−2Q(t) dt < ∞,

by using (9), a contradiction. Hence the claim holds.
*+���!���/���#01���2�3���%$

3.4. We show that (a) ⇔ (c) and (a) ⇔ (b). Hence (b)
⇔ (c).
Suppose (a) holds. If possible, let

∞∑

k=0

∫ ∞

kτ

(t− kτ)m−2Q(t) dt <∞.

Hence we can choose an integer N > 0 such that Nτ > σ and

τ

(m− 2)!

∞∑

k=N

∫ ∞

kτ

(t− kτ)m−2Q(t) dt <
1
3
,

that is,
τ

(m− 2)!

∞∑

k=0

∫ ∞

T+kτ

(t− T − kτ)m−2Q(t) dt <
1
3
,

where T = Nτ . Let X = BC([0,∞), 
 ) and
M = {x ∈ X : 1 6 x(t) 6 3/2}.

Hence M is a complete metric space. For x ∈ M , define

Sx(t) =





1, 0 6 t 6 T

1 +
1

(m− 2)!

∫ t

T

(∫ ∞

s

(u− s)m−2Q(u)x(u− σ) du

)
ds, t > T.

For t > T , we have

1 < Sx(t) < 1 +
1

(m− 2)!

∫ ∞

T

( ∫ ∞

s

(u− s)m−2Q(u)x(u− σ) du

)
ds

= 1 +
1

(m− 2)!

∞∑

k=0

∫ T+(k+1)τ

T+kτ

( ∫ ∞

s

(u− s)m−2Q(u)x(u− σ) du

)
ds

< 1 +
τ

(m− 2)!

∞∑

k=0

∫ ∞

T+kτ

(u− T − kτ)m−2Q(u)x(u− σ) du

< 1 +
1
2

=
3
2
.
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Hence SM ⊂ M . Further, it may be shown that ‖Sx1 − Sx2‖ < 1
3‖x1 − x2‖ for

x1 and x2 ∈ M . Hence S is a contraction. Consequently, S has a unique fixed
point x ∈ M . It is a positive bounded solution of (8) on [T,∞), a contradiction.
Thus (a) ⇒ (c). Next suppose that (c) holds. Let x(t) be a bounded nonoscillatory
solution of (8). We may take, without any loss of generality, x(t) > 0 for t > t0 > 0.
Then x(m)(t) 6 0 for t > t0 + σ. Hence each of x, x′, . . . , x(m−1) is monotonic and

is of constant sign for large t. Since x(t) is bounded, then lim
t→∞

x(t) = ` > 0 exists,

(−1)m+kx(k)(t) < 0 for t > t1 > t0 and lim
t→∞

x(i)(t) = 0, i = 1, 2, . . . , m − 1. Let

x(t) > α > 0, for t > t2 > t1. From Lemma 2.3 we obtain, for t > t3 > t2 + σ,

x′(t) =
1

(m− 2)!

∫ ∞

t

(s− t)m−2Q(s)x(s− σ) ds.

Hence

j∑

k=0

∫ t3+(k+1)τ

t3+kτ

x′(t) dt

=
1

(m− 2)!

j∑

k=0

∫ t3+(k+1)τ

t3+kτ

( ∫ ∞

t

(s− t)m−2Q(s)x(s− σ) ds

)
dt,

that is,

x(t3 + (j + 1)τ)− x(t3) > τ

(m− 2)!

j∑

k=0

∫ ∞

t3+(k+1)τ

(s− t3 − kτ − τ)m−2Q(s)x(s − σ) ds

>
ατ

(m− 2)!

j∑

k=0

∫ ∞

t3+(k+1)τ

(s− t3 − kτ − τ)m−2Q(s) ds.

Since x(t) is bounded, we obtain

∞∑

k=0

∫ ∞

t3+(k+1)τ

(s− t3 − kτ − τ)m−2Q(s) ds <∞,

a contradiction by Remark 2. Thus (c) ⇒ (a).
Suppose that (a) holds. Let

∫∞
0

tm−1Q(t) dt < ∞. Hence
∫∞

t
sm−1Q(s) ds → 0

as t → ∞. Since 0 <
∫∞

t (s − t)m−1Q(s) ds <
∫∞

t sm−1Q(s) ds, then
∫∞

t (s −
t)m−1Q(s) ds < (m − 1)!/4 for t > t0 > σ. Setting M = {x ∈ X : 3/4 6 x(t) 6 1}
and, for x ∈ M ,

Sx(t) =





Sx(t0), 0 6 t 6 t0

1− 1
(m− 1)!

∫ ∞

t

(s− t)m−1Q(s)x(s− σ) ds, t > t0
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we obtain SM ⊆ M and S is a contraction. Hence S has a unique fixed point in

M and it is a positive bounded solution of (8), a contradiction. Hence (a) ⇒ (b).
Next suppose that (b) holds. Let x(t) be a bounded nonoscillatory solution of (8)
such that x(t) > 0 for t > t0 > 0. Proceeding as in the proof of the case (c) ⇒ (a),
we obtain lim

t→∞
x(t) = ` > 0 exists and lim

t→∞
x(i)(t) = 0, i = 1, 2, . . . , m − 1. From

Lemma 2.3 we obtain

x′(t) = −ν′(t)

because lim
t→∞

x′(t) = 0, where

ν(t) =
(−1)m

(m− 1)!

∫ ∞

t

(s− t)m−1Q(s)x(s− σ) ds.

Hence

x(t) = µ +
1

(m− 1)!

∫ ∞

t

(s− t)m−1Q(s)x(s− σ) ds,

where ∞ > µ = ` + ν(∞) > 0 because 0 6 ν(∞) < ∞. Suppose that x(t) > `/2, for
t > t2 > 0. From the above identity, we obtain

∫ ∞

t3

(s− t3)m−1Q(s)x(s− σ) ds < ∞

where t3 > t2 + σ. On the other hand, the use of (b) yields

∫ ∞

t3

(s− t3)m−1Q(s)x(s− σ) ds > `/2
∫ ∞

t3

(s− t3)m−1Q(s) ds =∞,

a contradiction. Hence (b) ⇒ (a). Thus the theorem is proved.
"#�%$'&(��)

3. From Theorem 3.4 we have (b) ⇔ (c).

Corollary 3.5. Let n > 3 be odd. Then every bounded solution of (E) oscillates
if and only if

(H12)
∫ ∞

0

tnQ(t) dt = ∞.

This follows from Corollary 3.3 and Theorem 3.4 by taking m = n + 1.
"#�%$'&(��)

4. We may note that (H3) ⇒ (H2) ⇒ (H12). Hence Corollary 3.5
improves Theorems A and D.
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Theorem 3.6. Suppose that (H1) and (H2) hold. If n > 3 is odd, then every
solution of (E) oscillates.

*+���!���
. Let y(t) be a nonoscillatory solution of (E). Then y(t) > 0 or y(t) < 0

for t > t0 > 0. Let y(t) > 0 for t > t0. Setting z(t) as in (3) for t > t0 + %,

we obtain z(n)(t) = −Q(t)G(y(t − σ)). From Lemma 2.4 it follows that either
lim

t→∞
z(t) = −∞ or lim

t→∞
z(i)(t) = 0, i = 0, 1, 2, . . . , n − 1 and (−1)kz(k)(t) > 0

for t > t0 + %, k = 0, 1, 2, . . . , n − 1 because n is odd. However, lim
t→∞

z(t) = −∞
implies that z(t) < 0 for t > t1 > t0 + %, that is, y(t) < y(t− τ), t > t1. Hence y(t)
is bounded. Consequently, z(t) is bounded, a contradiction. Therefore lim

t→∞
z(t) = 0

and z′(t) < 0, t > t0 + %. Then z(t) > 0, that is, y(t) > y(t − τ), for t > t0 + %.

From this we obtain lim inf
t→∞

y(t) > 0. There exists β > 0 such that y(t) > β for

t > t3 > t0 + %. Further, by Lemma 2.3,

z(t) =
1

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s)G(y(s− σ)) ds >
G(β)

(n− 1)!

∫ ∞

t

(s− t)n−1Q(s) ds

for t > t4 > t3 + %. Hence

∫ ∞

t4

(s− t4)n−1Q(s) ds <∞,

that is, ∫ ∞

t4

sn−1Q(s) ds < ∞

by Remark 1, a contradiction to (H2). If y(t) < 0 for t > t0, then we set x(t) =
−y(t) > 0 to obtain

[x(t) − x(t− τ)](n) + Q(t)H(x(t− σ)) = 0, t > 0,

where H(u) = −G(−u). Proceeding as above we get a contradiction. Hence the
theorem is proved. �
, -�&($. ����

2. Consider

(10) (y(t)− y(t− π))′′′ + 2y
(
t− 3

2π
)

= 0, t > 0.

Every bounded solution of (10) oscillates by Corollary 3.5 and every solution of

(10) oscillates by Theorem 3.6. Indeed, y(t) = sin t is a bounded oscillatory solution
of (10).
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3. Every solution of the equation

(y(t)− y(t− 2π))′′′ + 2
√

2e−7 4 /4(e2 4 − 1)y
(
t− 1

4π
)

= 0, t > 0,

oscillates by Theorem 3.6. In particular, y(t) = et cos t is an unbounded oscillatory
solution of the equation.
"#�%$'&(��)

5. Theorem 3.6 improves Theorem A. Since (H3) ⇒ (H2), it also
improves Theorem D for superlinear G in view of the assumption (H1).

Theorem 3.7. Let (H4) and (H8) hold. Then every solution of (NE) oscillates
or tends to zero as t →∞.
*+���!���

. Let y(t) be a nonoscillatory solution of (NE) such that y(t) > 0 for
t > t0 > 0. Setting w(t) as in (3) for t > t0 + %, we have

(11) w(n)(t) = −Q(t)G(y(t− σ)) 6 0.

Hence each of w, w′, . . . , w(n−1) is monotonic and is of constant sign for t > T > t0+%.
If lim

t→∞
w(n−1)(t) = −∞, then lim

t→∞
w(t) = −∞ and hence z(t) < 0 for large t.

Since y(t) < y(t − τ), then y(t) is bounded and hence w(t) is bounded by (H4), a
contradiction. Hence lim

t→∞
w(n−1)(t) = ` exists. Integrating (11) we obtain, for t > T ,

(12)
∫ ∞

t

Q(s)G(y(s− σ)) ds = w(n−1)(t)− `.

If y(t) is unbounded, then there exists a sequence {tn} ⊂ [T,∞) such that tn → ∞
and y(tn) → ∞ as n → ∞. For M > 0, there exists N1 > 0 such that y(tn) > M

for n > N1. Since y is continuous, there exists δn > 0 with lim inf
n→∞

δn > 0 such that

y(t) > M for t ∈ (tn − δn, tn + δn). If δn > δ > 0 for n > N > N1, then
∫ ∞

T

Q(s)G(y(s− σ)) ds >
∞∑

n=N

∫ tn+δn+σ

tn−δn+σ

Q(s)G(y(s− σ)) ds

> G(M)
∞∑

n=N

∫ tn+δn+σ

tn−δn+σ

Q(s) ds

> G(M)
∞∑

n=N

∫ tn+δ+σ

tn−δ+σ

Q(s) ds = ∞

due to (H8), a contradiction to (12). Hence y(t) is bounded. If lim sup
t→∞

y(t) = α > 0,

then there exists a sequence {tn} such that y(tn) > β > 0 for large n. Proceeding as

above we obtain a contradiction due to (H8). Hence lim sup
t→∞

y(t) = 0. Consequently

lim
t→∞

y(t) = 0. If y(t) < 0 for t > t0, then we set x(t) = −y(t) and show that

lim
t→∞

x(t) = 0. Thus the proof of the theorem is complete. �
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6. Theorem 3.7 improves Theorem C.

, -�&($. ����
4. Consider

(13) (y(t)− y(t− 2π))′′′ + e−3 4 /2y3
(
t− 1

2π
)

= f(t), t > 0,

where f(t) = e−3t sin3 t− 2(e2 4 − 1)e−t (cos t− sin t). Hence

F (t) = −1
2

∫ ∞

t

(s− t)2[e−3s sin3 s− 2(e2 4 − 1)e−s(cos s− sin s)] ds.

Then, for t > 0,

|F (t)| 6 1
2

∫ ∞

t

(s− t)2e−3s ds + 2(e2 4 − 1)
∫ ∞

t

(s− t)2e−s ds

<
1
2

∫ ∞

t

s2e−3s ds + 2(e2 4 − 1)
∫ ∞

t

s2e−s ds, which → 0 as t →∞.

Every solution of (13) oscillates or tends to zero as t → ∞ by Theorem 3.7. In

particular, y(t) = e−t cos t is an oscillatory solution of (13) and y(t) → 0 as t →∞.
, -�&($. ����

5. y(t) = e−t is a nonoscillatory solution of the equation

(y(t)− y(t− log 2))(4) + (e−3 + e2t−3)y3(t− 1) = e−3t, t > 0,

and y(t) → 0 as t →∞. This illustrates Theorem 3.7. Here F (t) = e−3t/81.
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