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NEWS AND NOTICES

SIXTY YEARS OF IVAN NETUKA
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	 �
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, Praha

(Received October 20, 2003)

Professor Ivan Netuka was born on July 7, 1944 at Hradec Králové. In 1962 he

commenced studying mathematics at the Faculty of Mathematics and Physics of
Charles University (the Faculty). Among his teachers were Vojtěch Jarník and Jan

Mařík. He graduated in 1967 and soon afterwards joined the faculty of his Alma
Mater.

Under the supervision of J.Král he completed his thesis [D1] in 1970 and was
granted (the equivalent of) a Ph.D. in 1972. At that time he was already deeply

interested in potential theory, and this led him to Paris where he spent a year with
Marcel Brelot and Gustave Choquet. He defended his thesis [D3] to obtain a DrSc.,

the highest scientific degree available in Czechoslovakia, and became a professor in
1986. He was active in the Seminar on mathematical analysis (founded by J.Král)

which concentrated mainly on potential theory, and he later became one of its lead-
ers.

Netuka was a visiting professor for a semester in Erlangen with Heinz Bauer,
and was invited for longer periods to the Netherlands, Sweden, U.S.A. and Great

Britain. Five students received doctorates under his guidance. He has lectured
abroad on more than fifty occasions in many different countries, frequently as an

invited speaker at conferences. He was also a member of organizing committees
of international conferences at Praha, Utrecht, Château de Bonas, Kouty, Uppsala,

and has served in Editorial boards of several journals. Since 1986 he has been the
Editor-in-Chief of Commentationes Mathematicae Universitatis Carolinae. His work

in mathematics has received special recognition on several occasions: in particular,
he has been made a corresponding member of the Bavarian Academy of Sciences

(since 2000) and a honorary member of the Society of Czech Mathematicians and
Physicists (since 2002).

91



Netuka has always been involved with the life of the Faculty. During his academic

career, he was a member of the Academic Senate (1989–1991, 1993), the Director of
the Mathematical Institute of Charles University (1986–1990), and for three periods
he served as a Vice-Dean (for student affairs (1979–1982), for scientific matters,

international relations (1993–1996, 1996–1999)). Since 1999, he has been Dean of
the Faculty. He has also been involved in various activities within the Czech, as

well as the wider European, mathematical community. However, the aim of this
article is not to catalogue his numerous activities, but to present an account of his

mathematical achievements.

We begin with the ���������������! #"��%$'&����)( , a cornerstone of potential theory.
Let U be a relatively compact open set in * m , or, more generally, in a harmonic

space. We define H(U) = {h ∈ C(U ) ; h|U is harmonic} and recall that U is said to
be regular if H(U)|∂U = C(∂U), that is, for every continuous boundary condition f

there is a uniquely determined h ∈ H(U), such that h|∂U = f . We call this function
h the solution of the classical Dirichlet problem for f . For a non-regular U , we try

instead to solve the generalized Dirichlet problem. This means we seek a reasonable
operator T sending C(∂U) into the space H(U) of harmonic functions on U such

that Tf gives the solution of the classical Dirichlet problem for f when it exists, that
is, T (h|∂U) = h|U for every h ∈ H(U). Here reasonable means either positive linear
or increasing. In the former case T is called a Keldysh operator, while in the latter
case T is a K-operator.

Among methods for producing a Keldysh operator the best known is the Perron-
Wiener-Brelot method (PWB-solution) based on upper and lower functions. The

corresponding operator will be denoted by HU . Hence there is no problem with the
existence of a Keldysh operator. A remarkable result reads as follows: On every

U ⊂ * m there is a unique Keldysh operator. Keldysh’s original proof is difficult.
A. F.Monna emphasized the need for an accessible proof. A new and elementary

proof is given in [A22].

However, as it was pointed out by J. Lukeš, Keldysh’s theorem does not have an
analogue for the potential theory associated with the heat equation. Consequently, it

is not clear in this case whether the Wiener-type solution introduced by E.M. Landis
necessarily coincides with the PWB-solution. An affirmative answer in a much more
general context is given in [A17], where interior stability of the PWB-solution is also

proved.

Papers [B2], [B4], [B5], [B7] and [B17] are devoted to various aspects of the Keldysh
theorem. In [B4], which is a survey article, an interesting new result on the Dirichlet

problem on the Choquet boundary is included; the case of discontinuous boundary
conditions is also considered. In [A25], a Keldysh-type theorem for the Dirichlet
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problem on a compact set is proved. Ninomiya operators satisfying weaker require-

ments than Keldysh operators are studied in [A30].

In [A29] (which is partially based on [D3]) an abstract setting appropriate for the

better understanding and study of the Keldysh type operators is presented. To this
end, a question of uniqueness of extensions of operators on Riesz spaces is analyzed.

The context is then specialized to function spaces and at this point Choquet theory
enters quite naturally into the considerations (cf. [B19]). A problem proposed by
A. F.Monna is solved in [B4] and [B7] where a uniqueness domain for extensions of

Keldysh operators is characterized. Also an interesting connection with Korovkin-
type theorems is pointed out.

Recall that a point z ∈ ∂U is called regular provided that HUf(x) → f(z) as
x → z for every f ∈ C(∂U). The set of all regular points of U is denoted by ∂ rU

while ∂ irrU := ∂U \ ∂ rU . Recall also that the set U is said to be semiregular if HUf

is continuously extendible to U whenever f ∈ C(∂U). J. Král posed the problem of
whether, in Brelot harmonic spaces, U is semiregular if and only if ∂ rU is closed.
A counterexample may be found in [A11]. In [A10] it is shown that the answer

is affirmative under the additional assumption of the axiom of polarity. In 1950
M.Brelot and G.Choquet raised the following question: for which sets U is it true

that

(1) HUf = inf{h|U ; h ∈ H(U), h|∂U > f} for every f ∈ C(∂U) ?

This problem was solved in [A24] by showing that this is true if and only if ∂ rU = ∂U .

The paper also deals with related questions in the context of harmonic spaces. If the
pointwise infimum in (1) is replaced by the specific infimum, it is proved that (1)

holds if and only if the set ∂ irrU is negligible.

Mařík’s problem, dating from 1957, concerning solutions of the Dirichlet problem

on unbounded open sets, is solved in [A6].

The coarsest topology that makes all hyperharmonic functions continuous is called

the fine topology. Boundary behaviour of HUf with respect to the fine topology for
resolutive functions f near an irregular point of U is investigated in detail in [A34].

This article extends and completes results previously obtained by H.Bauer. It also
includes a new proof of Bauer’s result on the coincidence of the Fulks measure known

from parabolic potential theory with the balayage measure. Papers [A39], [B10]
and [A37] deal with the boundary behaviour of HUf . The survey paper [A37] also

contains a new result on the convergence of balayage measures in variation, which
solves a problem proposed by T.Gamelin.

Is there a way of recognizing whether a function f ∈ C(∂U) admits a solution of
the classical Dirichlet problem? Here is an immediate obvious answer: this holds if
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and only if HUf(x) → f(z) as x → z for every z ∈ ∂ irrU . But must one really verify

this condition for all irregular points? A set A ⊂ ∂ irrU is said to be regularizing
if the following implication holds: if f ∈ C(∂U) and HUf(x) → f(z) whenever
z ∈ A, then the same is true for every z ∈ ∂ irrU . A classical result says that there

always exist countable regularizing sets. But what do regularizing sets look like?
In [A36] a new topology on ∂ irrU is introduced, and it is proved that A ⊂ ∂ irrU

is regularizing if and only if A is dense in this topology. Special regularizing sets,
called piquetage faible, were defined in 1969 by G.Choquet. Among other results, the

Choquet question of whether every regularizing set is a piquetage faible, is answered
in [A36] in the negative.

Other publications related to this subject are [A12], [A13], [A32], [A38], [A42],
[A47], [A49], [B3], [B6], [B17], [B19] and [B21].

Let us turn to +,&.-/ ���+0�1 2"3$, ��546 ���+,�7 ����5$0� 8 . Recall that the classical the-
orem of Evans-Vasilesco, also known as the continuity principle, states that a New-

tonian potential Nµ of a positive measure µ with compact support K is continuous
provided that its restriction to K is continuous. In 1973 B.-W. Schulze advanced

the following problem: Does the theorem extend to the case of potentials of signed
measures?

An affirmative answer is given in [E3] and [A15], where a form of the maximum
principle of Maria-Frostman for signed measures is also proved. In fact, the results

are proved within the context of Brelot harmonic spaces; the proof uses balayage and
the fine topology. An application to the potential theory of the Helmholz equation

is given as well. An important point in [A15] is the construction of a compactly
supported signed measure µ with continuous potential in such a way that Nµ cannot

be expressed as a difference of two continuous potentials of positive measures. Thus
a cancellation of discontinuities of Nµ+ and Nµ− may occur.

It is known that the Harnack pseudometric is a metric if and only if the set of

positive harmonic functions separates the points. The paper [A40] presents necessary
and sufficient conditions for it. The separation property for other classes of harmonic

functions is also characterized in terms of Denjoy domains, Martin compactification
and special harmonic morphisms.

Papers [A5], [A20], [A33] and [A39] deal with various problems of abstract poten-
tial theory. In [A5], a full characterization of the set of elliptic points for harmonic

sheaves on 1-manifolds is given. Properties of balayage defined by neglecting certain
small sets are investigated in the framework of standard H-cones in [A33]. Limits of

balayage measures in a balayage space are dealt with in [A39].

For the next result denote by F the closure of the Choquet boundary of the closure

of a relatively compact open set U with respect to H(U). The following result is
proved in [A20]: Every point of ∂U \ F is a point of harmonic continuability of
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any function of H(U), whereas the set of all functions of H(U), for which no point
of F is a point of harmonic continuability, is a dense Gδ in H(U). For a more
elementary approach applicable in classical potential theory (associated with the
Laplace equation in * m ), see [A21]. In [A20], removable singularities in a harmonic

space are also studied.

Publications also related to this section are [A11], [A17], [A24], [A25], [A29]–[A31],
[A34]–[A39], [A42], [B4], [B5], [B7], [B9], [B10], [B20] and [B21].

It is a well known fact that a continuous function h on an open set U ⊂ * m is
harmonic if and only if

(2) h(x) =
1

λ(B(x, r))

∫

B(x,r)

h dλ

for every closed ball B(x, r) ⊂ U ; here λ stands for Lebesgue measure in * m and
the fact described is called the mean value property. If U = * m , h is continuous and

(2) holds for one ball centered at each x ∈ * m , then h need not be harmonic. This
answers a question of J.Mařík from 1956; see [A1].

It is obvious that, for an open ball A ⊂ * m of centre 0 and a harmonic function
h integrable on A, the equality

(3) h(0) =
1

λ(A)

∫

A

h dλ

holds. The following inverse mean value property was proved in 1972 by Ü.Kuran:

Let A ⊂ * m be an open set, 0 ∈ A and λ(A) < ∞. If (3) holds for every integrable
harmonic function h onA, then Amust be a ball of centre 0. Under various additional
assumptions the analogous statement had been proved previously by, for example,
W. Brödel, A. Friedman and W. Littman, B. Epstein and M.M. Schiffer, M.Goldstein

and W.W.Ow. A series of papers appeared following Kuran’s result in which (3)
was required to hold for a certain class of harmonic functions only; these results

belong to M.Goldstein, W.Hausmann, L.Rogge and D.H.Armitage. The following
theorem from [A41] (stated here only for the case m > 2) represents a very general
form of the inverse mean value property: Let A ⊂ * m be a Lebesgue measurable set,

0 < λ(A) < ∞ and let B denote the ball of centre 0 such that λ(A) = λ(B). Then
(3) holds for the Newtonian potential h of λ|C for every compact set C ⊂ * m \A, if

and only if λ(B \A) = 0. Other classes of test functions are also investigated, which
leads to a description of smallness of the difference between A and B in terms of
removable singularities.
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Now let U be a bounded domain in * m and let 0 ∈ U . There are many (positive)

measures µ on U such that µ(U) > 0 and

(4) h(0) =
1

µ(U)

∫

U

h dµ

holds for every bounded h ∈ H(U). Such measures were investigated for vari-
ous purposes by, for example, G.Choquet and J.Deny, L. Flatto, A. Friedman and

W. Littman, A.M.Garcia, M.R.Hirschfeld, E. Smyrnélis and L. Zalcman. If desired,
the measure µ can be chosen to be absolutely continuous with respect to λ, say
µ = wλ.

During the International Conference on Potential Theory (Nagoya, 1990), A.Cor-

nea raised the problem whether there always exists a function w such that (4) holds
for µ = wλ where w is bounded away from 0 on U . In [A43] it is proved that the

answer is negative in general; there always exists a strictly positive w ∈ C∞(U)
with the desired property; if U has a smooth enough boundary (for example, of class
C1+α), then there is a function w ∈ C∞(U) which is bounded away from 0.
Another problem of that kind was proposed in 1994 by G.Choquet. If mr, r > 0,

stands for a normalized Lebesgue measure on B(0, r) ⊂ * m , it reads as follows: Let
f be a continuous function on * m and let r1, r2, . . . be strictly positive numbers.

Under what conditions on f and {rn} does {f ∗mr1 ∗mr2 ∗ . . . ∗mrn} converge to
a harmonic function? An answer is given in [A44] and the key role is played by the
following two facts:

(a) If
∑

r2
j = ∞, then {mr1 ∗mr2 ∗ . . . ∗mrn} converges vaguely to 0;

(b) If
∑

r2
j < ∞, then the sequence {mr1 ∗mr2 ∗ . . . ∗mrn} converges weakly to

a probability measure on * m .

In fact, more general measures are investigated.

Publications also related to this section are [A48], [B1] and [B12].

Another group of Netuka’s papers is related to �3+9��(:$'4;���<+9"�"��%$9=>��(?+@ ���$'4 .
As an answer to a question proposed by J. Lukeš, the following assertion is proved in
[A47]: Let m > 2 and let U be the open unit ball in * m . Then there exists a family

F ⊂ H(U) such that u = inf F is continuous on U and there exists a continuous
convex function v on U such that u 6 v and the inequalities u 6 h 6 v hold for

no function h ∈ H(U). In other words, in contrast to convex analysis, a Hahn-
Banach type theorem does not hold for separation by means of elements of H(U).
A less sharp result had already been proved in [A28] for the plane case where u,
−v are continuous on U and superharmonic on U . It gave an answer to a problem

proposed by G.A.Edgar who also asked for a comparison of representing measures
for harmonic and superharmonic functions.
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Now let U be a relatively compact open subset of a harmonic space. The following

three subspaces of H(U) of harmonic functions on U are of interest:

H1 = {h|U ; h ∈ H(U)}
(solutions of the classical Dirichlet problem),

H2 = {HUf ; f ∈ C(∂U)}
(solutions of the generalized Dirichlet problem),

H3 = {h ∈ H(U) ; h bounded}.

When is H1 dense in H2 in the topology of locally uniform convergence? The

assumption that the set of irregular points of U is negligible turns out to be sufficient,
as proved in [A38]. In [A42] it was shown that this condition is also necessary. On

the other hand, [A42] includes an example showing that even in classical potential
theory H1 may not be dense in H3.

In [A49], for classical harmonic functions, uniform approximation of functions
from H3 by functions in H2 is studied; similarly for H2 and H1 and also for H3

andH1. The results obtained involve the oscillation of functions fromH3 orH2 at the
boundary as a measure of how close the approximation can be. It is shown that the

results cannot be improved. As a consequence of the approximation investigations,
the following Sarason-type theorem is proved: The space H3 + C(U)|U is uniformly
closed. For regular U , the result had recently been proved by D.Khavinson and
H. S. Shapiro.
If U is not regular, then one may try, for a given f ∈ C(∂U), to find amongst the

functions of H(U)|∂U the best uniform approximant to f . Such an approximation
problem is investigated in [A32]. It turns out that this is intimately related to the

following property of H(U): If U ⊂ * m is a bounded domain satisfying ∂U = ∂U ,
then the space H(U)|∂U is pervasive, in the sense that H(U)|F is uniformly dense
in C(∂U) whenever F is a nonempty proper closed subset of ∂U . We note that
the assumption ∂U = ∂U cannot be omitted. In [A32], approximation properties of

general pervasive function spaces are established, which made it possible to clear up
the question of best harmonic approximation stated above.

Publications also related to this section include [A30], [A46] and [A50].
Let us return to the A���4;�B �$0"3$'��$'C 8 which is the coarsest topology making

all hyperharmonic functions continuous. It is known that functions continuous in
the fine topology for classical potential theory are approximately continuous and

thus Baire-one functions with respect to original topology. Such an approach is not
available for the parabolic potential theory associated with the heat equation. In

[A14] it is proved that, also in this situation, finely continuous functions are Baire-
one with respect to the Euclidean topology; this implies, for example, that the fine
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topology is not normal. In a way it is not surprising that the fine topology is not

“nice”, for example, general topological considerations from [A35] show that, in
interesting cases, the fine topology fails to be Čech complete. This is also the case
for density topologies investigated in real analysis.

In [A31] and [B9], for a Borel measurable function f : * m → * , the set of fine
strict maxima (that is, strict maxima with respect to the fine topology) is shown to be
polar, and thus small in the potential theoretic sense. In fact, polarity characterizes

the size of the set of strict fine maxima.

Recall that a set A is said to be thin at a point x /∈ A provided that the comple-

ment of A is a fine neighbourhood of x. For parabolic potential theory, a geometric
condition for thinness is established in [A13]. The result obtained generalizes that

of W.Hansen as well as the “tusk condition” of E.G. Effros and J. L.Kazdan. Since
a boundary point z of an open set U is regular if and only if the complement of U is

thin at z, the result in [A13] provides a geometric regularity criterion.

Publications also related to this section are [A10], [A15], [A34], [A37], [A41], [A50],
and [B10].

Now let us turn to work related to ��46 ��5C0��+,�#� D E +9 ���$'4F(:�) ���$HGIA�$0�
&3$ E 43G;+,� 8KJ +,� E �?"���$0&����5(?- . Netuka’s Ph.D. thesis [D1] was written under
the supervision of J.Král and was published in papers [A7], [A8] and [A9]. The
classical formulation of the third boundary value problem for the Laplace equation

requires smoothness of the boundary of the domain. For the case of non-smooth
boundaries, it is thus appropriate to choose the weak (distributional) formulation.

In the integral equation method, a solution is sought in the form of a single layer
potential of a signed measure. The starting point of the investigation is to identify

when the corresponding distribution is representable by means of a signed measure.
A necessary and sufficient condition is proved in [A7] in terms of the so-called cyclic

variation studied by J.Král in the sixties. Under this condition, the distribution can
be identified with a bounded operator on the Banach space of signed measures on

the boundary, and thus the third boundary value problem is transformed into the
problem of solving the corresponding operator equation. Properties of this operator

are investigated in detail in [A7] and [A8]. The dual operator connected with the
double layer potential plays an important role here.

For non-smooth domains, the operators studied are not compact and so, in view
of the applicability of the Riesz-Schauder theory, it is useful to calculate the essential

norm, that is, the distance from the space of compact operators. This is done in [A8],
and in [A9] the solvability of the corresponding formulation of the third boundary

value problem is proved. The results obtained generalize those of V.D. Sapozhnikova
and complete Král’s investigations of the Neumann problem.
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The applicability of the integral equation method depends on the geometrical

nature of the boundary of the domain in question. In general, C1-domains do not
enjoy the geometric conditions involving the boundedness of the cyclic variation,
whereas C1+α-domains do. In [A3] it is shown that most (in the sense of Baire

category) smooth surfaces even have the cyclic variation infinite everywhere.

In [A12] and [E2], the representability of solutions of the Dirichlet problem (with
possibly discontinuous boundary data) by means of a generalized double layer poten-

tials is studied. Š. Schwabik’s and W. Wendland’s modification of the Riesz-Schauder
theory turned out to be useful in this context. For a class of non-smooth domains,

the harmonic measure is shown to be absolutely continuous with respect to surface
measure and non-tangential boundary behaviour of solutions is analysed.

In [A16] the essential radius of a potential theoretic operator for convex sets in * m

is evaluated in terms of metric density at boundary points. The formula obtained

is a higher-dimensional analogue of J. Radon’s result established in 1919 for plane
domains bounded by curves of bounded rotation.

Definitive results concerning the contractivity of C.Neumann’s operator consid-

ered in full generality are proved in [A18]: non-expansiveness is shown to be equiva-
lent to convexity, and the contractivity of the second iterate of C.Neumann’s oper-

ator holds for all convex sets. The paper [A18] was inspired by the investigation of
R.Kleinman and W.Wendland on the Helmholz equation.

The applicability of the method of integral equations to the mixed boundary value

problem for the heat equation is investigated in [D2] and [E4]. No a priori smoothness
restrictions on the boundary are imposed. A weak characterization of the boundary
condition is introduced and, under suitable geometric assumptions involving cyclic

variation, the existence and uniqueness result is proved.

Publications also related to this section are [B6] and [E1].

Now we will describe works on ���9+,�L+,4.GM�!$0(:"����)=N+,43+9� 8 -���- and on (:�9+@O
- E ���# ����)$'� 8 . P.M.Gruber proved in 1977 that most convex bodies are smooth
but not too smooth. More specifically, considering the Hausdorff metric on convex
bodies, the set of convex bodies with C1-boundary is residual whereas that with

C2-boundary is of the first Baire category. The paper [A23], where convex functions
are treated instead of convex bodies, gives a more precise information on the gap be-
tween C1 and C2 smoothness. A special case of the result of [A23] says that a typical

convex function is of the class C1+α on no (non-empty) open subset of the domain.
In fact a much richer scale of moduli than tα is considered.

The note [A2] solves a problem proposed by J.Mařík in 1953 concerning uniform

continuity of functions with bounded gradient on some (non-convex) open sets pos-
sessing a certain geometrical property.
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The paper [A19] deals with arbitrary finite sums of vectors in * m . For a finite set

F = {x1, . . . , xn} ⊂ * m put

∑
F =

n∑

j=1

xj ,
∑

|F | =
n∑

j=1

|xj |.

Denote by T (u, δ) the cone {x ∈ * m ; x ·u > δ|x|}, where δ > 0 and u ∈ * m , |u| = 1.
The result: There exists C > 0 such that for any finite set F ⊂ * m with

∑ |F | > 0
there is a unit vector u such that

∣∣∣∣
∑

(F ∩ T (u, δ))
∣∣∣∣> C

∑
|F |.

The exact (maximal) value of C depending only on m and δ is determined. The

result generalizes inequalities previously obtained by W.W.Bledsoe, D. E.Dynkin
and A.Wilansky.

In [A45], a general construction of regularly open subsets of * m (that is , those
coinciding with the interior of their closure) having a boundary of positive Lebesgue

measure is given. This is related to an article of R.Börger published in 1999, where
a special construction for * is presented.
Given a probability measure µ on * m , write c(µ) for the barycentre of µ and put

‖µ‖2 =
( ∫
P

m

|x− c(µ)|2 dµ(x)
)1/2

.

For sequences of probability measures µ1, µ2, . . . the limit behaviour (with respect
to vague and weak convergence) of successive convolutions µ1 ∗ . . . ∗ µn is investi-

gated in [A48]. It turns out that the character of convergence is closely related to
the convergence or divergence of

∑ ‖µk‖2
2, respectively. A detailed analysis of the

divergence case has to do with the central limit theorem and the Lindeberg condition
from probability theory. Special cases have already been studied in [A44].

Let F map conformally the open unit disc in Q onto the interior of a polygon.
The article [A4] deals with a very detailed investigation of the (multivalued) analytic

function determined by the analytic element {0, F}.
In [A32], as we have already mentioned, the space H(U)|∂U was shown to be

pervasive, provided U satisfies a mild topological condition. This result suggests the
question of whether, substituting Q for * m , the space of harmonic functions can be

replaced by the space (Re A(U))|∂U ; here A(U) is the disc algebra, that is, the algebra
of functions continuous on U and holomorphic on U . A complete characterization of

the (real) pervasiveness of (Re A(U))|∂U and the complex pervasiveness of A(U)|∂U

is given in [A46].
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Publications also related to this section are [A3], [A27], [A35], [A39], [A50], [B8]

and [B13]–[B19].

Some articles deal with problems of A E 43�1 ���$043+9�R+,4.+,� 8 -���-1S3"3+,�� ���+,�TG>�UAVO
AV�5���546 ���+9�W� D E +@ ���$'4.- and -/ 1+@ ���-/ ����5- . In [A50], two important function
spaces are studied from the point of view of Choquet’s theory: the space of continu-
ous affine functions on a compact convex set in a locally convex space and the space

H(U) introduced above. It turns out that Baire-one functions generated by each of
these spaces behave quite differently. Unlike the affine case, the space of bounded

H(U)-Baire-one functions is not uniformly closed and the barycentric formula fails
for functions of this space. On the other hand, every Baire-one H(U)-affine function
(in particular a fine extension of a solution of the generalized Dirichlet problem for
continuous boundary data) is a pointwise limit of a bounded sequence of functions

from H(U). It is shown that such a situation always occurs for simplicial spaces, but
not for general function spaces. Baire-one functions which can be pointwise approxi-

mated by bounded sequences of elements of a given function space are characterized.

R.R. Phelps in his monograph on Choquet’s theorem asks for an elementary proof

of the fact that every extreme point of the convex set of normalized harmonic func-
tions on a ball coincides with a Poisson kernel. The note [A51] brings a contribution

in this direction.

For a nonlinear second order very strongly elliptic system, every solution with a

bounded gradient has affine components (the Liouville condition). This result is
proved in [A26] and, as a consequence, C1,µ regularity for a wide class of elliptic

systems is obtained.

A threshold autoregressive process of the first order with Gaussian innovations is

investigated in [A27]. Several methods of finding its stationary distribution are used;
one of them is based on solving a special integral equation. Its solution is found for
some values of parameters which makes it possible to compare the exact values with

results obtained by Markov approximation, numerical solutions and simulations.

Publications also related to this section are [A7]–[A9], [A12], [A15], [A29], [A32],

[A46], [A49], [B4], [B5] and [B7].

A series of Netuka’s papers is devoted to �;��-/ �$0� 8 $0AX(?+9 ����5(?+9 ����5- includ-
ing some &���$0C'��+9"��;���9- . A long series of texts describes the evolution of math-
ematical analysis; see [B1]–[B3], [B6], [B12], [B16], [B20], [B21], [C1]–[C7], [C9],

[C15], [C16] and [C21]. Some of these papers include biographies of I. Fredholm,
E.Helly, H. Lebesgue, K.Löwner, G.Mittag-Leffler, G. Pick, J.Radon, B.Riemann

and F. Riesz. Publications [C8], [C10]–[C14], [C17]–[C20], [C22], [F11] written on
various occasions are devoted to the life and work of Netuka’s teachers and/or col-

leagues: H.Bauer, M.Brelot, G.Choquet, I. Černý, V. Jarník, J.Král, J.Mařík and
J.Veselý.
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A contribution to the history of potential theory is contained in [A18]. C.Neu-

mann’s original proof of the contractivity lemma for plane convex domains from 1877
contained a gap. Neumann’s error was sharply criticized by H. Lebesgue in his work
of 1937. However, as documented in [A18], C.Neumann corrected his proof in his

treatise in 1887, a fact of which H. Lebesgue was apparently unaware.
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